A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval et al., Audio inpainting, IEEE Transactions on Audio, Speech and Language Processing, vol.20, issue.3, pp.922-932, 2012.
DOI : 10.1109/tasl.2011.2168211

URL : https://hal.archives-ouvertes.fr/inria-00577079

A. Janssen, R. Veldhuis, and L. Vries, Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.2, pp.317-330, 1986.

A. Buades, B. Coll, and J. Morel, A non-local algorithm for image denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration, IEEE International Conference on Computer Vision, 2009.
DOI : 10.1109/iccv.2009.5459452

L. Li, J. Kan, and W. Li, Image denoising via robust simultaneous sparse coding, Journal of Computers, vol.9, 2014.
DOI : 10.4304/jcp.9.6.1418-1425

K. Siedenburg, M. Kowalski, and M. Dorfler, Audio declipping with social sparsity, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1577-1578, 2014.
DOI : 10.1109/icassp.2014.6853863

URL : https://hal.archives-ouvertes.fr/hal-01002998

E. Manilow and B. Pardo, Leveraging repetition to do audio imputation, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2017.
DOI : 10.1109/waspaa.2017.8170045

Y. Bahat, Y. Y. Schechner, and M. Elad, Self-content-based audio inpainting, Signal Processing, vol.111, pp.61-72, 2015.
DOI : 10.1016/j.sigpro.2014.11.023

N. Perraudin, N. Holighaus, P. Majdak, and P. Balazs, Inpainting of long audio segments with similarity graphs, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.26, issue.6, pp.1083-1094, 2018.

I. Toumi and V. Emiya, Sparse non-local similarity modeling for audio inpainting, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.
DOI : 10.1109/icassp.2018.8462187

URL : https://hal.archives-ouvertes.fr/hal-01680669

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 2010.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proc. Asilomar Conf. Signals, Systems, and Computers, 1993.
DOI : 10.1109/acssc.1993.342465

URL : http://www.isr.umd.edu/~krishna/images/pati_reza_psk.pdf

J. D. Blanchard, M. Cermak, D. Hanle, and Y. Jing, Greedy algorithms for joint sparse recovery, IEEE Transactions on Signal Processing, vol.62, issue.7, pp.1694-1704, 2014.
DOI : 10.1109/tsp.2014.2301980

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, Algorithms for Simultaneous Sparse Approximation: Part I: Greedy Pursuit, Signal Processing, vol.86, issue.3, pp.572-588, 2006.
DOI : 10.1016/j.sigpro.2005.05.030

J. A. Tropp, Algorithms for Simultaneous Sparse Approximation. Part II: Convex relaxation, Signal Processing, vol.86, issue.3, pp.589-602, 2006.
DOI : 10.1016/j.sigpro.2005.05.030

D. Needell and J. Tropp, Cosamp: Iterative signal recovery from incomplete and inaccurate samples, Applied and Computational Harmonic Analysis, vol.26, issue.3, pp.301-321, 2009.
DOI : 10.1016/j.acha.2008.07.002

URL : https://doi.org/10.1016/j.acha.2008.07.002

A. Makhzani and S. Valaee, Reconstruction of jointly sparse signals using iterative hard thresholding, 2012 IEEE International Conference on Communications (ICC), 2012.
DOI : 10.1109/icc.2012.6364058

L. Belmerhnia, E. H. Djermoune, and D. Brie, Greedy methods for simultaneous sparse approximation, European Signal Processing Conference (EUSIPCO), 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092575