M. W. Adams, The structure and mechanism of iron-hydrogenases, Biochim Biophys Acta, vol.1020, issue.2, pp.115-160, 1990.

M. K. Akhtar and P. R. Jones, Construction of a synthetic YdbK-dependent pyruvate:H 2 pathway in Escherichia coli BL21(DE3), Metab Eng, vol.11, issue.3, pp.139-186, 2009.

J. H. Artz, D. W. Mulder, M. W. Ratzloff, C. E. Lubner, O. A. Zadvornyy et al., Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron-Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis, J Am Chem Soc, vol.139, issue.28, pp.9544-9550, 2017.

L. Avilan, B. Roumezi, V. Risoul, C. S. Bernard, A. Kpebe et al., Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120, Appl Microbiol Biotechnol, vol.102, issue.13, pp.5775-5783, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01893233

J. R. Banu, R. Y. Kannah, M. D. Kumar, M. Gunasekaran, P. Sivagurunathan et al., Recent advances on biogranules formation in dark hydrogen fermentation system: Mechanism of formation and microbial characteristics, Bioresour Technol, vol.268, pp.787-796, 2018.

E. A. Bayer, J. P. Belaich, Y. Shoham, and R. Lamed, The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides, Annu Rev Microbiol, vol.58, pp.521-54, 2004.

S. Benomar, D. Ranava, M. L. Cardenas, E. Trably, Y. Rafrafi et al., Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nat Commun, vol.6, p.6283, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01427429

J. B. Broderick, A. S. Byer, K. S. Duschene, B. R. Duffus, J. N. Betz et al., H-cluster assembly during maturation of the [FeFe]-hydrogenase, J Biol Inorg Chem, vol.19, issue.6, pp.747-57, 2014.

W. Buckel and R. K. Thauer, Energy conservation via electron bifurcating ferredoxin reduction and proton/Na( + ) translocating ferredoxin oxidation, Biochim Biophys Acta, vol.1827, issue.2, pp.94-113, 2013.

W. Buckel and R. K. Thauer, Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling, Chem Rev, vol.118, issue.7, pp.3862-3886, 2018.

W. Buckel and R. K. Thauer, Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review, Front Microbiol, vol.9, p.401, 2018.

G. Cai, J. B. Monis, P. Saint, and C. , A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production, Biotechnol Bioeng, vol.110, issue.1, pp.338-380, 2013.

G. Cai, J. B. Saint, C. Monis, and P. , Genetic manipulation of butyrate formation pathways in Clostridium butyricum, J Biotechnol, vol.155, issue.3, pp.269-74, 2011.

M. Calusinska, T. Happe, B. Joris, and A. Wilmotte, The surprising diversity of clostridial hydrogenases: a comparative genomic perspective, Microbiology, vol.156, pp.1575-88, 2010.

C. R. Carere, V. Kalia, R. Sparling, N. Cicek, and D. B. Levin, Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405, Indian J Microbiol, vol.48, issue.2, pp.252-266, 2008.

A. K. Chandel, G. Chandrasekhar, M. B. Silva, and S. Silverio-da-silva, The realm of cellulases in biorefinery development, Crit Rev Biotechnol, vol.32, issue.3, pp.187-202, 2012.

J. Cohen, K. Kim, P. King, M. Seibert, and K. Schulten, Finding gas diffusion pathways in proteins: application to O 2 and H 2 transport in CpI [FeFe]-hydrogenase and the role of packing defects, Structure, vol.13, issue.9, pp.1321-1330, 2005.

D. Das and T. N. Veziroglu, Advances in biological hydrogen production processes, Int J Hydrogen Energy, vol.33, pp.6046-6054, 2008.
DOI : 10.15518/isjaee.2017.22-24.083-098

M. Demuez, L. Cournac, O. Guerrini, P. Soucaille, and L. Girbal, Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners, FEMS Microbiol Lett, vol.275, issue.1, pp.113-134, 2007.

A. Dubini and M. L. Ghirardi, Engineering photosynthetic organisms for the production of biohydrogen, Photosynth Res, vol.123, issue.3, pp.241-53, 2015.

D. C. Ducat, G. Sachdeva, and P. A. Silver, Rewiring hydrogenase-dependent redox circuits in cyanobacteria, Proc Natl Acad Sci U S A, vol.108, issue.10, pp.3941-3947, 2011.
DOI : 10.1073/pnas.1016026108

URL : https://www.pnas.org/content/pnas/108/10/3941.full.pdf

J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Structure/function relationships of [NiFe]-and [FeFe]-hydrogenases, Chem Rev, vol.107, issue.10, pp.4273-303, 2007.
DOI : 10.1002/chin.200750260

M. Frey, Hydrogenases: hydrogen-activating enzymes, Chembiochem, vol.3, issue.2-3, pp.153-60, 2002.
DOI : 10.1002/1439-7633(20020301)3:2/3<153::aid-cbic153>3.0.co;2-b

C. Gauquelin, C. Baffert, P. Richaud, E. Kamionka, E. E. Guieysse et al., Meynial-Salles I (2018) Roles of the F-domain in [FeFe] hydrogenase, Biochim Biophys Acta, vol.1859, issue.2, pp.69-77

C. Greening, A. Biswas, C. R. Carere, C. J. Jackson, M. C. Taylor et al., Genomic and metagenomic surveys of hydrogenase distribution indicate H 2 is a widely utilised energy source for microbial growth and survival, ISME J, vol.10, issue.3, pp.761-77, 2016.

S. K. Gupta, S. Kumari, K. Reddy, and F. Bux, Trends in biohydrogen production: major challenges and state-of-the-art developments, Environ Technol, vol.34, pp.1653-70, 2013.

P. C. Hallenbeck, Fundamentals of the fermentative production of hydrogen, Water Sci Technol, vol.52, issue.1-2, pp.21-29, 2005.

Z. Y. Hitit, C. Z. Lazaro, and P. C. Hallenbeck, Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: Optimization of yield using response surface methodology, Int J Hydrogen Energy, vol.42, pp.6578-6589, 2017.

J. J. Hye, J. C. Ok, L. S. Yoon, L. D. Sung, and P. J. Moon, Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1, Int J Hydrogen Energy, vol.35, pp.1065-1073, 2010.

L. Jiang, Q. Wu, Q. Xu, L. Zhu, and H. Huang, Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene, Sci Rep, vol.7, issue.1, p.7940, 2017.
DOI : 10.1038/s41598-017-07207-7

URL : https://www.nature.com/articles/s41598-017-07207-7.pdf

R. C. Joseph, N. M. Kim, and N. R. Sandoval, Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol, vol.9, p.154, 2018.

N. Khanna and P. Lindblad, Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects, Int J Mol Sci, vol.16, issue.5, pp.10537-61, 2015.
DOI : 10.3390/ijms160510537

URL : http://www.mdpi.com/1422-0067/16/5/10537/pdf

M. Klein, M. B. Ansorge-schumacher, M. Fritscha, and M. Hartmeier, Influence of hydrogenase overexpression on hydrogen production of Clostridium acetobutylicum DSM 792, Enzyme Microb Technol, vol.46, issue.5, pp.384-390, 2010.

J. Koo, S. Shiigi, M. Rohovie, K. Mehta, and J. R. Swartz, Characterization of [FeFe] Hydrogenase O 2 Sensitivity Using a New, Physiological Approach, J Biol Chem, vol.291, issue.41, pp.21563-21570, 2016.

R. Kothari, V. Kumar, V. V. Pathak, S. Ahmad, O. Aoyi et al., A critical review on factors influencing fermentative hydrogen production, Front in Biosci, vol.22, pp.1195-1220, 2017.
DOI : 10.2741/4542

A. Kpebe, M. Benvenuti, C. Guendon, A. Rebai, V. Fernandez et al., A new mechanistic model for an O 2protected electron-bifurcating hydrogenase, Hnd from Desulfovibrio fructosovorans, Biochim Biophys Acta in Press Kubas A, vol.9, issue.1, pp.88-95, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01928576

G. Kumar, A. Mudhoo, P. Sivagurunathan, D. Nagarajan, A. Ghimire et al., Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production, Bioresour Technol, vol.219, pp.725-737, 2016.

M. J. Lacasse and D. B. Zamble, Hydrogenase Maturation, vol.55, pp.1689-701, 2016.

S. F. Lee, C. W. Forsberg, and L. N. Gibbins, Cellulolytic Activity of Clostridium acetobutylicum, Appl Environ Microbiol, vol.50, issue.2, pp.220-228, 1985.

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al., Experimental approaches to kinetics of gas diffusion in hydrogenase, Proc Natl Acad Sci U S A, vol.105, issue.32, pp.11188-93, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336010

D. B. Levin, R. Islam, N. Cicek, and R. Sparling, Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates, Int J Hydrogen Energy, vol.31, pp.1496-1503, 2006.

F. Li, J. Hinderberger, H. Seedorf, J. Zhang, W. Buckel et al., Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri, J Bacteriol, vol.190, issue.3, pp.843-50, 2008.

X. Liu, Y. Zhu, and Y. St, Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production, Biotechnol Prog, vol.22, issue.5, pp.1265-75, 2006.

Y. Lo, C. Chen, C. Lee, and J. S. Chang, Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO 2-free biohydrogen production, Int J Hydrogen Energy, vol.35, pp.10944-10953, 2010.

B. A. Martin and P. D. Frymier, A Review of Hydrogen Production by Photosynthetic Organisms Using Whole-Cell and Cell-Free Systems, Appl Biochem Biotechnol, vol.183, issue.2, pp.503-519, 2017.

W. J. Mitchell, Sugar uptake by the solventogenic clostridia, World J Microbiol Biotechnol, vol.32, issue.2, p.32, 2016.

O. Mizuno, R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike, Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour Technol, vol.73, pp.59-65, 2000.

Y. Montet, P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian et al., Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics, Nat Struct Biol, vol.4, issue.7, pp.523-529, 1997.

K. Morimoto, T. Kimura, K. Sakka, and K. Ohmiya, Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production, FEMS Microbiol Lett, vol.246, issue.2, pp.229-263, 2005.

S. Nakayama, T. Kosaka, H. Hirakawa, K. Matsuura, S. Yoshino et al., Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4, Appl Microbiol Biotechnol, vol.78, issue.3, pp.483-93, 2008.

Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-camps, Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center, Structure, vol.7, issue.1, pp.13-23, 1999.
DOI : 10.1016/s0969-2126(99)80005-7

URL : https://doi.org/10.1016/s0969-2126(99)80005-7

T. Nomura, A. Naimen, S. Toyoda, Y. Kuriyama, H. Tokumoto et al., Isolation and characterization of a novel hydrogen-producing strain Clostridium sp. suitable for immobilization, Int J Hydrogen Energy, vol.39, pp.1280-1287, 2014.

J. Noth, R. Kositzki, K. Klein, M. Winkler, M. Haumann et al., Lyophilization protects [FeFe]hydrogenases against O 2-induced H-cluster degradation, Sci Rep, vol.5, p.13978, 2015.
DOI : 10.1038/srep13978

URL : https://www.nature.com/articles/srep13978.pdf

D. G. Olson, J. E. Mcbride, A. J. Shaw, and L. R. Lynd, Recent progress in consolidated bioprocessing, Curr Opin Biotechnol, vol.23, issue.3, pp.396-405, 2012.
DOI : 10.1016/j.copbio.2011.11.026

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Electrochemical Measurements of the Kinetics of Inhibition of Two FeFe Hydrogenases by O 2 Demonstrate That the Reaction Is Partly Reversible, J Am Chem Soc, vol.137, issue.39, pp.12580-12587, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211469

E. Ozgur, A. E. Mars, B. Peksel, A. Louwerse, M. Yucel et al., Biohydrogen production from beet molasses by sequential dark and photo-fermentation, Int J Hydrogen Energy, vol.35, pp.511-517, 2010.

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, vol.282, issue.5395, pp.1853-1861, 1998.

J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard et al., FeFe]-and [NiFe]-hydrogenase diversity, mechanism, and maturation, Biochim Biophys Acta, vol.1853, issue.6, pp.1350-69, 2015.

S. M. Plummer, M. A. Plummer, P. A. Merkel, M. Hagen, J. F. Biddle et al., Using directed evolution to improve hydrogen production in chimeric hydrogenases from Clostridia species, Enzyme Microb Technol, vol.93, pp.132-141, 2016.

S. Poudel, M. Tokmina-lukaszewska, D. R. Colman, M. Refai, G. J. Schut et al., Unification of [FeFe]-hydrogenases into three structural and functional groups, Biochim Biophys Acta, vol.1860, issue.9, pp.1910-1931, 2016.

S. Rittmann and C. Herwig, A comprehensive and quantitative review of dark fermentative biohydrogen production, Microb Cell Fact, vol.11, p.115, 2012.

C. Rotta, A. Poehlein, K. Schwarz, P. Mcclure, R. Daniel et al., Closed Genome Sequence of Clostridium pasteurianum ATCC 6013, Genome Announc, vol.3, issue.1, 2015.

F. Sabathe, A. Belaich, and P. Soucaille, Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum, FEMS Microbiol Lett, vol.217, issue.1, pp.15-22, 2002.

K. Schuchmann and V. Muller, A bacterial electron-bifurcating hydrogenase, J Biol Chem, vol.287, issue.37, pp.31165-71, 2012.

G. J. Schut and M. W. Adams, The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production, J Bacteriol, vol.191, issue.13, pp.4451-4458, 2009.

E. Schwartz, J. Fritsch, and B. Friedrich, H 2-metabolizing prokaryotes, The Prokaryotes: Prokaryotic Physiology and Biochemistry. 4 th edn, pp.119-199, 2013.

T. Seelert, D. Ghosh, and V. Yargeau, Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles, Appl Microbiol and Biotechnol, vol.99, issue.9, pp.4107-4123, 2015.

E. M. Shepard, F. Mus, J. N. Betz, A. S. Byer, B. R. Duffus et al., FeFe]-hydrogenase maturation, Biochemistry, vol.53, issue.25, pp.4090-104, 2014.

K. Y. Show, Z. P. Zhang, and D. J. Lee, Design of bioreactors for biohydrogen production, J Sci Ind Res, vol.67, pp.941-949, 2008.

M. Tangney and W. J. Mitchell, Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824, Appl Microbiol Biotechnol, vol.74, issue.2, pp.398-405, 2007.

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol Rev, vol.41, issue.1, pp.100-80, 1977.

J. B. Therien, J. H. Artz, S. Poudel, T. L. Hamilton, Z. Liu et al., The Physiological Functions and Structural Determinants of Catalytic Bias in the, Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5, vol.8, p.1305, 2017.

L. Thomas, A. Joseph, and L. D. Gottumukkala, Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement, Bioresour Technol, vol.158, pp.343-50, 2014.

G. Vardar-schara, T. Maeda, and T. K. Wood, Metabolically engineered bacteria for producing hydrogen via fermentation, Microb Biotechnol, vol.1, issue.2, pp.107-132, 2008.

M. R. Verhaart, A. A. Bielen, J. Van-der-oost, A. J. Stams, and S. W. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal, Environ Technol, vol.31, issue.8-9, pp.993-1003, 2010.

P. M. Vignais and B. Billoud, Occurrence, classification, and biological function of hydrogenases: an overview, Chem Rev, vol.107, issue.10, pp.4206-72, 2007.

P. M. Vignais, B. Billoud, and J. Meyer, Classification and phylogeny of hydrogenases, FEMS Microbiol Rev, vol.25, issue.4, pp.455-501, 2001.

S. Wang, H. Huang, J. Kahnt, A. P. Mueller, M. Kopke et al., NADP-specific electronbifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO, J Bacteriol, vol.195, pp.4373-86, 2013.

S. Wang, H. Huang, J. Kahnt, and R. K. Thauer, A reversible electron-bifurcating ferredoxin-and NADdependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica, J Bacteriol, vol.195, issue.6, pp.1267-75, 2013.

W. Xiong, L. H. Reyes, W. E. Michener, P. C. Maness, and K. J. Chou, Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose-and hemicellulose-derived sugars simultaneously, Biotechnol Bioeng, vol.115, issue.7, pp.1755-1763, 2018.
DOI : 10.1002/bit.26590

H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi et al., Microbial hydrogen production from sweet potato starch residue, J Biosci Bioeng, vol.91, issue.1, pp.58-63, 2001.
DOI : 10.1016/s1389-1723(01)80112-2

X. Zhao, D. Xing, N. Fu, B. Liu, and N. Ren, Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108, Bioresour Technol, vol.102, issue.18, pp.8432-8438, 2011.

Y. Zheng, J. Kahnt, I. H. Kwon, R. I. Mackie, and R. K. Thauer, Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a nonelectron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]hydrogenase, J Bacteriol, vol.196, issue.22, pp.3840-52, 2014.