S. Leimkühler and C. Iobbi-nivol, Bacterial molybdoenzymes: old enzymes for new purposes. FEMS microbiology reviews, vol.40, pp.1-18, 2016.

R. Hille, The mononuclear molybdenum enzymes, Chemical Rev, vol.96, pp.2757-816, 1996.
DOI : 10.1021/cr400443z

URL : http://europepmc.org/articles/pmc4080432?pdf=render

T. Palmer, A. Vasishta, P. W. Whitty, and D. H. Boxer, Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli, Eur J Biochem, vol.222, p.8020507, 1994.

K. Yokoyama and . Leimkü, The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria, Biochim Biophys Acta, p.25268953, 2014.

C. Kisker, H. Schindelin, and D. C. Rees, Molybdenum-cofactor-containing enzymes: structure and mechanism, Ann Rev Biochem, vol.66, p.9242907, 1997.
DOI : 10.1146/annurev.biochem.66.1.233

URL : https://authors.library.caltech.edu/630/1/KISarb97.pdf

F. Blasco, D. Santos, J. P. Magalon, A. Frixon, C. Guigliarelli et al., NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli, Mol Microbiol, vol.28, p.9632249, 1998.

O. Genest, V. Mejean, and C. Iobbi-nivol, Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes, FEMS microbiology letters, vol.297, issue.1, p.19519768, 2009.

O. Genest, M. Neumann, F. Seduk, W. Stocklein, V. Mejean et al., Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components, J Biol Chem, vol.283, issue.31, p.18522945, 2008.
DOI : 10.1074/jbc.m802954200

URL : http://www.jbc.org/content/283/31/21433.full.pdf

C. S. Chan, L. Chang, K. L. Rommens, and R. J. Turner, Differential Interactions between Tat-specific redox enzyme peptides and their chaperones, J Bacteriol, vol.191, issue.7, p.2655534, 2009.
DOI : 10.1128/jb.00949-08

URL : https://jb.asm.org/content/191/7/2091.full.pdf

C. S. Chan, L. Chang, T. M. Winstone, and R. J. Turner, Comparing system-specific chaperone interactions with their Tat dependent redox enzyme substrates, Epub 2010/10/27, vol.584, p.3285697, 2010.
DOI : 10.1016/j.febslet.2010.10.043

URL : http://europepmc.org/articles/pmc3285697?pdf=render

M. Lorenzi, L. Sylvi, G. Gerbaud, E. Mileo, F. Halgand et al., Conformational selection underlies recognition of a molybdoenzyme by its dedicated chaperone, PloS one, vol.7, issue.11, p.3501500, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00758737

M. Neumann and S. Leimkühler, The role of system-specific molecular chaperones in the maturation of molybdoenzymes in bacteria, Biochemistry research international, p.2997495, 2011.

R. J. Turner, A. L. Papish, and F. Sargent, Sequence analysis of bacterial redox enzyme maturation proteins (REMPs), Canadian journal of microbiology, vol.50, issue.4, p.15213747, 2004.

D. C. Bay, C. S. Chan, and R. J. Turner, NarJ subfamily system specific chaperone diversity and evolution is directed by respiratory enzyme associations, BMC Evol Biol, vol.15, p.4464133, 2015.
DOI : 10.1186/s12862-015-0412-3

URL : https://bmcevolbiol.biomedcentral.com/track/pdf/10.1186/s12862-015-0412-3

O. N. Lemaire, S. Bouillet, V. Mejean, C. Iobbi-nivol, and O. Genest, Chaperones in maturation of molybdoenzymes: Why specific is better than general?, Bioengineered, vol.8, issue.2, p.5398582, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01413222

M. Ilbert, V. Mejean, and C. Iobbi-nivol, Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins, Microbiology, vol.150, p.15073303, 2004.

C. S. Chan, D. C. Bay, T. G. Leach, T. M. Winstone, L. Kuzniatsova et al., Come into the fold': A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily, Biochim Biophys Acta, vol.1838, issue.12, p.25157671, 2014.

S. J. Cherak and R. J. Turner, Assembly pathway of a bacterial complex iron sulfur molybdoenzyme, Biomol Concepts, vol.8, issue.3-4, p.28688222, 2017.

P. Arnoux, C. Ruppelt, F. Oudouhou, J. Lavergne, M. I. Siponen et al., Sulphur shuttling across a chaperone during molybdenum cofactor maturation, Nature communications, vol.6, p.25649206, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452068

R. Thome, A. Gust, R. Toci, R. Mendel, F. Bittner et al., A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli, J Biol Chem, vol.287, issue.7, p.3281601, 2012.

N. Bö-hmer, T. Hartmann, L. , and S. , The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor, FEBS Lett, vol.588, issue.4, p.24444607, 2014.

T. Hartmann, N. Schwanhold, L. , and S. , Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria, Biochim Biophys Acta, p.25514355, 2014.

R. Hille, J. Hall, and P. Basu, The mononuclear molybdenum enzymes, Chemical reviews, vol.114, issue.7, p.4080432, 2014.

S. Benoit, H. Abaibou, and M. A. Mandrand-berthelot, Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli, J Bacteriol, vol.180, issue.24, p.107766, 1998.

M. Jormakka, S. Tornroth, B. Byrne, and S. Iwata, Molecular basis of proton motive force generation: structure of formate dehydrogenase-N, Science, vol.295, issue.5561, p.11884747, 2002.

G. Sawers, The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek, vol.66, pp.57-88, 1994.

M. Jormakka, B. Byrne, and S. Iwata, Formate dehydrogenase-a versatile enzyme in changing environments, Curr Opin Struct Biol, vol.13, issue.4, p.12948771, 2003.

J. C. Boyington, V. N. Gladyshev, S. V. Khangulov, T. C. Stadtman, and P. D. Sun, Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe 4 S 4 cluster, Science, vol.275, p.9036855, 1997.

G. Sawers and B. Suppmann, Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins, J Bacteriol, vol.174, issue.11, pp.3474-3482, 1992.

P. Central and P. , , p.206030

T. Hartmann, L. , and S. , The oxygen-tolerant and NAD(+)-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate, The FEBS journal, vol.280, issue.23, p.24034888, 2013.

T. Hartmann, P. Schrapers, T. Utesch, M. Nimtz, Y. Rippers et al., The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions, Biochemistry, vol.55, issue.16, p.27054466, 2016.

P. Schrapers, T. Hartmann, R. Kositzki, H. Dau, S. Reschke et al., Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus, Inorg Chem, vol.54, issue.7, pp.3260-71, 2015.

M. Neumann, W. Stö-cklein, A. Walburger, A. Magalon, and S. Leimkühler, Identification of a Rhodobacter capsulatus L-cysteine desulfurase that sulfurates the molybdenum cofactor when bound to XdhC and before its insertion into xanthine dehydrogenase, Biochemistry, vol.46, issue.33, pp.9586-95, 2007.

A. Harel, M. M. Hä-ggblom, P. G. Falkowski, and N. Yee, Evolution of prokaryotic respiratory molybdoenzymes and the frequency of their genomic co-occurrence, FEMS Microbiol Ecol, vol.92, p.187, 2016.

P. Kaufmann, B. R. Duffus, B. Mitrova, C. Iobbi-nivol, C. Teutloff et al., Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase, Biochemistry, vol.57, issue.7, p.29334455, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889976

R. Hidese, H. Mihara, and N. Esaki, Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors, Applied microbiology and biotechnology, vol.91, issue.1, p.21603932, 2011.

S. Leimkühler, M. Bühning, and L. Beilschmidt, Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes, Biomolecules, vol.7, issue.1, p.5372717, 2017.

R. Shi, A. Proteau, M. Villarroya, I. Moukadiri, L. Zhang et al., Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions, PLoS biology, vol.8, issue.4, p.2854127, 2010.

J. R. Cupp-vickery, H. Urbina, and L. E. Vickery, Crystal structure of IscS, a cysteine desulfurase from Escherichia coli, Journal of molecular biology, vol.330, issue.5, pp.1049-59, 2003.

K. A. Black, D. Santos, and P. C. , Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors, Biochim Biophys Acta, vol.1853, issue.6, p.25447671, 2015.

K. A. Black, D. Santos, and P. C. , Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis, J Bacteriol, vol.197, issue.11, p.4420905, 2015.

M. Jormakka, S. Tornroth, J. Abramson, B. Byrne, and S. Iwata, Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli, Acta crystallographica Section D, Biological crystallography, vol.58, pp.160-162, 2002.

T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular systems biology, vol.2, p.1681482, 2006.

J. Pommier, V. Mejean, G. Giordano, and C. Iobbi-nivol, TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli, J Biol Chem, vol.273, issue.26, pp.16615-16635, 1998.

S. Reschke, K. G. Sigfridsson, P. Kaufmann, N. Leidel, S. Horn et al., Identification of a Bis-molybdopterin Intermediate in Molybdenum Cofactor Biosynthesis in Escherichia coli, J Biol Chem, vol.288, issue.41, p.3795271, 2013.

S. Leimkühler and K. V. Rajagopalan, An Escherichia coli NifS-like sulfurtransferase is required for the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z, J Biol Chem, vol.276, p.11290749, 2001.

J. L. Johnson, B. E. Hainline, K. V. Rajagopalan, and B. H. Arison, The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives, J Biol Chem, vol.259, p.6546929, 1984.

H. D. Urbina, J. J. Silberg, K. G. Hoff, and L. E. Vickery, Transfer of sulfur from IscS to IscU during Fe/S cluster assembly, J Biol Chem, vol.276, issue.48, p.11577100, 2001.

H. G. Enoch and R. L. Lester, The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli, J Biol Chem, vol.250, issue.17, pp.6693-705, 1975.

R. C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, p.517706, 2004.

R. Schwarz and M. O. Dayhoff, Matrices for detecting distant relationships. Atlas of protein sequences, pp.353-58, 1979.

M. O. Dayhoff and B. C. Orcutt, Methods for identifying proteins by using partial sequences, Proc Natl Acad Sci U S A, vol.76, issue.5, p.383559, 1979.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol Biol Evol, vol.33, issue.7, pp.1870-1874, 2016.

S. Leimkühler and K. V. Rajagopalan, A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli, J Biol Chem, vol.276, issue.25, p.11290749, 2001.

M. Ilbert, V. Mejean, M. T. Giudici-orticoni, J. P. Samama, and C. Iobbi-nivol, Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA, J Biol Chem, vol.278, p.12766163, 2003.

V. Stewart and C. H. Macgregor, Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci, J Bacteriol, vol.151, p.7047497, 1982.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, issue.4, p.3447015, 1987.