, S. Lignon (deceased), P. Mansuelle and R. Lebrun from the Proteomic Platform of IMM, CNRS FR3479, Marseille Protéomique-IBiSA and-Aix Marseille Univ labeled, are acknowledged for mass spectrometry analyses. We thank V. Fourmond for data analysis QSoas software script, W. Nitschke and M. Guiral for helpful discussions and for critical reading of the manuscript, Zellat of BIP (UMR7283 CNRS/AMU) for ICP-OES experiments. The authors thank the national french EPR network (RENARD, IR3443

P. M. Vignais, B. Billoud, and J. Meyer, Classification and phylogeny of hydrogenases, FEMS Microbiol Rev, vol.25, pp.455-501, 2001.

P. M. Vignais and B. , Billoud, Occurrence, classification, and biological function of hydrogenases: an overview, Chem Rev, vol.107, pp.4206-4272, 2007.

J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard et al., hydrogenase diversity, mechanism, and maturation, pp.1350-1369, 2015.

J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Structure/Function Relationships, vol.107, pp.4273-4303, 2007.
URL : https://hal.archives-ouvertes.fr/cea-00909652

C. Greening, A. Biswas, C. R. Carere, C. J. Jackson, M. C. Taylor et al., Genomic and metagenomic surveys of hydrogenase distribution indicate H 2 is a widely utilised energy source for microbial growth and survival, ISME J, vol.10, pp.761-777, 2016.

G. J. Schut and M. W. Adams, The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production, J Bacteriol, vol.191, pp.4451-4457, 2009.

K. Schuchmann and V. Müller, A bacterial electron-bifurcating hydrogenase, J Biol Chem, vol.287, pp.31165-31171, 2012.

S. Wang, H. Huang, J. Kahnt, A. P. Mueller, M. Kopke et al., NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO, J Bacteriol, pp.4373-4386, 2013.

S. Wang, H. Huang, J. Kahnt, and R. K. Thauer, A reversible electron-bifurcating ferredoxinand NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica, J Bacteriol, pp.1267-1275, 2013.

Y. Zheng, J. Kahnt, I. H. Kwon, R. I. Mackie, and R. K. Thauer, Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogensensing [FeFe]-hydrogenase, J Bacteriol, vol.196, pp.3840-3852, 2014.

W. Buckel and R. K. Thauer, Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation, Biochim Biophys Acta, pp.94-113, 2013.

F. Li, J. Hinderberger, H. Seedorf, J. Zhang, W. Buckel et al., Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyrylCoA dehydrogenase/Etf complex from Clostridium kluyveri, J Bacteriol, vol.190, pp.843-850, 2008.

W. Buckel and R. K. Thauer, Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD(+) (Rnf) as Electron Acceptors: A Historical Review, Front Microbiol, vol.9, p.401, 2018.

W. Buckel and R. K. Thauer, Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling, Chem Rev, 2018.

S. Poudel, M. Tokmina-lukaszewska, D. R. Colman, M. Refai, G. J. Schut et al., Unification of [FeFe]hydrogenases into three structural and functional groups, Biochim Biophys Acta, pp.1910-1921, 2016.

W. Badziong, R. K. Thauer, and J. G. Zeikus, Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source, Arch Microbiol, vol.116, pp.41-49, 1978.

A. T. Brandis and R. K. , Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source, Journal of General Microbiology, vol.126, pp.249-252, 1981.

B. Ollivier, R. Cord-ruwisch, E. C. Hatchikian, and J. L. Garcia, Characterization of Desulfovibrio fructosovorans sp. nov, Arch Microbiol, vol.149, pp.447-450, 1988.

M. Rousset, Z. Dermoun, C. E. Hatchikian, and J. P. Belaich, Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans, Gene, pp.95-101, 1990.

C. E. Hatchikian, A. S. Traore, V. M. Fernandez, and R. Cammack, Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans, Eur J Biochem, pp.635-643, 1990.

P. P. Liebgott, A. L. De-lacey, B. Burlat, L. Cournac, P. Richaud et al.,

B. Fernandez, M. Guigliarelli, C. Rousset, S. Leger, and . Dementin, Original design of an oxygentolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site, J Am Chem Soc, vol.133, pp.986-997, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01977599

A. Abou-hamdan, B. Burlat, O. Gutierrez-sanz, P. P. Liebgott, C. Baffert et al., O 2-independent formation of the inactive states of NiFe hydrogenase, Nat Chem Biol, vol.9, pp.15-17, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01977594

L. Casalot, C. E. Hatchikian, N. Forget, P. De-philip, Z. Dermoun et al., Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructosovorans, Anaerobe, vol.4, pp.45-55, 1998.

S. Malki, G. De-luca, M. L. Fardeau, M. Rousset, J. P. Belaich et al., Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans, Arch Microbiol, vol.167, pp.38-45, 1997.

S. Malki, I. Saimmaime, G. De-luca, M. Rousset, Z. Dermoun et al., Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans, J Bacteriol, vol.177, pp.2628-2636, 1995.

G. De-luca, P. De-philip, M. Rousset, J. P. Belaich, and Z. Dermoun, The NADP-reducing hydrogenase of Desulfovibrio fructosovorans: evidence for a native complex with hydrogendependent methyl-viologen-reducing activity, Biochem Biophys Res Commun, vol.248, pp.591-596, 1998.

G. De-luca, M. Asso, J. P. Belaich, and Z. Dermoun, Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli, Biochemistry, vol.37, pp.2660-2665, 1998.

Z. Dermoun, G. De-luca, M. Asso, P. Bertrand, F. Guerlesquin et al., The NADP-reducing hydrogenase from Desulfovibrio fructosovorans: functional interaction between the C-terminal region of HndA and the N-terminal region of HndD subunits, Biochim Biophys Acta, pp.217-225, 2002.

M. Nouailler, X. Morelli, O. Bornet, B. Chetrit, Z. Dermoun et al., Solution structure of HndAc: a thioredoxin-like domain involved in the NADP-reducing hydrogenase complex, Protein Sci, vol.15, pp.1369-1378, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00475666

J. Meyer and J. Gagnon, Primary structure of hydrogenase I from Clostridium pasteurianum, Biochemistry, vol.30, pp.9697-9704, 1991.

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, vol.282, pp.1853-1858, 1998.

C. Gauquelin, C. Baffert, P. Richaud, E. Kamionka, E. Etienne et al., Biochim Biophys Acta, pp.69-77, 2018.

S. Dementin, B. Burlat, A. L. De-lacey, A. Pardo, G. Adryanczyk-perrier et al., A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase, J Biol Chem, vol.279, pp.10508-10513, 2004.

M. Rousset, L. Casalot, B. J. Rapp-giles, Z. Dermoun, P. De-philip et al.,

. Wall, New shuttle vectors for the introduction of cloned DNA in Desulfovibrio, Plasmid, vol.39, pp.114-122, 1998.

P. P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al., Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase, Nat Chem Biol, vol.6, pp.63-70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01977629

L. Girbal, G. Abendroth, M. Winkler, P. M. Benton, I. Meynial-salles et al., Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities, Appl Environ Microbiol, vol.71, pp.2777-2781, 2005.

C. J. Schwartz, J. L. Giel, T. Patschkowski, C. Luther, F. J. Ruzicka et al., IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins, Proc Natl Acad Sci U S A, vol.98, pp.14895-14900, 2001.

V. Fourmond, QSoas: A Versatile Software for Data Analysis, vol.88, pp.5050-5052, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414965

W. V. Sweeney and J. C. Rabinowitz, Proteins containing 4Fe-4S clusters: an overview, Annu Rev Biochem, vol.49, pp.139-161, 1980.

L. Pieulle, B. Guigliarelli, M. Asso, F. Dole, A. Bernadac et al., Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus, Biochim Biophys Acta, pp.49-59, 1995.

L. Avilan, B. Roumezi, V. Risoul, C. S. Bernard, A. Kpebe et al., Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120, Appl Microbiol Biotechnol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01893233

J. Hadj-saïd, M. E. Pandelia, C. Leger, V. Fourmond, and S. Dementin, The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris, Biochim Biophys Acta, pp.1574-1583, 2015.

H. Schägger and G. Jagow, Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form, Anal Biochem, vol.199, pp.223-231, 1991.

H. Schägger, W. A. Cramer, and G. Jagow, Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis, Anal Biochem, vol.217, pp.220-230, 1994.

S. L. Laz, A. Kpebe, M. Bauzan, S. Lignon, M. Rousset et al., A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1, vol.9, p.86343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01494488

M. Guiral, L. Prunetti, S. Lignon, R. Lebrun, D. Moinier et al., New insights into the respiratory chains of the chemolithoautotrophic and hyperthermophilic bacterium Aquifex aeolicus, J Proteome Res, vol.8, pp.1717-1730, 2009.

S. Dementin, B. Burlat, V. Fourmond, F. Leroux, P. P. Liebgott et al.,

M. Leger, B. Rousset, P. Guigliarelli, and . Bertrand, Rates of intra-and intermolecular electron transfers in hydrogenase deduced from steady-state activity measurements, J Am Chem Soc, vol.133, pp.10211-10221, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677402

C. D. Bari, N. Mano, S. Shleev, M. Pita, and A. L. De-lacey, Halides inhibition of multicopper oxidases studied by FTIR spectroelectrochemistry using azide as an active infrared probe, J Biol Inorg Chem, vol.22, pp.1179-1186, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01688136

M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. Mcginnis et al., NCBI BLAST: a better web interface, vol.36, pp.5-9, 2008.

C. R. Kissinger, L. C. Sieker, E. T. Adman, and L. H. Jensen, Refined crystal structure of ferredoxin II from Desulfovibrio gigas at 1.7 A, J Mol Biol, vol.219, pp.693-715, 1991.

B. J. Goodfellow, A. L. Macedo, P. Rodrigues, I. Moura, V. Wray et al., The solution structure of a [3Fe-4S] ferredoxin: oxidised ferredoxin II from Desulfovibrio gigas, J Biol Inorg Chem, vol.4, pp.421-430, 1999.

J. J. Moura, A. L. Macedo, and P. N. Palma, Ferredoxins, Methods Enzymol, vol.243, pp.165-188, 1994.

L. Pieulle, M. H. Charon, P. Bianco, J. Bonicel, Y. Petillot et al., Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus, Eur J Biochem, vol.264, pp.500-508, 1999.

F. A. Armstrong, S. J. George, R. Cammack, E. C. Hatchikian, and A. J. Thomson, Electrochemical and spectroscopic characterization of the 7Fe form of ferredoxin III from Desulfovibrio africanus, Biochem J, vol.264, pp.265-273, 1989.

S. J. George, F. A. Armstrong, E. C. Hatchikian, and A. J. Thomson, Electrochemical and spectroscopic characterization of the conversion of the 7Fe into the 8Fe form of ferredoxin III from Desulfovibrio africanus. Identification of a [4Fe-4S] cluster with one non-cysteine ligand, Biochem J, vol.264, pp.275-284, 1989.

M. Bruschi and P. Couchoud, Amino acid sequence of Desulfovibrio gigas ferredoxin: revisions, Biochem Biophys Res Commun, vol.91, pp.623-628, 1979.

E. C. Hatchikian, R. Cammack, D. S. Patil, A. E. Robinson, A. J. Richards et al., Spectroscopic characterization of ferredoxins I and II from Desulfovibrio africanus, Biochim Biophys Acta, vol.784, pp.40-47, 1984.

N. Okawara, M. Ogata, T. Yagi, S. Wakabayashi, and H. Matsubara, Characterization and complete amino acid sequence of ferredoxin II from Desulfovibrio vulgaris Miyazaki, Biochimie, vol.70, pp.1815-1820, 1988.

B. Darimont and R. , Sterner, Sequence, assembly and evolution of a primordial ferredoxin from Thermotoga maritima, EMBO J, vol.13, pp.1772-1781, 1994.

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Electrochemical Measurements of the Kinetics of Inhibition of Two FeFe Hydrogenases by O 2 Demonstrate That the Reaction Is Partly Reversible, J Am Chem Soc, vol.137, pp.12580-12587, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211469

C. Lambertz, N. Leidel, K. G. Havelius, J. Noth, P. Chernev et al., O 2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase, J Biol Chem, vol.286, pp.40614-40623, 2011.

K. D. Swanson, M. W. Ratzloff, D. W. Mulder, J. H. Artz, S. Ghose et al., hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster, J Am Chem Soc, vol.137, pp.1809-1816, 2015.

M. W. Adams, The structure and mechanism of iron-hydrogenases, Biochim Biophys Acta, pp.115-145, 1990.

W. Roseboom, A. L. De-lacey, V. M. Fernandez, E. C. Hatchikian, and S. P. Albracht, The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy, J Biol Inorg Chem, issue.11, pp.102-118, 2006.

S. Morra, M. Arizzi, F. Valetti, and G. Gilardi, Oxygen Stability in the New, Hydrogenase from Clostridium beijerinckii SM10 (CbA5H), 2016.

A. L. De-lacey, V. M. Fernandez, M. Rousset, and R. Cammack, Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies, Chem Rev, vol.107, pp.4304-4330, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00335154

R. C. Prince and M. W. Adams, Oxidation-reduction properties of the two Fe4S4 clusters in Clostridium pasteurianum ferredoxin, J Biol Chem, vol.262, pp.5125-5128, 1987.

E. T. Smith, D. W. Bennett, and B. A. Feinberg, Redox properties of 2, Anal. Chim. Acta, pp.27-33, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00354887

W. Nitschke and M. J. Russell, Redox bifurcations: mechanisms and importance to life now, and at its origin: a widespread means of energy conversion in biology unfolds, Bioessays, vol.34, pp.106-109, 2012.

J. W. Peters, D. N. Beratan, G. J. Schut, and M. W. Adams, On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidationreduction reactions, Chem Commun (Camb), vol.54, pp.4091-4099, 2018.

F. Baymann, B. Schoepp-cothenet, S. Duval, M. Guiral, M. Brugna et al.,

W. Russell and . Nitschke, On the Natural History of Flavin-Based Electron Bifurcation, Front. Microbiol, vol.9, p.1357, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01828959