X. He, R. Berland, S. Mekasha, T. G. Christensen, J. Alroy et al., The sst1 resistance locus regulates evasion of type I interferon signaling by Chlamydia pneumoniae as a disease tolerance mechanism, PLoS Pathog, vol.9, 2013.

R. Savan, S. Ravichandran, J. R. Collins, M. Sakai, and H. A. Young, Structural conservation of interferon gamma among vertebrates, Cytokine Growth Factor Rev, vol.20, pp.115-139, 2009.

M. P. Soares, R. Gozzelino, and S. Weis, Tissue damage control in disease tolerance, Trends Immunol, vol.35, pp.483-94, 2014.

B. A. Roy and J. W. Kirchner, Evolutionary dynamics of pathogen resistance and tolerance, Evolution, vol.54, pp.51-63, 2000.

L. D. Harris, B. Tabb, D. L. Sodora, M. Paiardini, N. R. Klatt et al., Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques, J Virol, vol.84, pp.7886-91, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01968882

L. D. Harris, N. R. Klatt, C. Vinton, J. A. Briant, B. Tabb et al., Mechanisms underlying ?? T-cell subset perturbations in SIV-infected Asian rhesus macaques, Blood, vol.116, pp.4148-57, 2010.

A. M. Jansen, S. C. Xavier, and A. L. Roque, The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment, Acta Trop, vol.151, pp.1-15, 2015.

A. C. Oliveira, B. C. De-alencar, F. Tzelepis, W. Klezewsky, R. N. Da-silva et al., Impaired innate immunity in Tlr4(-/-) mice but preserved CD8+ T cell responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9-or Myd88-deficient mice, PLoS Pathog, vol.6, 2010.

B. C. Caetano, B. B. Carmo, M. B. Melo, A. Cerny, S. L. Santos et al., Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi, J Immunol, vol.187, pp.1903-1914, 2011.

A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli et al., Cutting edge, TLR9 and TLR2 signaling together account for MyD88dependent control of parasitemia in Trypanosoma cruzi infection, J Immunol, vol.177, pp.3515-3524, 2006.

M. A. Campos, M. Closel, E. P. Valente, J. E. Cardoso, S. Akira et al., Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88, J Immunol, vol.172, pp.1711-1719, 2004.

R. Koga, S. Hamano, H. Kuwata, K. Atarashi, M. Ogawa et al., TLR-dependent induction of IFN-beta mediates host defense against Trypanosoma cruzi, J Immunol, vol.177, pp.7059-66, 2006.

V. M. Gonçalves, K. C. Matteucci, C. L. Buzzo, B. H. Miollo, D. Ferrante et al., NLRP3 controls Trypanosoma cruzi infection through a caspase-1dependent IL-1R-independent NO production, PLoS Negl Trop Dis, vol.7, 2013.

W. Gao and M. A. Pereira, Interleukin-6 is required for parasite specific response and host resistance to Trypanosoma cruzi, Int J Parasitol, vol.32, 2002.

V. Michailowsky, N. M. Silva, C. D. Rocha, L. Q. Vieira, J. Lannes-vieira et al., Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection, Am J Pathol, vol.159, issue.10, pp.63019-63021, 2001.

U. Müller, G. Köhler, H. Mossmann, G. A. Schaub, G. Alber et al., IL-12-independent IFN-gamma production by T cells in experimental Chagas' disease is mediated by IL-18, J Immunol, vol.167, pp.3346-53, 2001.

A. L. Bombeiro, L. A. Gonçalves, C. Penha-gonçalves, C. R. Marinho, D. Lima et al., IL-12p40 deficiency leads to uncontrolled Trypanosoma cruzi dissemination in the spinal cord resulting in neuronal death and motor dysfunction, PLoS ONE, vol.7, p.49022, 2012.

H. Erdmann, C. Rossnagel, J. Bohme, Y. Iwakura, T. Jacobs et al., IL-17A promotes macrophage effector mechanisms against Trypanosoma cruzi by trapping parasites in the endolysosomal compartment, Immunobiology, vol.218, pp.910-933, 2013.

Y. Miyazaki, S. Hamano, S. Wang, Y. Shimanoe, Y. Iwakura et al., IL17 is necessary for host protection against acute-phase Trypanosoma cruzi infection, J Immunol, vol.185, pp.1150-1157, 2010.

G. A. Martins, L. Q. Vieira, F. Q. Cunha, and J. S. Silva, Gamma interferon modulates CD95 (Fas) and CD95 ligand (Fas-L) expression and nitric oxide-induced apoptosis during the acute phase of Trypanosoma cruzi infection: a possible role in immune response control, Infect Immun, vol.67, pp.3864-71, 1999.

K. L. Cummings and R. L. Tarleton, Inducible nitric oxide synthase is not essential for control of Trypanosoma cruzi infection in mice, Infect Immun, vol.72, pp.4081-4090, 2004.

R. M. Arantes, H. H. Marche, M. T. Bahia, F. Q. Cunha, M. A. Rossi et al., Interferon-gamma-induced nitric oxide causes intrinsic intestinal denervation in Trypanosoma cruzi-infected mice, Am J Pathol, vol.164, issue.10, pp.63222-63223, 2004.

H. C. Santiago, C. G. Feng, A. Bafica, E. Roffe, R. M. Arantes et al., Mice deficient in LRG-47 display enhanced susceptibility to Trypanosoma cruzi infection associated with defective hemopoiesis and intracellular control of parasite growth, J Immunol, vol.175, pp.8165-72, 2005.

M. M. Kulkarni, S. Varikuti, C. Terrazas, J. L. Kimble, A. R. Satoskar et al., Signal transducer and activator of transcription 1 (STAT-1) plays a critical role in control of Trypanosoma cruzi infection, Immunology, vol.145, pp.225-256, 2015.

R. L. Tarleton, M. J. Grusby, and L. Zhang, Increased susceptibility of Stat4-deficient and enhanced resistance in Stat6-deficient mice to infection with Trypanosoma cruzi, J Immunol, vol.165, pp.1520-1525, 2000.

A. R. Pérez, E. Roggero, A. Nicora, J. Palazzi, H. O. Besedovsky et al., Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance, Brain Behav Immun, vol.21, pp.890-900, 2007.

J. L. Durand, S. Mukherjee, F. Commodari, D. Souza, A. P. Zhao et al., Role of NO synthase in the development of Trypanosoma cruziinduced cardiomyopathy in mice, Am J Trop Med Hyg, vol.80, pp.782-789, 2009.

G. K. Silva, R. S. Costa, T. N. Silveira, B. C. Caetano, C. V. Horta et al., Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1? response and host resistance to Trypanosoma cruzi infection, J Immunol, vol.191, pp.3373-83, 2013.

M. Dhiman and N. J. Garg, P47phox ?/? mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection, PLoS Pathog, vol.10, p.1004516, 2014.

C. N. Paiva, R. T. Figueiredo, K. Kroll-palhares, A. A. Silva, J. C. Silvério et al., CCL2/MCP-1 controls parasite burden, cell infiltration, and mononuclear activation during acute Trypanosoma cruzi infection, J Leukoc Biol, vol.86, pp.1239-1285, 2009.
DOI : 10.1189/jlb.0309187

URL : https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1189/jlb.0309187

F. S. Machado, N. S. Koyama, V. Carregaro, B. R. Ferreira, C. M. Milanezi et al., CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi, J Infect Dis, vol.191, pp.627-663, 2005.

J. L. Hardison, R. A. Wrightsman, P. M. Carpenter, W. A. Kuziel, T. E. Lane et al., The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi, Infect Immun, vol.74, pp.135-178, 2006.

V. Michailowsky, M. R. Celes, A. P. Marino, A. A. Silva, L. Q. Vieira et al., Intercellular adhesion molecule 1 deficiency leads to impaired recruitment of T lymphocytes and enhanced host susceptibility to infection with Trypanosoma cruzi, J Immunol, vol.173, pp.463-70, 2004.

G. A. Martins, A. P. Campanelli, R. B. Silva, C. E. Tadokoro, M. Russo et al., CD28 is required for T cell activation and IFN-gamma production by CD4+ and CD8+ T cells in response to Trypanosoma cruzi infection, Microbes Infect, vol.6, pp.1133-1177, 2004.

A. Talvani, G. Santana, L. S. Barcelos, S. Ishii, T. Shimizu et al., Experimental Trypanosoma cruzi infection in platelet-activating factor receptor-deficient mice, Microbes Infect, vol.5, pp.789-96, 2003.
DOI : 10.1016/s1286-4579(03)00146-1

A. F. Benatar, G. A. García, J. Bua, J. P. Cerliani, M. Postan et al., Galectin-1 prevents infection and damage induced by Trypanosoma cruzi on cardiac cells, PLoS Negl Trop Dis, vol.9, p.4148, 2015.
DOI : 10.1371/journal.pntd.0004148

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004148&type=printable

J. Sharma, C. S. Eickhoff, D. F. Hoft, D. A. Ford, R. W. Gross et al., The absence of myocardial calcium-independent phospholipase A2gamma results in impaired prostaglandin E2 production and decreased survival in mice with acute Trypanosoma cruzi infection, Infect Immun, vol.81, pp.2278-87, 2013.

M. C. Silva, M. Davoli-ferreira, T. S. Medina, R. Sesti-costa, G. K. Silva et al., Canonical PI3K? signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis, Nat Commun, vol.9, p.1513, 2018.
DOI : 10.1038/s41467-018-03986-3

URL : https://www.nature.com/articles/s41467-018-03986-3.pdf

T. S. Medina, G. G. Oliveira, M. C. Silva, B. A. David, G. K. Silva et al., Ebi3 prevents Trypanosoma cruzi-induced myocarditis by dampening IFN-?-driven inflammation. Front Immunol, vol.8, p.1213, 2017.
DOI : 10.3389/fimmu.2017.01213

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2017.01213/pdf

C. Hölscher, M. Mohrs, W. J. Dai, G. Köhler, B. Ryffel et al., Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruziinfected interleukin 10-deficient mice, Infect Immun, vol.68, pp.4075-83, 2000.

C. A. Hunter, L. A. Ellis-neyes, T. Slifer, S. Kanaly, G. Grünig et al., IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi, J Immunol, vol.158, pp.3311-3317, 1997.

T. Boari, J. , A. Vesely, M. C. Bermejo, D. A. Ramello et al., IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils, PLoS Pathog, vol.8, 2012.

L. R. Ferreira, A. F. Frade, M. A. Baron, I. C. Navarro, J. Kalil et al., Interferon-?, and other inflammatory mediators in cardiomyocyte signaling during Chagas disease cardiomyopathy, World J Cardiol, vol.6, pp.782-90, 2014.
DOI : 10.4330/wjc.v6.i8.782

URL : https://hal.archives-ouvertes.fr/hal-01592695

P. Stahl, V. Ruppert, R. T. Schwarz, and T. Meyer, Trypanosoma cruzi evades the protective role of interferon-gamma-signaling in parasite-infected cells, PLoS ONE, vol.9, p.110512, 2014.

J. S. Silva, G. N. Vespa, M. A. Cardoso, J. C. Aliberti, and F. Q. Cunha, Tumor necrosis factor alpha mediates resistance to Trypanosoma cruzi infection in mice by inducing nitric oxide production in infected gamma interferon-activated macrophages, Infect Immun, vol.63, pp.4862-4869, 1995.

V. Vila-del-sol, C. Punzón, and M. Fresno, IFN-gamma-induced TNF-alpha expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages, J Immunol, vol.181, pp.4461-70, 2008.

C. Hölscher, G. Köhler, U. Müller, H. Mossmann, G. A. Schaub et al., Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma cruzi-infected mice deficient in gamma interferon receptor or inducible nitric oxide synthase, vol.66, pp.1208-1223, 1998.

Y. Wu, S. Antony, A. Juhasz, J. Lu, Y. Ge et al., Up-regulation and sustained activation of Stat1 are essential for interferon-gamma (IFNgamma)-induced dual oxidase 2 (Duox2) and dual oxidase A2 (DuoxA2) expression in human pancreatic cancer cell lines, J Biol Chem, vol.286, pp.12245-56, 2011.

S. Rakshit, B. S. Chandrasekar, B. Saha, E. S. Victor, S. Majumdar et al., Interferon-gamma induced cell death: regulation and contributions of nitric oxide, cJun N-terminal kinase, reactive oxygen species and peroxynitrite, Biochim Biophys Acta, vol.1843, pp.2645-61, 2014.
DOI : 10.1016/j.bbamcr.2014.06.014

URL : https://doi.org/10.1016/j.bbamcr.2014.06.014

M. N. Alvarez, G. Peluffo, L. Piacenza, and R. Radi, Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity, J Biol Chem, vol.286, pp.6627-6667, 2011.

S. J. Koo, I. H. Chowdhury, B. Szczesny, X. Wan, and N. J. Garg, Macrophages promote oxidative metabolism to drive nitric oxide generation in response to Trypanosoma cruzi, Infect Immun, vol.84, pp.3527-3568, 2016.
DOI : 10.1128/iai.00809-16

URL : https://iai.asm.org/content/iai/84/12/3527.full.pdf

K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, Interferon-gamma: an overview of signals, mechanisms and functions, J Leukoc Biol, vol.75, pp.163-89, 2004.
DOI : 10.1189/jlb.0603252

URL : https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1189/jlb.0603252

C. R. Marinho, L. N. Nunez-apaza, R. Martins-santos, K. R. Bastos, A. L. Bombeiro et al., IFN-gamma, but not nitric oxide or specific IgG, is essential for the in vivo

, Trypanosoma cruzi parasites, Scand J Immunol, vol.66, pp.297-308, 2007.

K. Schroder, M. Lichtinger, K. M. Irvine, K. Brion, A. Trieu et al., 1 and ICSBP control constitutive and IFN-gamma-regulated Tlr9 gene expression in mouse macrophages, J Leukoc Biol, vol.81, pp.1577-90, 2007.
DOI : 10.1189/jlb.0107036

URL : https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1189/jlb.0107036

A. Talvani, M. O. Rocha, L. S. Barcelos, Y. M. Gomes, A. L. Ribeiro et al., Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy, Clin Infect Dis, vol.38, pp.943-50, 2004.

R. R. Silva, R. M. Mariante, A. A. Silva, A. L. Santos, E. Roffê et al., Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi, PLoS ONE, vol.10, p.118600, 2015.

E. Cunha-neto, V. J. Dzau, P. D. Allen, D. Stamatiou, L. Benvenutti et al., Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy, Am J Pathol, vol.167, issue.10, pp.62976-62984, 2005.

F. S. Machado, G. A. Martins, J. C. Aliberti, F. L. Mestriner, F. Q. Cunha et al., Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity, Circulation, vol.102, pp.3003-3011, 2000.
DOI : 10.1161/01.cir.102.24.3003

URL : https://www.ahajournals.org/doi/pdf/10.1161/01.CIR.102.24.3003

G. N. Vespa, F. Q. Cunha, and J. S. Silva, Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro, Infect Immun, vol.62, pp.5177-82, 1994.

C. W. Cai, J. R. Blase, X. Zhang, C. S. Eickhoff, and D. F. Hoft, Th17 cells are more protective than Th1 cells against the intracellular parasite Trypanosoma cruzi, PLoS Pathog, vol.12, p.1005902, 2016.

C. Gu, L. Wu, and X. Li, IL-17 family: cytokines, receptors and signaling, Cytokine, vol.64, pp.477-85, 2013.

S. Hamano, K. Himeno, Y. Miyazaki, K. Ishii, A. Yamanaka et al., WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production, Immunity, vol.19, pp.657-67, 2003.

C. V. Poncini, J. M. Ilarregui, E. I. Batalla, S. Engels, J. P. Cerliani et al., Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms, J Immunol, vol.195, pp.3311-3335, 2015.

I. A. Abrahamsohn and R. L. Coffman, Trypanosoma cruzi, IL-10, TNF, IFNgamma, and IL-12 regulate innate and acquired immunity to infection, Exp Parasitol, vol.84, pp.231-275, 1996.

K. N. Couper, D. G. Blount, and E. M. Riley, IL-10: the master regulator of immunity to infection, J Immunol, vol.180, pp.5771-5778, 2008.

P. M. Da-matta-guedes, F. R. Gutierrez, F. L. Maia, C. M. Milanezi, G. K. Silva et al., IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis, PLoS Negl Trop Dis, vol.4, p.604, 2010.

A. N. Sieve, K. D. Meeks, S. Lee, and R. E. Berg, A novel immunoregulatory function for IL-23: inhibition of IL-12-dependent IFN-? production, Eur J Immunol, vol.40, pp.2236-2283, 2010.

S. Aggarwal, N. Ghilardi, M. H. Xie, F. J. De-sauvage, and A. L. Gurney, Interleukin23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17, J Biol Chem, vol.278, pp.1910-1914, 2003.

S. L. Gaffen, R. Jain, A. V. Garg, and D. J. Cua, The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing, Nat Rev Immunol, vol.14, pp.585-600, 2014.

J. Böhme, C. Roßnagel, T. Jacobs, J. Behrends, C. Hölscher et al., Epstein-Barr virus-induced gene 3 suppresses T helper type 1, type 17 and type 2 immune responses after Trypanosoma cruzi infection and inhibits parasite replication by interfering with alternative macrophage activation, Immunology, vol.147, pp.338-386, 2016.

S. Diehl and M. Rincón, The two faces of IL-6 on Th1/Th2 differentiation, Mol Immunol, vol.39, pp.531-537, 2002.

M. C. Fernandes and N. W. Andrews, Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence, FEMS Microbiol Rev, vol.36, pp.734-781, 2012.

M. S. Cardoso, J. L. Reis-cunha, and D. C. Bartholomeu, Evasion of the immune response by Trypanosoma cruzi during acute infection, Front Immunol, vol.6, p.659, 2015.

M. M. Rodrigues, A. C. Oliveira, and M. Bellio, The immune response to Trypanosoma cruzi: role of Toll-like receptors and perspectives for vaccine development, J Parasitol Res, p.507874, 2012.

D. Alba-alvarado, M. Salazar-schettino, P. M. Jiménez-Álvarez, L. Cabrerabravo, M. García-sancho et al., Th-17 cytokines are associated with severity of Trypanosoma cruzi chronic infection in pediatric patients from endemic areas of Mexico, Acta Trop, vol.178, pp.134-175, 2018.

R. B. Bestetti and G. Muccillo, Clinical course of Chagas' heart disease: a comparison with dilated cardiomyopathy, Int J Cardiol, vol.60, pp.187-93, 1997.

G. R. Sousa, J. A. Gomes, M. P. Damasio, M. C. Nunes, H. S. Costa et al., The role of interleukin 17-mediated immune response in Chagas disease: high level is correlated with better left ventricular function, PLoS ONE, vol.12, p.172833, 2017.

L. Higuchi-mde, P. S. Gutierrez, V. D. Aiello, S. Palomino, E. Bocchi et al., Immunohistochemical characterization of infiltrating cells in human chronic chagasic myocarditis: comparison with myocardial rejection process, Virchows Arch A Pathol Anat Histopathol, vol.423, pp.157-60, 1993.

D. D. Reis, E. M. Jones, S. Tostes, E. R. Lopes, G. Gazzinelli et al., Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes, Am J Trop Med Hyg, vol.48, pp.637-681, 1993.

M. M. Reis, L. Higuchi-mde, L. A. Benvenuti, V. D. Aiello, P. S. Gutierrez et al., An in situ quantitative immunohistochemical study of cytokines and IL2R+ in chronic human chagasic myocarditis: correlation with the presence of myocardial Trypanosoma cruzi antigens, Clin Immunol Immunopathol, vol.83, pp.165-72, 1997.

S. G. Fonseca, M. M. Reis, V. Coelho, L. G. Nogueira, S. M. Monteiro et al., Locally produced survival cytokines IL-15 and IL-7 may be associated to the predominance of CD8+ T cells at heart lesions of human chronic Chagas disease cardiomyopathy, Scand J Immunol, vol.66, pp.362-71, 2007.

L. C. Abel, L. V. Rizzo, B. Ianni, F. Albuquerque, F. Bacal et al., Chronic Chagas' disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection, J Autoimmun, vol.17, pp.99-107, 2001.

D. B. Rocha-rodrigues, M. A. Reis, A. Romano, S. A. Pereira, T. Vde et al., In situ expression of regulatory cytokines by heart inflammatory cells in Chagas' disease patients with heart failure, Clin Dev Immunol, p.361730, 2012.

L. G. Nogueira, R. H. Santos, A. I. Fiorelli, E. C. Mairena, L. A. Benvenuti et al., Myocardial gene expression of T-bet, GATA-3, Ror-?t, FoxP3, and hallmark cytokines in chronic Chagas disease cardiomyopathy: an essentially unopposed TH1-type response, Mediators Inflamm, p.914326, 2014.

J. A. Gomes, L. M. Bahia-oliveira, M. O. Rocha, S. C. Busek, M. M. Teixeira et al., Type 1 chemokine receptor expression in Chagas' disease correlates with morbidity in cardiac patients, Infect Immun, vol.73, pp.7960-7966, 2005.

E. Cunha-neto, V. J. Dzao, P. D. Allen, D. Stamatiou, L. Benvenutti et al., Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy, Am J Pathol, vol.167, issue.10, pp.62976-62984, 2005.

L. G. Nogueira, R. Santos, B. M. Ianni, A. I. Fiorelli, E. C. Mairena et al., Myocardial chemokine expression and intensity of myocarditis in chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10, Plos Negl Trop Dis, vol.6, p.186, 2012.

S. Ehrt, D. Schnappinger, S. Bekiranov, J. Drenkow, S. Shi et al., Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase, J Exp Med, vol.194, pp.1123-1163, 2001.

S. P. Levick and P. H. Goldspink, Could interferon-gamma be a therapeutic target for treating heart failure?, Heart Fail Rev, vol.19, pp.227-263, 2014.

C. D. Krause, W. He, S. Kotenko, and S. Pestka, Modulation of the activation of Stat1 by the interferon-gamma receptor complex, Cell Res, vol.16, pp.113-136, 2006.

L. Ferreira, F. M. Ferreira, L. Laugier, S. Cabantous, I. C. Navarro et al., Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection. Sci Rep, vol.7, p.17990, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01698245

K. Reifenberg, H. A. Lehr, M. Torzewski, G. Steige, E. Wiese et al., Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice, Am J Pathol, vol.171, pp.463-72, 2007.

M. Torzewski, P. Wenzel, H. Kleinert, C. Becker, J. El-masri et al., Chronic inflammatory cardiomyopathy of interferon ?-overexpressing transgenic mice is mediated by tumor necrosis factor-?, Am J Pathol, vol.180, pp.73-81, 2012.

M. Patten, E. Krämer, J. Bünemann, C. Wenck, M. Thoenes et al., Endotoxin and cytokines alter contractile protein expression in cardiac myocytes in vivo, Pflugers Arch, vol.442, pp.920-927, 2001.

Z. Wang, B. Jiang, and P. Brecher, Selective inhibition of STAT3 phosphorylation by sodium salicylate in cardiac fibroblasts, Biochem Pharmacol, vol.63, pp.1197-207, 2002.

H. J. Chae, K. C. Ha, D. S. Kim, G. S. Cheung, Y. G. Kwak et al., Catalase protects cardiomyocytes via its inhibition of nitric oxide synthesis, Nitric Oxide, vol.14, pp.189-99, 2006.

B. Dai, M. Cui, M. Zhu, W. L. Su, M. C. Qiu et al., STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose, Cell Physiol Biochem, vol.32, pp.960-71, 2013.

A. J. Wu, R. M. Lafrenie, C. Park, W. Apinhasmit, Z. J. Chen et al., Modulation of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) by interferon-gamma in a human salivary gland cell line, J Cell Physiol, vol.171, pp.117-141, 1997.

D. A. Brown, J. B. Perry, M. E. Allen, H. N. Sabbah, B. L. Stauffer et al., Expert consensus document: mitochondrial function as a therapeutic target in heart failure, Nat Rev Cardiol, vol.14, pp.238-250, 2017.
DOI : 10.1038/nrcardio.2016.203

URL : https://www.nature.com/articles/nrcardio.2016.203.pdf

X. Wan, J. J. Wen, S. J. Koo, L. Y. Liang, and N. J. Garg, SIRT1-PGC1?-NF?B pathway of oxidative and inflammatory stress during Trypanosoma cruzi infection: benefits of SIRT1-targeted therapy in improving heart function in Chagas disease, PLoS Pathog, vol.12, 2016.

P. C. Teixeira, R. H. Santos, A. I. Fiorelli, A. M. Bilate, L. A. Benvenuti et al., Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy, PLoS Negl Trop Dis, vol.5, 2011.

X. Wan, S. Gupta, M. P. Zago, M. M. Davidson, P. Dousset et al., Defects of mtDNA replication impaired mitochondrial biogenesis during Trypanosoma cruzi infection in human cardiomyocytes and chagasic patients: the role of Nrf1/2 and antioxidant response, J Am Heart Assoc, vol.1, p.3855, 2012.

H. Luss, S. C. Watkins, P. D. Freeswick, A. K. Imro, A. K. Nussler et al., Characterization of inducible nitric oxide synthase expression in endotoxemic rat cardiac myocytes in vivo and following cytokine exposure in vitro, J Mol Cell Cardiol, vol.27, pp.2015-2044, 1995.

D. Wang, J. B. Mcmillin, R. Bick, and L. M. Buja, Response of the neonatal rat cardiomyocyte in culture to energy depletion: effects of cytokines, nitric oxide, and heat shock proteins, Lab Invest, vol.75, pp.809-827, 1996.

A. E. Kalovidouris, Z. Plotkin, and D. Graesser, Interferon-gamma inhibits proliferation, differentiation, and creatine kinase activity of cultured human muscle cells. II. A possible role in myositis, J Rheumatol, vol.20, pp.1718-1741, 1993.

H. J. Lee, Y. K. Oh, M. Rhee, J. Y. Lim, J. Y. Hwang et al., The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by

, J Mol Biol, vol.369, pp.967-84, 2007.

L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, D. N. Silachev, I. B. Pevzner et al., Mitochondrial membrane potential, Anal Biochem, vol.552, pp.50-59, 2017.

M. L. Pall, The NO/ONOO-cycle as the central cause of heart failure, Int J Mol Sci, vol.14, 2013.

C. N. Paiva, E. Medei, and M. T. Bozza, ROS and Trypanosoma cruzi: fuel to infection, poison to the heart, PLoS Pathog, vol.14, p.1006928, 2018.

A. Kauppinen, T. Suuronen, J. Ojala, K. Kaarniranta, and A. Salminen, Antagonistic crosstalk between NF-?B and SIRT1 in the regulation of inflammation and metabolic disorders, Cell Signal, vol.25, pp.1939-1987, 2013.

R. Caruso, I. Marafini, E. Franzè, C. Stolfi, F. Zorzi et al., Defective expression of SIRT1 contributes to sustain inflammatory pathways in the gut, Mucosal Immunol, vol.7, pp.1467-79, 2014.

G. Vilar-pereira, V. C. Carneiro, H. Mata-santos, A. R. Vicentino, I. P. Ramos et al., Resveratrol reverses functional chagas heart disease in mice, PLoS Pathog, vol.12, 2016.

J. J. Wen, C. Porter, and N. J. Garg, Inhibition of NFE2L2-antioxidant response element pathway by mitochondrial reactive oxygen species contributes to development of cardiomyopathy and left ventricular dysfunction in Chagas disease, Antioxid Redox Signal, vol.27, pp.550-66, 2017.

S. Kovac, P. R. Angelova, K. M. Holmström, Y. Zhang, A. T. Dinkova-kostova et al., Nrf2 regulates ROS production by mitochondria and NADPH oxidase, Biochim Biophys Acta, vol.1850, pp.794-801, 2015.

A. T. Dinkova-kostova and A. Y. Abramov, The emerging role of Nrf2 in mitochondrial function, Free Radic Biol Med, pp.179-88, 2015.

A. P. West, G. S. Shadel, and S. Ghosh, Mitochondria in innate immune responses, Nat Rev Immunol, vol.11, pp.389-402, 2011.

S. Van-linthout and C. Tschöpe, Inflammation-cause or consequence of heart failure or both? Curr Heart Fail Rep, vol.14, pp.251-65, 2017.

F. Zicker, P. G. Smith, J. C. Netto, R. M. Oliveira, and E. M. Zicker, Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas' cardiopathy, Am J Trop Med Hyg, vol.43, pp.498-505, 1990.

T. Weitzel, I. Zulantay, I. Danquah, L. Hamann, R. R. Schumann et al., Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile, Am J Trop Med Hyg, vol.86, pp.229-261, 2012.

J. M. Rodríguez-pérez, D. Cruz-robles, G. Hernández-pacheco, N. Pérezhernández, L. E. Murguía et al., Tumor necrosis factor-alpha promoter polymorphism in Mexican patients with Chagas' disease, PLoS Negl Trop Dis, vol.98, pp.97-102, 2005.

L. Criado, O. Flórez, J. Martín, and C. I. González, Genetic polymorphisms in TNFA/TNFR2 genes and Chagas disease in a Colombian endemic population, Cytokine, vol.57, pp.398-401, 2012.

S. A. Drigo, E. Cunha-neto, B. Ianni, M. R. Cardoso, P. E. Braga et al., TNF gene polymorphisms are associated with reduced survival in severe Chagas' disease cardiomyopathy patients, Microbes Infect, vol.8, pp.598-603, 2006.

G. Zafra, C. Morillo, J. Martín, A. González, and C. I. González, Polymorphism in the 3' UTR of the IL12B gene is associated with Chagas' disease cardiomyopathy, Microbes Infect, vol.9, pp.1049-52, 2007.

O. A. Torres, J. E. Calzada, Y. Beraún, C. A. Morillo, A. González et al., Role of the IFNG +874T/A polymorphism in Chagas disease in a Colombian population, Infect Genet Evol, vol.10, pp.682-687, 2010.

J. Macmurray, D. E. Comings, and V. Napolioni, The gene-immune-behavioral pathway: Gamma-interferon (IFN-?) simultaneously coordinates susceptibility to infectious disease and harm avoidance behaviors, Brain Behav Immun, vol.35, pp.169-75, 2014.

A. F. Frade, C. W. Pissetti, B. M. Ianni, B. Saba, H. T. Lin-wang et al., Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways, BMC Infect Dis, vol.13, p.587, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00920392

O. Flórez, J. Martín, and C. I. González, Genetic variants in the chemokines and chemokine receptors in Chagas disease, Hum Immunol, vol.73, pp.852-860, 2012.

A. P. Oliveira, C. R. Bernardo, A. V. Camargo, L. S. Ronchi, A. A. Borim et al., Genetic susceptibility to cardiac and digestive clinical forms of chronic Chagas disease, involvement of the CCR5 59029 A/G polymorphism, PLoS ONE, vol.10, 2015.

M. A. Machuca, E. U. Suárez, L. E. Echeverría, J. Martín, and C. I. González, SNP/haplotype associations of CCR2 and CCR5 genes with severity of chagasic cardiomyopathy, Hum Immunol, vol.75, pp.1210-1215, 2014.

G. C. Costa, C. Da, M. O. Rocha, P. R. Moreira, C. A. Menezes et al., Functional IL-10 gene polymorphism is associated with Chagas disease cardiomyopathy, J Infect Dis, vol.199, pp.451-455, 2009.

Y. Beraun, A. Nieto, M. D. Collado, A. Gonzalez, and J. Martin, Polymorphisms at tumor necrosis factor (TNF) loci are not associated with Chagas' disease, Tissue Antigens, vol.52, pp.81-84, 1998.

C. W. Pissetti, R. F. Oliveira, D. Correia, G. A. Nascentes, M. M. Llaguno et al., Association between the lymphotoxin-alpha gene polymorphism and chagasic cardiopathy, J Interferon Cytokine Res, vol.33, pp.130-135, 2013.

R. Ramasawmy, E. Cunha-neto, K. C. Fae, S. C. Borba, P. C. Teixeira et al., Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the Toll-like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy, J Infect Dis, vol.199, pp.1838-1883, 2009.

C. C. Khor, S. J. Chapman, F. O. Vannberg, A. Dunne, C. Murphy et al., A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis, Nat Genet, vol.39, pp.523-531, 2007.

J. T. Parissis, S. Adamopoulos, K. F. Venetsanou, D. G. Mentzikof, S. M. Karas et al., Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling, J Interferon Cytokine Res, vol.22, pp.223-232, 2002.

P. Aukrust, T. Ueland, F. Müller, A. K. Andreassen, I. Nordøy et al., Elevated circulating levels of C-C chemokines in patients with congestive heart failure, Circulation, vol.97, pp.1136-1179, 1998.

R. Ramasawmy, E. Cunha-neto, K. C. Fae, F. G. Martello, N. G. Müller et al., The monocyte chemoattractant protein-1 gene polymorphism is associated with cardiomyopathy in human chagas disease, Clin Infect Dis, vol.43, pp.305-316, 2006.

J. E. Calzada, A. Nieto, Y. Beraún, and J. Martín, Chemokine receptor CCR5 polymorphisms and Chagas' disease cardiomyopathy, Tissue Antigens, vol.58, pp.154-162, 2001.

M. T. Fernández-mestre, S. Montagnani, and Z. Layrisse, Is the CCR5-59029-G/G genotype a protective factor for cardiomyopathy in Chagas disease?, Hum Immunol, vol.65, pp.725-733, 2004.

A. P. Oliveira, C. M. Ayo, R. B. Bestetti, C. C. Brandão-de-mattos, C. E. Cavasini et al., The role of CCR5 in Chagas disease-a systematic review, Infect Genet Evol, vol.45, pp.132-139, 2016.

R. W. Stein and J. Whelan, Insulin gene enhancer activity is inhibited by adenovirus 5 E1a gene products, Mol Cell Biol, vol.9, pp.4531-4535, 1989.

O. Flórez, J. Martín, and C. I. González, Interleukin 4, interleukin 4 receptor-? and interleukin 10 gene polymorphisms in Chagas disease, Parasite Immunol, vol.33, pp.506-517, 2011.

H. Sales-campos, H. B. Kappel, C. P. Andrade, T. P. Lima, A. De-castilho et al., Trypanosoma cruzi DTU TcII presents higher blood parasitism than DTU TcI in an experimental model of mixed infection, Acta Parasitol, vol.60, pp.435-476, 2015.

S. K. Meza, E. N. Kaneshima, S. Sde, O. Gabriel, M. De-araújo et al., Comparative pathogenicity in Swiss mice of Trypanosoma cruzi IV from northern Brazil and Trypanosoma cruzi II from southern Brazil, Exp Parasitol, vol.146, pp.34-42, 2014.

L. M. Magalhães, A. Viana, E. Chiari, L. M. Galvão, K. J. Gollob et al., Differential Activation of human monocytes and lymphocytes by distinct strains of Trypanosoma cruzi, PLoS Negl Trop Dis, vol.9, p.3816, 2015.

M. M. Teixeira, F. M. Silva, A. Marcili, E. S. Umezawa, M. A. Shikanai-yasuda et al., Short communication: Trypanosoma cruzi lineage I in endomyocardial biopsy from a north-eastern Brazilian patient at end-stage chronic Chagasic cardiomyopathy, Trop Med Int Health, vol.11, pp.294-302, 2006.

C. I. Cura, R. H. Lucero, M. Bisio, E. Oshiro, L. B. Formichelli et al., Trypanosoma cruzi discrete typing units in Chagas disease patients from endemic and non-endemic regions of Argentina, Parasitology, vol.139, pp.516-537, 2012.

M. G. Risso, P. A. Sartor, J. M. Burgos, L. Briceño, E. M. Rodríguez et al., Immunological identification of Trypanosoma cruzi lineages in human infection along the endemic area, Am J Trop Med Hyg, vol.84, pp.78-84, 2011.

C. Muñoz-san-martín, I. Zulantay, M. Saavedra, C. Fuentealba, G. Muñoz et al., Discrete typing units of Trypanosoma cruzi detected by real-time PCR in Chilean patients with chronic Chagas cardiomyopathy, Acta Trop, vol.185, pp.280-284, 2018.

E. A. Carrera-silva, E. Antonio, C. S. Cano, R. C. Carolina, C. R. Guiñazú et al., TLR4 and TLR9 are differentially modulated in liver lethally injured from BALB/c and C57BL/6 mice during Trypanosoma cruzi acute infection, Mol Immunol, vol.45, pp.3580-3588, 2008.