R. Hille, J. Hall, and P. Basu, The mononuclear molybdenum enzymes, Chemical reviews, vol.114, pp.3963-4038, 2014.

Y. Hu and M. W. Ribbe, Biosynthesis of the iron-molybdenum cofactor of nitrogenase, J Biol Chem, vol.288, pp.13173-13177, 2013.

S. Leimkuhler and C. Iobbi-nivol, Bacterial molybdoenzymes: old enzymes for new purposes, FEMS microbiology reviews, vol.40, pp.1-18, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413145

G. Schwarz, R. R. Mendel, and M. W. Ribbe, Molybdenum cofactors, enzymes and pathways, Nature, vol.460, pp.839-847, 2009.

R. Hille, The mononuclear molybdenum enzymes, Chemical Rev, vol.96, pp.2757-2816, 1996.

S. Reschke, K. G. Sigfridsson, P. Kaufmann, N. Leidel, S. Horn et al., Identification of a Bis-molybdopterin Intermediate in Molybdenum Cofactor Biosynthesis in Escherichia coli, J Biol Chem, vol.288, pp.29736-29745, 2013.

S. Reschke, S. Mebs, K. G. Sigfridsson-clauss, R. Kositzki, S. Leimkuhler et al., Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy, Inorg Chem, vol.56, pp.2165-2176, 2017.

A. Nason, K. Lee, S. Pan, and R. H. Erickson, Evidence for a molybdenum cofactor common to all molybdenum enzymes based on the in vitro assembly of assimilatory NADPH-nitrate reductase using the Neurospora mutant nit-1, J. Less Common Metals, vol.36, pp.449-459, 1974.

S. Leimkühler, M. M. Wuebbens, and K. V. Rajagopalan, The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria, Coordination chemistry reviews, vol.255, pp.1129-1144, 2011.

J. L. Johnson and K. V. Rajagopalan, Structural and metabolic relationship between the molybdenum cofactor and urothione, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.6856-6860, 1982.

H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan, and D. C. Rees, Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination, Science, vol.272, pp.1615-1621, 1996.

M. K. Chan, S. Mukund, A. Kletzin, M. W. Adams, and D. C. Rees, Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase, Science, vol.267, pp.1463-1469, 1995.

M. J. Romão, M. Archer, I. Moura, J. J. Moura, J. Legall et al., Biosynthesis of the molybdenum cofactor. in Escherichia coli and Salmonella, Cellular and Molecular Biology, pp.674-679, 1995.

R. R. Mendel and S. Leimkuhler, The biosynthesis of the molybdenum cofactors, J Biol Inorg Chem, vol.20, pp.337-347, 2015.

G. Giordano, C. L. Santini, L. Saracino, and C. Iobbi, Involvement of a protein with molybdenum cofactor in the in vitro activation of nitrate reductase from a chlA mutant of Escherichia coli K12, Biochim. Biophys. Acta, vol.914, pp.220-232, 1987.

J. Pommier, V. Mejean, G. Giordano, and C. Iobbi-nivol, TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli, J Biol Chem, vol.273, pp.16615-16620, 1998.

O. Genest, M. Ilbert, V. Mejean, and C. Iobbi-nivol, TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature, J Biol Chem, vol.280, pp.15644-15648, 2005.

O. Genest, M. Neumann, F. Seduk, W. Stöcklein, V. Mejean et al., Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components, J Biol Chem, vol.283, pp.21433-21440, 2008.

O. Genest, V. Mejean, and C. Iobbi-nivol, Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes, FEMS microbiology letters, vol.297, pp.1-9, 2009.

V. Stewart and C. H. Macgregor, Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci, J. Bacteriol, vol.151, pp.788-799, 1982.

M. Ilbert, V. Mejean, M. T. Giudici-orticoni, J. P. Samama, and C. Iobbi-nivol, Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA, J Biol Chem, vol.278, pp.28787-28792, 2003.

M. W. Lake, C. A. Temple, K. V. Rajagopalan, and H. Schindelin, The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis, J Biol Chem, vol.275, pp.40211-40217, 2000.

T. Hartmann and S. Leimkühler, The oxygen-tolerant and NAD-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO to formate, The FEBS journal, 2013.