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Audio inpainting based on joint-sparse modeling
Ichrak Toumi and Valentin Emiya Member, IEEE,

Abstract—We present a new framework for the restoration of
missing samples in audio signals. It consists in locating audio
frames that share similar sparse structures and in applying a
joint-sparse algorithm to estimate the missing samples. Such
similar frames are found in audio signals due to the signals’
intrinsic structures: across channels, in the temporal neighboring
of each frame and, since patterns are repeated non-locally. We
propose a fast and robust strategy for locating the similar frames
by introducing a spectral cosine similarity that is more suitable
than the usual correlation similarity. We present and compare
the inpainting versions of three known joint-sparse algorithms
and show how they lead to a better reconstruction of the missing
parts. Experimental results reveal that by selecting only a few
similar frames, joint-sparse audio inpainting outperform the
state-of-the-art OMP inpainting method by up to 5 dB, and
that improvements cumulatively result from non-local and inter-
channel joint decomposition.

Index Terms—Audio inpainting, sparse approximation, joint
sparsity, matching pursuit.

I. INTRODUCTION

The audio inpainting framework aims at recovering the
distored or missing parts in an audio signal based on the
observed parts. In [1], the inpainting problem is formulated
as an inverse problem in each audio frame. An inpainting
algorithm based on a sparse decomposition was introduced,
allowing the estimation of missing samples in audio frames
from the approximated sparse support of the observed samples
in a Gabor dictionary. The approach achieved competitive or
better results compared to state-of-the-art methods like [2].

However, methods such as [1] process each audio frame
independently while audio signals like speech, music and other
sounds are highly structured across frames. As illustrated in
Figure 1, this kind of structures originates from at least three
phenomena. First, slowly-varying contents result in local sim-
ilarities in the temporal neighborhood of each frame. Second,
non-local similarities are observed since audio signals are
generally composed of patterns that occur several times like
phonemes and musical notes or chords. Third, simultaneous
frames from multiple channels also offer several versions
of some common contents with only small gain and delay
differences. In the case of sparse models, similarity is defined
in terms of a common sparse support, as illustrated by vertical
arrays in Figure 1, with white elements representing zero
entries. Our research hypothesis is that the use of these similar
frames is advantageous to better estimate model parameters
and solve inverse problems. The idea have been already used
in image processing [3] and has been made possible using
joint (a.k.a. simultaneous) sparse models [4], [5]: the authors
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Fig. 1. Illustration of the joint-sparse structure of an audio signal: a target
frame (black dot in the left part) has similar joint-sparse frames (in blue)
identified simultaneously across channels (left/top and right/bottom), in its
neighboorhood (selected frames in the left part) and non-locally (selected
frames in the center and right parts).

assume that the similar image patches share the same supports
and they apply an algorithm for joint-sparse decomposition.

Recently, this idea has motivated several works in audio pro-
cessing [6]–[9]. It has proved for audio declipping [6] where
dependencies between neighboring coefficients are exploited
to improve the declipping performance. The results confirm the
interest in using similarity information for inpainting clipped
data. This approach being limited to the joint modeling of
neighboring frames, finding and exploiting non-local similar
frames is not addressed. Another strategy is proposed in [7]
where repeated patterns are tracked in audio signals. This is
performed in the particular case where the audio background
is characterized by patterns repeated with a repeating period
while the foreground has no repetition pattern. Non-local
structures have been tracked using similarity graphs in [8], [9]
for inpainting large gaps in audio signals. In [9], the inpainting
of a large hole is achieved by comparing features extracted
before and after the gap to other regions in order to find a
region with similar contents to be copy-pasted inside the hole
with smoothed transitions. In [8], more processing is proposed
to adapt the contents of the pasted block with pitch, gain and
time modifications, in the context of packet loss concealment.

In this paper, we propose to exploit similarity in audio sig-
nals in a sparse inpainting setting, in the continuity of [1], and
extending preliminary works [10]. Given that the more missing
samples, the less observations, the worse the sparse estimation,
our research hypothesis is that finding similar regions for joint-
sparse decomposition will provide more observation in order
to improve the estimation quality and the resulting inpainting
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performance. In such a context, the two main questions we
address are:

1) In an audio signal with missing samples, how to locate
regions that are similar in the sense that their latent
sparse representations share a common support?

2) Given a set of regions similar to a target frame, which
algorithms are appropriate for reconstructing the missing
samples in this frame?

This paper is organized as follows. The general processing
framework and notations are introduced in section II. In
section III, we introduce the joint-sparsity approach and extend
several existing algorithms to deal with missing data by using
frame-dependent dictionaries. In section IV, we study how to
select similar frames, based on a joint-sparse model structuring
audio signals. Extensive experiments are reported in section V
and conclusions are drawn in section VI.

II. FRAME-BASED INPAINTING FRAMEWORK

We consider an audio signal s ∈ RL×C of length L with
C channels. A known binary mask m ∈ {0, 1}L×C is used to
locate missing and observed samples, coded by 0 and 1 entries
respectively, so that the observation is y = m� s where � is
the Hadamard product.

Signal s is segmented into N ,
⌊
L−L
h

⌋
overlapping frames

of length L. For frame index n ∈ [N ] and channel c, sn,c =
[s (nh+ l, c)]l∈[L] ∈ RL denotes the nth frame in channel c,
where h is the hop size and [N ] , {0, . . . , N − 1}. The binary
mask m and the observation vector y are segmented similarly
as a set of frame masks {mn,c} and a set of observed frames
{yn,c}. In order to simplify notations, we will also use index
j = (n, c) as a double index for a frame sj , the related mask
mj and observation yj .

Each frame is inpainted as a target frame, by means of the
selection of other similar frames: the inpainting of a target
frame given a set of similar frames is described in section III
while the principle to select a set of similar frames is detailed
in section IV. The restored signal can then be obtained from
the reconstructed frames by a regular overlap-add procedure.

III. JOINT-SPARSE AUDIO INPAINTING

Starting from the formulation of the inpainting problem
with a regular sparse model in section III-A, we introduce
the formulation of the joint-sparse inpainting problem in
section III-B. We propose several algorithms to obtain the
joint-sparse decomposition from a set of frames with missing
entries in section III-C.

A. Sparse problem formulation

In [1], each audio frame s is modeled using a sparse
representation [11] as:

s = Dx + n (1)

where D ∈ RL×K is the so-called dictionary, x ∈ RK is
the sparse representation and n ∈ RL is the noise. Given a
mask m ∈ {0, 1}L for frame s in the inpainting context, the

observation is y = m � s and the inpainting optimization
problem writes:

arg min
x

‖x‖0 s.t. ‖y −m�Dx‖22 < ε (2)

where ε > 0 is a tolerance on the residual energy.
Since the `0 norm leads to an NP-hard problem, an ap-

proximated sparse solution may be obtained using a variant
of the OMP algorithm [12] where all the dictionary columns
are internally re-normalized to unit norm due to the partial
observations. The unknown samples are then recovered from
the given sparse solution x̂ by reconstructing the frame as
ŝ , Dx̂.

B. Joint-sparse problem formulation
For a target frame s, let us assume that we have an index set
S so that frame s is included in the set of frames indexed by S
and the sparse decompositions xj of frames sj , j ∈ S have the
same support. Many algorithms have been designed to obtain
a joint-sparse decomposition XS = [xj ]j∈S (e.g., see [13]–
[16]). Joint-sparsity is typically promoted by minimizing the
`p,q mixed (pseudo-)norm ‖XS‖p,q of matrix XS where the
pair (p, q) usually takes the values (0,∞) to count the number
of non-zero rows or (1, 2) for a convex relaxation promoting
joint sparsity.

In the inpainting case, the optimization problem can be
formulated as

arg min
XS

‖XS‖0,∞ s.t. ‖YS −MS �DXS‖2F < εS (3)

where εS > 0, YS , [yj ]j∈S is the observation matrix in
which each column is a selected observed frame yj = mj�sj ,
MS , [mj ]j∈S is the binary mask matrix, and ‖XS‖0,∞ ,∣∣∣∣∣ ⋃j∈S supp(xj)

∣∣∣∣∣ counts the number of non-zero rows in XS .

C. Algorithms for joint-sparse inpainting
We propose three algorithms for joint-sparse decomposition

by extending their original formulation to the inpainting frame-
work. The extension consists in building frame-dependent dic-
tionaries to handle missing data as described in section III-C1.
The three algorithms are detailed in sections III-C2, III-C3
and III-C4. The reconstruction of the frames is eventually
described in section III-C5

1) Frame-dependent dictionaries: Since each selected
frame has its own mask, one must use frame-dependent
dictionaries instead of a unique dictionary for all frames. For
j ∈ S, the normalized dictionary for frame j is defined as

Dj , diag(mj)×D×Wj (4)

where Wj , diag

([
‖mj � dk‖−1

2

]
k∈[K]

)
is the normaliza-

tion matrix. In eq. (4), the left product with diag(mj) results
in zeroing the rows of D related to missing coefficients and
the right product by Wj leads to atoms with unit l2-norms.
Problem (3) can then be rewritten as

arg min
X′

S

‖X′S‖0,∞ s.t.
∑
j∈S

∥∥yj −Djx
′
j

∥∥2

2
< εS (5)
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whose solution X′S =
[
x′j
]
j∈S is related to the solution XS =

[xj ]j∈S of (3) by the rescaling

xj = Wjx
′
j . (6)

2) Inpainting S-OMP: The Simultaneous Orthogonal
Matching Pursuit (S-OMP) generalizes the OMP algorithm to
the joint-sparsity case [14]. The inpainting version of S-OMP
is described in Algorithm 1. It mainly consists in building
the joint-sparse support Γi in a greedy way, starting from
the empty set (line 5) and adding one atom at each iteration
(line 10). The atom is selected jointly across frames by adding
up the absolute correlations between each frame residual and
the frame-related atoms (lines 8 and 9). The residual is then
updated independently for each frame (line 11).

Algorithm 1 S-OMP inpainting algorithm.
Inputs: YS , MS , D = [dk]k∈[K], imax, εS

1: for j ∈ S do
2: Build frame-dependent normalized dictionary Dj and

normalization matrix Wj from D and mj using eq. (4).
3: end for
4: Iteration counter i = 0
5: Support Γ0 = ∅
6: Residual r0

j = yj ,∀j ∈ S
7: while i < imax and

√∑
j∈S
‖ri‖22 ≥ εS do

8: cj = DH
j rij ,∀j ∈ S

9: Select atom k̂ = arg max
k∈[K]

∑
j∈S
|cj (k)|

10: Update support Γi+1 = Γi ∪
{
k̂
}

11: Update current solution and residuals ri+1
j =(

I−Dj,Γi+1D+
j,Γi+1

)
yj ,∀j ∈ S

12: i = i+ 1
13: end while
14: for j ∈ S do
15: Create output vectors: xj , 0K
16: Compute sparse representation: xj

(
Γi
)
, D+

j,Γiyj
17: Correct dictionary normalization: xj = Wjxj
18: end for
19: return XS , [xj ]j∈S

3) Inpainting S-IHT: The simultaneous Iterative Hard
Thresholding algorithm (S-IHT) is an extension of the Iterative
Hard Thresholding (IHT) algorithm to the case of joint sparse
signals [13], [17]. The inpainting version given in Algorithm 2
relies on iteratively refining a sparse support Γi and joint T -
sparse vectors xij . The sparse support is recomputed at each
iteration, jointly across frames, by performing a gradient step
(line 9), by adding up the absolute values of the result for all
frames (10) and by retaining the location of T highest entries
(11). The update of the sparse representations is obtained
independently for each frame by considering the gradient step
in each frame and by keeping only the values indexed by
the support Γi, using the hard-thresholding operator HΓi+1

(line 13). A faster version of the algorithm has been proposed
in [17] where the step size is an adaptative scaling factor µij
for each selected frame k and at each iteration i (line 15).

Algorithm 2 S-IHT inpainting algorithm.
Inputs: YS , MS , D = [dk]k∈[K], T , imax, εS

1: for j ∈ S do
2: Build frame-dependent normalized dictionary Dj and

normalization matrix Wj from D and mj using eq. (4).
3: end for
4: Iteration counter i = 0
5: Support Γ0 = ∅
6: Sparse coefficients x0

j = 0
7: adaptative scaling factor µ0

j = 1
L

8: while i < imax and
∑
j∈S

∥∥yj −DjΓixij
∥∥

2
> εS do

9: zi+1
j =

∣∣xij + µijD
T
j (yj −Dkx

i
k)
∣∣, ∀j ∈ S

10: wi+1 = 1
|S|
∑
j∈S zi+1

j

11: Γi+1 =
{

indices of T largest coefficients of wi+1
}

12: for j ∈ S do
13: xi+1

j = HΓi+1

(
xij + µijD

T
j (yj −Djx

i
j)
)

14: gj = DT
j,Γi+1(yj −Dj,Γi+1xij)

15: µi+1
j =

gT
j,Γi+1gj,Γi+1

gT
j,Γi+1D

T
j,Γi+1Dj,Γi+1gj,Γi+1

16: end for
17: i = i+ 1
18: end while
19: for j ∈ S do
20: Create output vectors: xj , 0K
21: Compute sparse representation: xj

(
Γi
)
, D+

j,Γiyj
22: Correct dictionary normalization: xj = Wjxj
23: end for
24: return XS , [xj ]j∈S

4) Inpainting S-CoSaMP: The third algorithm is the ex-
tension of greedy algorithm CoSaMP [16] to the joint-sparse
case [13], [18]. The inpainting version is given in Algorithm 3.
A sparse support Γi is iteratively refined, by extending it
(line 11) with indexes of νT atoms that best correlate with
the residuals, in a joint way across frames (lines 9 and 10).
An orthogonal projection of the observed frames onto the
extended set of atoms is then performed (lines 13 and 14)
and the support update is then obtained by selecting the T
largest coefficients (line 16). The residual update is eventually
performed independently for each frame (line 17), similarly as
in the S-OMP algorithm.

The extension of the support at each iteration is controled
by the positive hyperparameter ν that must be adjusted by the
user. In our case, a small value of ν is recommended to ensure
a better stability of the pseudo-inverse at line 13.

5) Frame reconstruction: Each algorithm returns an ap-
proximate solution X̂S to problem (3). Since S contains the
indexes of a target frame and of similar frames, one may only
use the sparse representation x̂ to reconstruct the target frame
as ŝ , Dx̂, discarding the other columns of X̂S .

IV. SELECTING FRAMES FOR JOINT-SPARSE
DECOMPOSITIONS

Our approach for joint-sparse decomposition and inpainting
requires the prior selection of similar frames, which are identi-
fied by the index set S. Here, similarity should be understood
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Algorithm 3 S-CoSaMP inpainting algorithm.
Inputs: YS , MS , D = [dk]k∈[K], T , ν, imax, εS

1: for j ∈ S do
2: Build frame-dependent normalized dictionary Dj and

normalization matrix Wj from D and mj using eq. (4).
3: end for
4: Iteration counter i = 0
5: Support Γ0 = ∅
6: Sparse coefficients x0

j = 0
7: Residual r0

j = yj ,∀j ∈ S
8: while i < imax and

∑
j∈S

∥∥rij∥∥2
> εS do

9: cj = DH
j rij ,∀j ∈ S

10: Select support Ω = arg max
|Ω|≤νT

∑
k∈Ω

∑
j∈S
|cj (k)|2

11: Qi = Γi ∪ Ω
12: for j ∈ S do
13: bj

(
Qi
)

= D+
j,Qiyj

14: bj

(
Qi
)

= 0)
15: end for
16: Select support Γi+1 = arg max

|Γ|=T

∑
k∈Γ

∑
j∈S
|bj (k)|2

17: ri+1
j =

(
I−Dj,Γi+1D+

j,Γi+1

)
yj , ∀j ∈ S

18: i = i+ 1
19: end while
20: for j ∈ S do
21: Create output vectors: xj , 0K
22: Compute sparse representation: xj

(
Γi
)
, D+

j,Γiyj
23: Correct dictionary normalization: xj = Wjxj
24: end for
25: return XS , [xj ]j∈S

in terms of a joint-sparse representation. In this section, we
elaborate on how to build such a set. The main idea is that
joint-sparsity is due to at least three phenomena:

1) in a multichannel recording (e.g., stereo), the contents
in all channels is the same up to some variations that
may not affect joint-sparsity;

2) the contents in successive frames is varying slowly
compared to the frame length —which is generally
chosen to obtain quasi-stationarity within frames;

3) multiple occurrences of the same audio item —such as
phoneme or musical notes— are observed with signifi-
cant delays between them.

As a result, we propose a triple joint-sparse model in which
all those similarities are tracked. Interchannel joint sparsity is
introduced in section IV-A in order to select similar frames
from all channels. Joint sparsity in adjacent and non-local
frames is described in section IV-B, resulting in a selection
of frames at various frame indices.

A. Interchannel frame selection

Joint-sparsity across channels can be obtained if the sparse
support is invariant to the actual interchannel differences. A
global gain difference does not affect the sparse support in an

undesirable way, since only the non-zero coefficients are mod-
ified, and possibly vanish. However in a more general, convo-
lutive model of audio signal, the same sources are recorded in
each channel after being filtered in a channel-dependent way,
e.g., by Green functions or head-related transfer functions.
As a result, the differences between channels are frequency-
dependent gain and phase variations, which may affect the
sparse support. Hopefully, choosing a Fourier dictionary is
suitable since it is not sensitive to those variations, besides
being adapted to the sparse decomposition of audio signals.

Hence, the multichannel setting is a beneficial way to gather
joint-sparse frames, which can be done by systematically
selecting frames from all channels and decomposing them
jointly in a Fourier dictionary.

B. Neighboring and non-local frame selection

Let us fix the index n of a target frame. The selection of
frames that are similar to this target frame in its temporal
neighboring and in possibly-far regions of the signal requires
a selection criterion. Given a similarity measure γ and a set
of candidate frames indexed by n′ ∈ [N ], one may build the
index set of similar frames by selecting the most similar frames
from all channels:

S =∆ {(n, c) ;n ∈ [N ] , c ∈ [C] , γ(n, n′) ≥ γS} (7)

where parameter γS is adjusted to control the number of
selected frames ζ which is equal to |S|.

One important issue is the choice of a similarity measure
that is suitable to the joint-sparse decomposition. The goal is
to select a set of frames with sparse approximations sharing
the same support as that of the target frame without having to
compute their sparse decomposition. This requires a similarity
measure that has the ability to act as a proxy to the comparison
between the sparse supports. We propose and compare three
different similarity criteria in order to find the most appropri-
ate measure for a joint-sparse approximation in a redundant
Fourier dictionary.

1) Proposed similarity measures: Similarity measures for
the selection of non-local regions have been already used
in image processing [3] and are generally based on the
correlation between images patches, which would correspond
to correlating audio frames in our setting. Starting from this
criterion, we propose three different measures to assess the
similarity between the target frame and a candidate frame, and
study how they are suitable for a joint-sparse approximation
in a redundant Fourier dictionary:
• the correlation may be viewed as the cosine of the angle

between the K-point DFT ŷn,c and ŷn′,c of both frames:

γcorr(n, n
′) ,

∑
c∈[C]

∣∣∣∣〈 yn,c
‖yn,c‖2

,
yn′,c

‖yn′,c‖2

〉∣∣∣∣
=
∑
c∈[C]

∣∣∣∣〈 ŷn,c
‖ŷn,c‖2

,
ŷn′,c

‖ŷn′,c‖2

〉∣∣∣∣
=
∑
c∈[C]

∣∣cos
(
∠
(
ŷn,c, ŷn′,c

))∣∣ (8)
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• the spectral cosine similarity discards phase effects
and is computed as the cosine similarity between the
normalized modulus of the DFT vectors:

γm (n, n′) ,
∑
c∈[C]

∣∣cos
(
∠
(∣∣ŷn,c∣∣ , ∣∣ŷn′,c

∣∣))∣∣ (9)

• the Itakura-Saito (IS) similarity is defined as
γIS (n, n′) , 1 − dIS (n, n′) from the IS divergence
widely used for audio processing:

dIS (n, n′) ,
1

CK

∑
c∈[C]

∑
k

[∣∣∣∣ ŷn,c(k)

ŷn′,c(k)

∣∣∣∣ (10)

− log

(∣∣∣∣ ŷn,c(k)

ŷn′,c(k)

∣∣∣∣)− 1

]
2) Selecting an appropriate similarity measure: We ex-

perimentally compare the ability of the proposed criteria
to select the same frames with a reference method which
computes the sparse decompositions of the frame supports
to find the most similar ones (see Figure 2). We start by
segmenting our signal into a set of overlapped frames {sj}
with a hop size h. Missing data are artificially created at
random locations to obtain observed frames

{
yj
}

. Then, on
one hand, a groundtruth is designed as follows: we extract
a sparse decomposition of the frames using OMP algorithm
and compute the Hamming distance between their supports
{xj}, resulting in a similarity matrix Γham. On the other hand,
we compute the similarity matrices Γcorr,Γm,ΓIS based on
the different similarity measures presented above. For each
target frame y, the ζ most similar frames among all the
candidate frames

{
yj
}

are given by the ζ largest values for
each measure. Then the intersection between the sets of indices
(Scorr, Sm, SIS) and groundtruth Sham is computed in order
to select the best similarity measure.

Segmentation	
to	overlapped	

frames
𝒔

OMP

{𝒔"}

Similarity	measures	

{𝒙"}

(	𝜸𝒄𝒐𝒓𝒓𝒋 ,	𝜸𝒎𝒋	, 𝜸𝑰𝑺𝒋 )

Hamming	similarity
(	𝜸𝒉𝒂𝒎𝒋)

Intersection	
between	the	

sets	of	
indices	

𝓢𝒉𝒂𝒎

				𝓢𝒄𝒐𝒓𝒓		
	𝓢𝒎	
𝓢𝑰𝑺	

Select the best 
measure

					𝜞3455
	𝜞6	
𝜞78

𝜞9:6

Random Holes
Generation

Select	the	𝜻
largest values

Select	the	𝜻
largest values{𝒚"}

Fig. 2. Diagram of the method for the selection of the best similarity measure.

The process is repeated for different ratios of missing data,
using the same experimental conditions as in Section V and
for ζ = 4. Results are averaged for a speech and a piano
examples and are shown in Table I.

The results show that the correlation measure is not appro-
priate and that the spectral cosine similarity seems to be more
efficient than the IS similarity for all the considered ratios of
missing data. To further understand these quantitative results,
similarity maps are generated for the reference method and for
each proposed measure showing the selected frames and how
they are located. In Figure 3, we give an example for a small
region in a speech audio signal sampled at 8KHz.

Missing data (%) 0 20 40 60 80
γcorr 29.2 28 27.8 26.9 26.3
γm 39.9 35.9 33.8 32 29.6
γIS 35.1 32.9 31.6 30.3 28.5

TABLE I
MEAN INTERSECTION BETWEEN THE SETS OF FRAMES SELECTED BY THE
REFERENCE METHOD AND THE PROPOSED SIMILARITY MEASURES, AS A
FUNCTION OF THE RATIO OF MISSING DATA. THE MEAN INTERSECTIONS

ARE GIVEN AS A PERCENTAGE OF THE TOTAL NUMBER OF SELECTED
FRAMES.

Hamming similarity
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γcorr similarity

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

γm similarity
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IS similarity
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Fig. 3. Similarity matrices for the reference frame selection method (Ham-
ming similarity, top left) and the proposed measures.

We can see that the structures in the Hamming map are
approximately reproduced in the similarity maps of the other
measures except the correlation in which aligned structures
parallel to the diagonal appear. This is explained by sensitivity
of the correlation measure to the interferences due small phase
differences which may cause low correlation values even when
frames have similar sparse supports which is not the case
for the other studied measures. Concretely, correlation in our
case could be relevant when only using a unit hop size to
select similar frames that are perfectly aligned, which would
be computationally demanding and not necessary for the
joint sparsity algorithm using a Fourier dictionary. Hence, the
spectral cosine similarity happens to be the most appropriate
measure and we select it for the experiments conducted in
section V.

V. EXPERIMENTAL RESULTS

We present the results of our approach based on the frame
selection strategy combined with the joint-sparse optimiza-
tion. In section V-A, we introduce the experimental setting,
including the audio material, problem generation and frame-
based model parameters. In the section V-B, the tuning of two
sensitive hyperparameters is described. Then, in section V-C,
we show how the method can solve an audio inpainting
problem for different rates of missing data1. We compare
the baseline OMP inpainting algorithm [1] and the proposed

1For reproducibility, the code and data are available at https://mad.lis-lab.fr/.

https://mad.lis-lab.fr/
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inpainting versions of the joint-sparse algorithms S-OMP, S-
IHT and S-COSAMP, considering the single-channel case
(C = 1) and the multichannel case (C = 2).

A. Experimental setting

1) Audio material: To validate the non local frame selection
process and tune hyperparameters, we use two audio signals
of duration 4 s sampled at 8 kHz: a melody piano and a male
speech composed of one sentence. The inpainting methods are
evaluated over a larger set of other sounds from the SQAM
dataset2. We have selected 26 sound excerpts that are classified
into three categories, Speech, Music solo and Music group,
whose main features are summarized in Table II.

Category Number
of sounds

Content Sampling
frequency

Mean
duration

Speech 6 Male & female
sentences

8 kHz 7 s

Music
solo

9 Single
instruments &

vocals

16 kHz 10 s

Music
group

11 Pop music &
Vocal with
Orchestra

16 kHz 11 s

TABLE II
CONTENTS OF THE DATASET USED FOR THE INPAINTING EVALUATION.

2) Problem generation and performance measures: the
missing samples are generated randomly and uniformly ac-
cording over the whole signal. The protocol consists in fix-
ing the number of missing samples Lmiss. Then for each
(a, b) ∈ N such that a × b = Lmiss, a holes with length b
are generated randomly for each frame in the audio signal.
The performance of the inpainting methods is assessed for a
missing data rate ranging from 10% to 90%.

The audio inpainting performance is evaluated in terms of
signal-to-noise-ratio averaged over the reconstructed frames as
defined in [1], either on all the samples (SNRfull) or on the
recovered samples only (SNRm). The proposed algorithms are
compared to the inpainting OMP algorithm [1], considered as
a baseline since it relies on a similar sparse model without
joint-sparsity aspects.

3) Frame-based model: for all the audio signals, we set the
frame length to L = 256 samples and the hop size to h = L

4 .
As a result, speech signals sampled at 8 kHz are segmented
with a hop size of 8 ms to get around 900 frames with length
32 ms, while for music signals, the number of frames is about
2600 with a length of 16 ms and a hop size of 4 ms. The
inpainting algorithms are compared using a redundant complex
Fourier dictionary with a size 256× 512.

B. Tuning hyperparameters

This section is dedicated to the tuning of the sparsity
parameter T and the number of selected frames ζ. Those im-
portant parameters for the proposed approach are tuned using
the piano and speech sounds previously mentioned. Beyond
finding good values for those hyperparameters, the proposed

2See https://tech.ebu.ch/publications/sqamcd.

tuning experiments are also the opportunity to illustrate the
behavior of the algorithms and to comment on them.

1) Sparsity T : one important hyperparameter is the number
of selected atoms T for the sparse modeling. We question the
relevance to fix it to a constant value, regardless of the missing
data ratio, or to make it depend on this feature. Indeed, when
the number of observations is reduced due to missing data, one
cannot hope to retrieve the whole sparse support and must
resort to more regularization with low T values. We study
the optimal values of T for each algorithm and for various
missing data ratios p. In order to sample the (p, T ) space
adequately, the sparse optimization is carried out using values
of T from a p-independent set

{
2`; ` ∈ {3, . . . , 7}

}
and from

a p-dependent set
{[

(1− 0.9 p)× 2`
]

; ` ∈ {5, 5.5, . . . , 8}
}

,
where [.] is the rounding operator and p is the ratio of missing
data. The optimal value Topt is obtained from the best SNRm

value for each algorithm and every ratio p, with ζ is set to 4.
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Fig. 4. Selection of Topt for the sparse optimization algorithms according
to the best SNR computed over the missing samples.

From left part of figure 4, we can see that Topt decreases
approximately linearly with respect to p. It also shows that
the joint sparse algorithms give similar Topt values for all
ratios p. The right part of figure 4 give some preliminary
SNRm performance values for each algorithm, showing how
the performance decreases as a function of the ratio of missing
data. It suggests that S-OMP and S-IHT inpainting algorithms
may perform better then OMP and S-CoSamP inpainting
algorithms, which needs to be confirmed on a separate and
larger set of sounds, as proposed in section V-C. The retained
T values are summarized in Table III.

Missing data (%) 20 40 60 80
OMP 102 64 32 16

S-OMP 102 77 51 26
S-IHT 128 77 32 26

S-CoSamP 128 77 51 26

TABLE III
T VALUES RETAINED FOR THE DIFFERENT INPAINTING ALGORITHMS.

2) Number of similar frames ζ: another crucial parameter
for the joint sparsity optimization is the size of S which
corresponds to the number of similar frames ζ. In figure 5,
the average SNRm, computed for the speech and piano sounds
using S-OMP algorithm, is plotted as a function of the number

https://tech.ebu.ch/publications/sqamcd
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of selected frames |S| for a particular case where p = 50%
and holes duration is equal to 0.25 ms.
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Fig. 5. Average SNRm as a function of the number of selected frames for
the joint sparse algorithms (ζ).

The study shows that good SNR values are obtained for
a size |S| equal to or greater than 4. When ζ = 1, the S-
OMP inpainting performance is equivalent to that of OMP
while ∀ ζ > 1 better performance is obtained, illustrating
the improvement provided by multiple frame observations.
For ζ � 4, the SNR improvement may decrease since the
additional selected frames may not be as similar as the first
4 selected frames. In addition, selecting a large set of frames
may result in a large computational cost. Hence, for the rest
of the experiments, we set |S| to 4.

This experiment gives also the opportunity to illustrate the
origin of the selected frames. In particular, one may wonder
whether the selected frames are neighboring frames located
next to the target frame or whether they are very far away from
the time of the target frame. Figure 6 illustrates the origin of
the selected frames by counting the ratio of neighboring frames
among the selected frames. On the absissa, a varying frame
index radius is used as a threshold to separate the selected into
neighboring frames and non-local frames.
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Fig. 6. Percentage of selected frames in neighborhood as a function of
neighborhood radius; each curve is related to a ratio of missing data.

According to Figure 6, between 60 and 90% of the selected
frames are located in the neighborhood of the target frames,
depending on the ratio of missing data and the sound contents.
It clearly appears that the more missing data, the more local

selection. However, the number of non-local selected frames
is significant, which demonstrates the utility to search for non-
local similarities, as proposed in this paper.

Table IV finally summarizes the retained parameters.

Parameter Value
Frame length (L) 32 ms @ 8 kHz and 16 ms @ 16 KHz

Hop size (h) L
4

Dictionary size Ω = 2 × L = 512
T see Table (III)
ζ 4

Block duration 0.25 ms @ 8 kHz and 0.125 ms @ 16 kHz
ν 0.25

Iterations number (imax) 500

TABLE IV
SUMMARY OF PARAMETER SETTINGS.

C. Inpainting results

Inpainting performance is reported for mono and stereo
sounds separately in order to illustrate how the performance
is impacted by the origin of the similar frames (neighboring
and non-local vs. interchannel).

1) Mono sounds (C = 1): the evaluation of the inpainting
results for single-channel sounds using the proposed algo-
rithms is given in figures 7, 8 and 9. From all the figures,
one can see that the inpainting algorithms based on the joint
sparsity outperforms globally the inpainting OMP, specially in
the reconstructed regions as illustrated by the SNRm values.
For the speech sounds in figure 7, the three presented inpaint-
ing versions of S-OMP, S-IHT and S-CoSamP have a better
average SNRm compared to the inpainting OMP, whatever the
rate of missing data. However, when looking at the average
SNRfull for extremely low values of p (< 20%), they are
less efficient: for instance, the S-CoSamP algorithm does not
outperfom OMP until (p = 40%). This can be explained
as follows: first, the number of observations is high enough
so that OMP gives a good sparse decomposition. Second,
generally, the joint sparse algorithms constrain the support
of the selected frames to be equal, which may degrade the
data fitting term (i.e., the reconstruction of the observations),
especially with real data where supports are not exactly the
same. In addition, the S-CoSamP algorithm is very sensitive
to the pseudo-inverse. The stability of the latter depends on
setting parameters like ν.

For music sounds in figures 8 and 9, we note the same
behavior except that the improvement provided by the joint
sparse algorithms is more important. This is reflected in a
larger gap between the SNR values for S-OMP and S-IHT
compared to OMP when p is comprised between 10% < p <
70%. The improvement in SNR values with the joint sparse
methods reaches up to 5 dB for the average SNRfull and SNRm

values. Furthermore, we notice that the inpainting version of
S-OMP is giving better performance than S-IHT, with music
sounds, contrary to speech sounds for which the inpainting S-
IHT outperforms the other algorithms. The difference in SNR
between the two algorithms goes from 0 to 2 dB.
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2) Stereo sounds (C = 2): in the following, we show how
the performance may be additionally improved by taking into
account the similarity between channels. The evaluation of the
multichannel case is based on two hypotheses:

1) masks in each channel may be different;
2) similarity measures are computed channel-wise, as given

by the sum over channels in eq. (8), (9) and (10).
In order to compare the mono case to the stereo case,

the average SNRfull and SNRm are computed using similar
frames selected in two different ways:
• Mono case (solid lines): each channel is processed sep-

arately to select similar frames and apply a joint-sparse
inpainting algorithm, and performance is averaged over
channels.

• Stereo case (dashed lines): similar frames from both
channel are selected jointly.

The results are reported in figures 10, 11 and 12, where the
SNR values are plotted as a function of the ratio of missing
samples. For each algorithm, the average SNR between the
two channels is represented.

Globally, the results show that an additional improve-
ment is obtained by considering frames from both channels.
For speech signals (see figure 10), the SNRm improvement
brought by the use of a selection over the two channels
is significant, reaching about 2 dB. Unlike for speech, the
SNR improvement is not significant for music solo sounds
(figure 11), and for music group sounds (figure 12), only the
S-OMP inpainting algorithm shows some noticeable improve-
ment of almost 1 dB.

By comparing the performance obtained in the mono and
stereo cases, the results suggest that depending on the sound
contents, the improvement obtained by the proposed joint-
sparse approach may originate differently: for speech sounds,
the global SNRm improvement is about 2.5 dB and comes
both from the frame selection in time and between channels,
while for music sounds, the global improvement is up to 5 dB
and is mainly due to the selection of neighboring and non-local
frames, rather than from the interchannel observations. This
may be due to the fact that music sounds can be composed
of very similar occurrences of some patterns while speech
contents may vary a lot in excerpts that last a few seconds.

Finally, one may retain that the S-OMP inpainting algorithm
seems to give the best performance compared to the other
joint-sparse inpainting algorithms S-IHT and S-CoSamP.

VI. CONCLUSION

In this paper, a new framework for audio inpainting using
joint-sparsity is presented based on two steps: first, in the audio
signal, similar sparse structures are selected using a similarity
measure called spectral cosine similarity which proved to be
suitable for the joint-sparse decomposition using a redundant
Fourier dictionary. Second, a joint-sparse algorithm, using
frame-dependent dictionaries, is applied to recover the missing
samples. All the inpainting versions of the studied joint-sparse
algorithms S-OMP, S-IHT and S-CoSamP give better results
compared to the standard sparse inpainting OMP algorithm.

This result in the evidence that the inpainting performance
improves thanks to the selection of a few similar frames.

This principle may naturally extends to other algorithms,
including those for an analysis model or for convex problem
formulations, and to other inpainting settings like declipping.
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Fig. 7. Average SNRfull (left) and SNRm (right) as a function of the
percentage (p) of missing samples for single-channel speech sounds.
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Fig. 8. Average SNRfull (left) and SNRm (right) as a function of the
percentage (p) of missing samples for single-channel music solo sounds.
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Fig. 9. Average SNRfull (left) and SNRm (right) as a function of the
percentage (p) of missing samples for single-channel music group sounds.
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Fig. 10. Comparison of the average SNRfull (left) and SNRm (right) as a
function of the percentage (p) of missing samples for speech sounds in the
multi channel case.
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Fig. 11. Comparison of the average SNRfull (left) and SNRm (right) as a
function of the percentage (p) of missing samples for Music Solo sounds in
the multi channel case.
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Fig. 12. Comparison of the average SNRfull (left) and SNRm (right) as a
function of the percentage (p) of missing samples for Music Group sounds
in the multi channel case.


	Introduction
	Frame-based inpainting framework
	Joint-sparse audio inpainting
	Sparse problem formulation
	Joint-sparse problem formulation
	Algorithms for joint-sparse inpainting
	Frame-dependent dictionaries
	Inpainting S-OMP
	Inpainting S-IHT
	Inpainting S-CoSaMP
	Frame reconstruction


	Selecting frames for joint-sparse decompositions
	Interchannel frame selection
	Neighboring and non-local frame selection
	Proposed similarity measures
	Selecting an appropriate similarity measure


	Experimental results
	Experimental setting
	Audio material
	Problem generation and performance measures
	Frame-based model

	Tuning hyperparameters
	Sparsity T
	Number of similar frames 

	Inpainting results
	Mono sounds (C= 1)
	Stereo sounds (C= 2)


	Conclusion
	References

