K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang et al.,

V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-675, 2004.

N. M. Bardhan, P. Kumar, Z. Li, H. L. Ploegh, J. C. Grossman et al., Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering, ACS Nano, vol.11, pp.1548-1558, 2017.

J. E. Johns and M. C. Hersam, Atomic covalent functionalization of graphene, Acc. Chem. Res, vol.46, pp.77-86, 2013.

J. E. Johns, J. M. Alaboson, S. Patwardhan, C. R. Ryder, G. C. Schatz et al.,

C. Hersam, Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen, J. Am. Chem. Soc, vol.135, pp.18121-18125, 2013.

J. H. Jørgensen, A. G. ?abo, R. Balog, L. Kyhl, M. N. Groves et al.,

B. Knudsen, P. Hammer, L. Hofmann, and . Hornekaer, Symmetry-Driven Band Gap Engineering in Hydrogen Functionalized Graphene, ACS Nano, vol.10, pp.10798-10807, 2016.

B. Huang, H. Xiang, Q. Xu, and S. H. Wei, Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides, Phys. Rev. Lett, vol.110, pp.1-5, 2013.

K. Schulte, N. Vinogradov, and M. L. Ng,

. Preobrajenski, Bandgap formation in graphene on Ir(111) through oxidation, Appl. Surf. Sci, vol.267, pp.74-76, 2012.

M. Chen, H. Zhou, C. Qiu, H. Yang, F. Yu et al., Layer-dependent fluorination and doping of graphene via plasma treatment, Nanotechnology, vol.23, p.115706, 2012.

Y. Wen, C. L. Yen, L. Yan, H. Kono, S. H. Lin et al., Magnetism-tuning strategies for graphene oxide based on magnetic oligoacene oxide patches model, Phys. Chem. Chem. Phys, vol.20, pp.3678-3686, 2018.

W. Xie, L. Weng, C. Chan, K. L. Yeung, and C. Chan,

, NH 3 with epoxy groups on the surface of graphite oxide powder, Phys. Chem. Chem. Phys, vol.20, pp.6431-6439, 2018.

Y. Zhang, C. Yang, D. Yang, Z. Shao, Y. Hu et al., Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy, Phys. Chem. Chem. Phys, vol.20, pp.17262-17267, 2018.

N. M. Bardhan, P. V. Kumar, Z. Li, H. L. Ploegh, J. C. Grossman et al., Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering, ACS Nano, vol.11, pp.1548-1558, 2017.

C. J. Tainter and G. C. Schatz, Reactive Force Field Modeling of Zinc Oxide Nanoparticle Formation, J. Phys. Chem. C, vol.120, pp.2950-2961, 2016.

R. H. Vervuurt, W. M. Kessels, and A. A. Bol, Atomic Layer Deposition for Graphene Device Integration, Adv. Mater. Interfaces, 2017.

R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi et al., Dual path mechanism in the thermal reduction of graphene oxide, J. Am. Chem. Soc, vol.133, pp.17315-17336, 2011.

N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren et al., Impact of atomic oxygen on the structure of graphene formed on Ir(111) and Pt(111), J. Phys. Chem. C, vol.115, pp.9568-9577, 2011.

M. Z. Hossain, J. E. Johns, K. H. Bevan, H. J. Karmel, Y. T. Liang et al.,

K. Mukai, T. Koitaya, J. Yoshinobu, M. Kawai, A. M. Lear et al., Chemically homogeneous and thermally reversible oxidation of epitaxial graphene, vol.4, pp.305-309, 2012.

S. Katano, T. Wei, T. Sasajima, R. Kasama, and Y. Uehara, Localized electronic structures of graphene oxide studied using scanning tunneling microscopy and spectroscopy, Phys. Chem. Chem. Phys, vol.20, pp.17977-17982, 2018.

Z. Novotny, M. Nguyen, F. P. Netzer, V. Glezakou, R. Rousseau et al.,

. Dohnálek, Formation of Supported Graphene Oxide: Evidence for Enolate Species, J. Am. Chem. Soc, 2018.

J. Jung, H. Lim, J. Oh, and Y. Kim, Functionalization of Graphene Grown on

, Metal Substrate with Atomic Oxygen: Enolate vs Epoxide, J. Am. Chem. Soc, vol.136, pp.8528-8531, 2014.

D. Martoccia, P. R. Willmott, T. Brugger, M. Björck, S. Günther et al.,

A. Schlepütz, S. A. Cervellino, B. D. Pauli, S. Patterson, J. Marchini et al., A 25 × 25 supercell, Graphene on Ru, vol.101, pp.1-4, 2008.

R. Brako, D. ?ok?evi?, P. Lazi?, and N. Atodiresei, Graphene on the Ir(111) surface: From van der Waals to strong bonding, New J. Phys

A. T. N'diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely, Structure of epitaxial graphene on Ir

M. Bianchi, D. Cassese, A. Cavallin, R. Comin, F. Orlando et al., Surface core level shifts of clean and oxygen covered Ir(111), New J. Phys

L. Kyhl, R. Balog, T. Angot, L. Hornekaer, and R. Bisson, A high-resolution electron energy loss spectroscopy study of the vibrational spectrum, Hydrogenated graphene on Ir, issue.111, p.115403, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284577

S. Ghodbane, T. Haensel, Y. Coffinier, S. Szunerits, R. Boukherroub et al.,

J. A. Ahmed, D. Schaefer, F. D. Steinm, and . Gmbh,

. Schaefer, HREELS investigation of the surfaces of nanocrystalline diamond films oxidized by different processes, Langmuir, vol.26, pp.18798-18805, 2010.

Z. Shpilman, I. Gouzman, E. Grossman, R. Akhvlediani, and A. Hoffman, Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies, J. Appl. Phys

M. Endlich, A. Molina-sánchez, L. Wirtz, and J. Kröger, Screening of electronphonon coupling in graphene on Ir(111), Phys. Rev. B-Condens. Matter Mater. Phys, vol.88, pp.1-4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00911367

M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace et al., The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, J. Phys. Chem. C, vol.115, 2011.