M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella et al., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol, vol.6, pp.1769-1780, 2015.

J. Pulit-prociak and M. Banach, Silver nanoparticles -a material of the future??, Open Chem, p.76, 2016.

C. Lok, C. Ho, R. Chen, Q. He, W. Yu et al., Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles, J. Proteome Res, vol.5, pp.916-924, 2006.

F. Gottschalk, C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack, Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment, Int. J. Environ. Res. Public Health, vol.12, pp.5581-5602, 2015.

M. Kah and T. Hofmann, Nanopesticide research: Current trends and future priorities, Environ. Int, vol.63, pp.224-235, 2014.

C. Meier, A. Voegelin, A. Del-real, G. Sarret, C. R. Mueller et al., Transformation of Silver Nanoparticles in Sewage Sludge during Incineration, Environ. Sci. Technol, vol.50, pp.3503-3510, 2016.

T. Y. Sun, F. Gottschalk, K. Hungerbuehler, and B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut, vol.185, pp.69-76, 2014.

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, vol.46, pp.6900-6914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01519292

A. Cox, P. Venkatachalam, S. Sahi, and N. Sharma, Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research, Plant Physiol. Biochem, vol.107, pp.147-163, 2016.

X. Ma, J. Geiser-lee, Y. Deng, and A. Kolmakov, Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation, Sci. Total Environ, vol.408, pp.3053-3061, 2010.

J. Wang, Y. Koo, A. Alexander, Y. Yang, S. Westerhof et al., Phytostimulation of Poplars and Arabidopsis Exposed to Silver Nanoparticles and Ag+ at Sublethal Concentrations, Environ. Sci. Technol, vol.47, pp.5442-5449, 2013.

P. Wang, E. Lombi, S. K. Sun, K. G. Scheckel, A. Malysheva et al., Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants, Environ. Sci, vol.4, pp.448-460, 2017.

J. P. Stegemeier, F. Schwab, B. P. Colman, S. M. Webb, M. Newville et al.,

. Lowry, Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa), Environ. Sci. Technol, vol.49, pp.8451-8460, 2015.

A. E. Pradas-del-real, V. Vidal, M. Carrière, H. Castillomichel, C. Levard et al., Silver Nanoparticles and Wheat Roots: A Complex Interplay, Environ. Sci. Technol, vol.51, pp.5774-5782, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516961

N. T. Basta, J. A. Ryan, and R. L. Chaney, Trace Element Chemistry in Residual-Treated Soil, J. Environ. Qual, vol.34, pp.49-63, 2005.

C. Layet, M. Auffan, C. Santaella, C. Chevassus-rosset, M. Montes et al., Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles, vol.51, pp.9756-9764, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01654604

W. Lee, J. I. Kwak, and Y. An, Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity, vol.86, pp.491-499, 2012.

C. O. Dimkpa, D. E. Latta, J. E. Mclean, D. W. Britt, M. I. Boyanov et al., Fate of CuO and ZnO Nanoand Microparticles in the Plant Environment, Environ. Sci. Technol, vol.47, issue.9, pp.4734-4742, 2013.

A. E. Pradas-del-real, H. Castillo-michel, R. Kaegi, B. Sinnet, V. Magnin et al., Fate of Ag-NPs in Sewage Sludge after Application on Agricultural Soils, Environ. Sci. Technol, vol.50, pp.1759-1768, 2016.

C. L. Doolette, M. J. Mclaughlin, J. K. Kirby, and D. A. Navarro, Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake, J. Hazard. Mater, vol.300, pp.788-795, 2015.

K. Schlich, M. Hoppe, M. Kraas, E. Fries, and K. Hund-rinke, Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study, Ecotoxicology, vol.26, pp.738-751, 2017.

R. Benoit, K. J. Wilkinson, and S. Sauvé, Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles, Chem. Cent. J, issue.7, p.75, 2013.

G. Cornelis, L. Pang, C. Doolette, J. K. Kirby, and M. J. Mclaughlin, Transport of silver nanoparticles in saturated columns of natural soils, Sci. Total Environ, pp.120-130, 2013.

. Iso-16198, Soil quality -Plant-based test to assess the environmental bioavailability of trace elements to plants, 2015.

S. Ahlberg, A. Antonopulos, J. Diendorf, R. Dringen, M. Epple et al.,

D. Meinke, A. Nordmeyer, J. Pailliart, F. Raabe, B. Rancan et al., PVPcoated, negatively charged silver nanoparticles: A multicenter study of their physicochemical characteristics, cell culture and in vivo experiments, Beilstein J. Nanotechnol, vol.5, pp.1944-1965, 2014.

M. Kosmulski, A literature survey of the differences between the reported isoelectric points and their discussion, Colloids Surf., A, vol.222, pp.113-118, 2003.

M. Ringner, What is principal component analysis?, Nat. Biotechnol, vol.26, pp.303-304, 2008.

C. R. Team and R. Team, R: A Language And Environment For Statistical Computing, R Foundation for Statistical Computing, 2012.

S. Dray, A. B. Dufour, and D. Chessel, The ade4 package -II: Two-table and K-table methods, R News, vol.7, pp.47-52, 2007.

S. Dray, A. Dufour, and J. Thioulouse, Analysis of Ecological Data : Exploratory and Euclidean Methods in Environmental Sciences, R package, vol.1, pp.7-13, 2017.

J. F. Oksanen, G. Blanchet, M. Friendly, R. Kindt, P. Legendre et al.,

V. Wagner, Community Ecology Package, R package, vol.2, pp.4-7, 2013.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. Series B Stat. Methodol, vol.57, pp.289-300, 1995.

, Environmental Science: Nano Paper

C. O. Dimkpa, A. Calder, P. Gajjar, S. Merugu, W. Huang et al., Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis, J. Hazard. Mater, vol.188, pp.428-435, 2011.

D. Wang, D. P. Jaisi, J. Yan, Y. Jin, and D. Zhou, Transport and Retention of Polyvinylpyrrolidone-Coated Silver Nanoparticles in Natural Soils, Vadose Zone J, vol.14, 2015.

G. Cornelis, C. Doolette, M. Thomas, M. J. Mclaughlin, J. K. Kirby et al., Retention and Dissolution of Engineered Silver Nanoparticles in Natural Soils, Soil Sci. Soc. Am. J, vol.76, pp.891-902, 2012.

D. Zhou, A. I. Abdel-fattah, and A. A. Keller, Clay Particles Destabilize Engineered Nanoparticles in Aqueous Environments, Environ. Sci. Technol, vol.46, pp.7520-7526, 2012.

R. Sekine, G. Brunetti, E. Donner, M. Khaksar, K. Vasilev et al., Speciation and Lability of Ag-, AgCl-, and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films, vol.49, pp.897-905, 2014.

V. Chaignon, F. Bedin, and P. Hinsinger, Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil, Plant Soil, vol.243, pp.219-228, 2002.

A. R. Whitley, C. Levard, E. Oostveen, P. M. Bertsch, C. J. Matocha et al., Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment, Environ. Pollut, vol.182, pp.141-149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01426277