M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith et al., GROMACS: high performance molecular simulations through multilevel parallelism from laptops to supercomputers, vol.1, pp.19-25, 2015.

T. Akagi, M. Kaneda, K. Ishii, and T. Hashikawa, Differential subcellular localization of zinc in the rat retina, J. Histochem. Cytochem, vol.49, pp.87-96, 2001.

J. B. Ames, R. Ishima, T. Tanaka, J. I. Gordon, L. Stryer et al., Molecular mechanics of calcium-myristoyl switches, Nature, vol.389, pp.198-202, 1997.

J. B. Ames, K. Levay, J. N. Wingard, J. D. Lusin, and V. Z. Slepak, Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin, J. Biol. Chem, vol.281, pp.37237-37245, 2006.

P. Aravind, K. Chandra, P. P. Reddy, A. Jeromin, K. Chary et al., Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg2+ modulates Ca2+ binding, Ca2+-induced conformational changes, and equilibrium unfolding transitions, J. Mol. Biol, vol.376, pp.1100-1115, 2008.

G. J. Augustine, F. Santamaria, and K. Tanaka, Local calcium signaling in neurons, Neuron, vol.40, pp.639-640, 2003.

V. Baksheeva, A. Nazipova, D. Zinchenko, M. Serebryakova, I. I. Senin et al., Ca2+-Myristoyl Switch in Neuronal Calcium Sensor-1: a Role of C-Terminal Segment, CNS Neurol. Disord. Drug Targets, vol.14, pp.437-451, 2015.

M. J. Banker, T. H. Clark, W. , and J. A. , Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding, J. Pharm. Sci, vol.92, pp.967-974, 2003.

A. Barwinska-sendra and K. J. Waldron, Chapter Eight-The role of intermetal competition and mis-metalation in metal toxicity, Advances in Microbial Physiology, pp.315-379, 2017.

C. Blachford, A. Celi´cceli´c, E. T. Petri, and B. E. Ehrlich, Discrete proteolysis of neuronal calcium sensor-1 (NCS-1) by µ-calpain disrupts calcium binding, Cell Calcium, vol.46, pp.257-262, 2009.

G. R. Boeckel and B. E. Ehrlich, NCS-1 is a regulator of calcium signaling in health and disease, Biochim. Biophys. Acta Mol. Cell Res, 2018.

E. Bossy-wetzel, M. V. Talantova, W. D. Lee, M. N. Schölzke, A. Harrop et al., Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38activated K+ channels, Neuron, vol.41, pp.15-22, 2004.

R. D. Burgoyne, Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling, Nat. Rev. Neurosci, vol.8, pp.182-193, 2007.

R. D. Burgoyne and L. P. Haynes, Understanding the physiological roles of the neuronal calcium sensor proteins, Mol. Brain, vol.5, issue.2, 2012.

E. A. Burstein and V. I. Emelyanenko, Log-normal description of fluorescence spectra of organic fluorophores, Photochem. Photobiol, vol.64, pp.316-320, 1996.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, vol.126, p.14101, 2007.

M. S. Cates, M. B. Berry, E. L. Ho, Q. Li, J. D. Potter et al., , 1999.

, Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin, Structure, vol.7, p.80060

K. Chandra, V. Ramakrishnan, Y. Sharma, C. , and K. , N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor1, J. Biol. Inorg. Chem, vol.16, pp.81-95, 2011.

D. W. Choi and J. Y. Koh, Zinc and brain injury, Annu. Rev. Neurosci, vol.21, pp.347-375, 1998.

R. A. Colvin, A. I. Bush, I. Volitakis, C. P. Fontaine, D. Thomas et al., Insights into Zn2+ homeostasis in neurons from experimental and modeling studies, Am. J. Physiol. Cell Physiol, vol.294, 2007.

R. A. Colvin, N. Davis, R. W. Nipper, and P. A. Carter, Zinc transport in the brain: routes of zinc influx and efflux in neurons, J. Nutr, vol.130, pp.1484-1487, 2000.

R. A. Colvin, W. R. Holmes, C. P. Fontaine, and W. Maret, Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis, Metallomics, vol.2, pp.306-317, 2010.

R. J. Cousins, J. P. Liuzzi, and L. A. Lichten, Mammalian zinc transport, trafficking, and signals, J. Biol. Chem, vol.281, pp.24085-24089, 2006.

J. A. Cox, I. Durussel, M. Comte, S. Nef, P. Nef et al., Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins, J. Biol. Chem, vol.269, pp.32807-32813, 1994.

M. P. Cuajungco and K. Y. Faget, Zinc takes the center stage: its paradoxical role in Alzheimer's disease, Brain Res. Rev, vol.41, pp.219-228, 2003.

S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives1, J. Mol. Struct. THEOCHEM, vol.461, pp.1-21, 1999.

S. De-raad, M. Comte, P. Nef, S. E. Lenz, E. D. Gundelfinger et al., Distribution pattern of three neural calcium-binding proteins (NCS1, VILIP and recoverin) in chicken, bovine and rat retina, Histochem. J, vol.27, pp.524-535, 1995.

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

D. Dell'orco, P. Behnen, S. Linse, and K. W. Koch, Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy, Cell. Mol. Life Sci, vol.67, pp.973-984, 2010.

T. Dudev and C. Lim, Principles governing Mg, Ca, and Zn binding and selectivity in proteins, Chem. Rev, vol.103, pp.773-788, 2003.

C. J. Frederickson and A. I. Bush, Synaptically released zinc: physiological functions and pathological effects, Biometals, vol.14, pp.353-366, 2001.

C. J. Frederickson, J. Y. Koh, and A. I. Bush, The neurobiology of zinc in health and disease, Nat. Rev. Neurosci, vol.6, pp.449-462, 2005.

J. M. Gardner, C. A. Powell, H. Baker-henningham, S. P. Walker, T. J. Cole et al., Zinc supplementation and psychosocial stimulation: effects on the development of undernourished Jamaican children, Am. J. Clin. Nutr, vol.82, pp.399-405, 2005.

C. Garnier, F. Devred, D. Byrne, R. Puppo, A. Y. Roman et al., Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates, Sci. Rep, vol.7, p.6812, 2017.

M. Gaus, Q. Cui, and M. Elstner, DFTB3: extension of the self-consistentcharge density-functional tight-binding method (SCC-DFTB), J. Chem. Theory Comput, vol.7, pp.931-948, 2012.

I. I. Grigoriev, I. I. Senin, N. K. Tikhomirova, K. E. Komolov, S. E. Permyakov et al., Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase, Front. Mol. Neurosci, vol.5, p.28, 2012.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, vol.132, p.154104, 2010.

P. O. Heidarsson, I. J. Bjerrum-bohr, G. A. Jensen, O. Pongs, B. E. Finn et al., The C-terminal tail of human neuronal calcium sensor 1 regulates the conformational stability of the Ca2+-activated state, J. Mol. Biol, vol.417, pp.51-64, 2012.

P. O. Heidarsson, M. M. Naqvi, M. R. Otazo, A. Mossa, B. B. Kragelund et al., Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.13069-13074, 2014.

A. Jeromin, D. Muralidhar, M. N. Parameswaran, J. Roder, T. Fairwell et al., N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1, J. Biol. Chem, vol.279, pp.27158-27167, 2004.

F. F. Jheng, L. Wang, L. Lee, C. , and L. S. , Functional contribution of Ca2+ and Mg2+ to the intermolecular interaction of visinin-like proteins, Protein J, vol.25, pp.250-256, 2006.

S. Karim, Z. Mirza, S. A. Ansari, M. Rasool, Z. Iqbal et al., Transcriptomics study of neurodegenerative disease: emphasis on synaptic dysfunction mechanism in Alzheimer's disease, CNS Neurol. Disord. Drug Targets, vol.13, pp.1202-1212, 2014.

A. S. Kazakov, A. S. Sokolov, A. A. Vologzhannikova, M. E. Permyakova, P. A. Khorn et al., Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs, J. Biomol. Struct. Dyn, vol.35, pp.78-91, 2017.

L. Kiedrowski, Cytosolic acidification and intracellular zinc release in hippocampal neurons, J. Neurochem, vol.121, pp.438-450, 2012.

K. W. Koch and D. Orco, Protein and signaling networks in vertebrate photoreceptor cells, Front. Mol. Neurosci, vol.8, p.67, 2015.

K. E. Komolov, I. I. Senin, N. A. Kovaleva, M. P. Christoph, V. A. Churumova et al., Mechanism of rhodopsin kinase regulation by recoverin, J. Neurochem, vol.110, pp.72-79, 2009.

A. Krezel and W. Maret, Zinc-buffering capacity of a eukaryotic cell at physiological pZn, J. Biol. Inorg. Chem, vol.11, pp.1049-1062, 2006.

T. Kuba?, K. Welke, G. , and G. , New QM/MM implementation of the DFTB3 method in the gromacs package, J. Comput. Chem, vol.36, 1978.

M. Laitaoja, J. Valjakka, J. , and J. , Zinc coordination spheres in protein structures, Inorg. Chem, vol.52, pp.10983-10991, 2013.

K. W. Leung, A. Gvritishvili, Y. Liu, and J. Tombran-tink, ZIP2 and ZIP4 mediate age-related zinc fluxes across the retinal pigment epithelium, J. Mol. Neurosci, vol.46, pp.122-137, 2012.

C. Li, W. Pan, K. H. Braunewell, and J. B. Ames, Structural analysis of Mg2+ and Ca2+ binding, myristoylation, and dimerization of the neuronal calcium sensor and visinin-like protein 1 (VILIP-1), J. Biol. Chem, vol.286, pp.6354-6366, 2011.

S. Lim, I. Peshenko, A. Dizhoor, and J. B. Ames, Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability, Biochemistry, vol.48, pp.850-862, 2009.

S. Lim, I. V. Peshenko, E. V. Olshevskaya, A. M. Dizhoor, and J. B. Ames, Structure of guanylyl cyclase activator protein 1 (GCAP1) mutant V77E in a Ca2+-free/Mg2+-bound activator state, J. Biol. Chem, vol.291, pp.4429-4441, 2016.

K. Lindorff-larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis et al., Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, vol.78, pp.1950-1958, 2010.

G. Lyubartseva, L. , and M. A. , A potential role for zinc alterations in the pathogenesis of Alzheimer's disease, Biofactors, vol.38, pp.98-106, 2012.

H. Manev, E. Kharlamov, T. Uz, R. P. Mason, C. et al., Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells, Exp. Neurol, vol.146, pp.171-178, 1997.

W. Maret, Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.12325-12327, 2001.

W. Maret, Zinc coordination environments in proteins as redox sensors and signal transducers, Antioxid. Redox Signal, vol.8, pp.1419-1441, 2006.

W. Maret, L. , and Y. , Coordination dynamics of zinc in proteins, Chem. Rev, vol.109, pp.4682-4707, 2009.

V. Marino, S. Sulmann, K. W. Koch, and D. Dell'orco, Structural effects of Mg(2)(+) on the regulatory states of three neuronal calcium sensors operating in vertebrate phototransduction, Biochim. Biophys. Acta, vol.1853, pp.2055-2065, 2015.

O. V. Moroz, K. S. Wilson, and I. B. Bronstein, The role of zinc in the S100 proteins: insights from the X-ray structures, Amino acids, vol.41, pp.761-772, 2011.

T. Y. Nakamura, A. Jeromin, G. Smith, H. Kurushima, H. Koga et al., Novel role of neuronal Ca2+ sensor-1 as a survival factor upregulated in injured neurons, J. Cell Biol, vol.172, pp.1081-1091, 2006.

L. Negyessy and P. S. Goldman-rakic, Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex, J. Comp. Neurol, vol.488, pp.464-475, 2005.

E. V. Olshevskaya, A. N. Ermilov, and A. M. Dizhoor, Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation, J. Biol. Chem, vol.274, pp.25583-25587, 1999.

M. Osawa, A. Dace, K. I. Tong, A. Valiveti, M. Ikura et al., Mg2+ and Ca2+ differentially regulate DNA binding and dimerization of DREAM, J. Biol. Chem, vol.280, pp.18008-18014, 2005.
DOI : 10.1074/jbc.m500338200

URL : http://www.jbc.org/content/280/18/18008.full.pdf

T. Ozawa, M. Fukuda, M. Nara, A. Nakamura, Y. Komine et al., How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies, Biochemistry, vol.39, pp.14495-14503, 2000.

S. Pandalaneni, V. Karuppiah, M. Saleem, L. P. Haynes, R. D. Burgoyne et al., Neuronal Calcium Sensor-1 binds the D2 dopamine receptor and G-protein coupled receptor kinase 1 (GRK1) peptides using different modes of interactions, J. Biol. Chem, vol.290, pp.18744-18756, 2015.

J. G. Penland, H. H. Sandstead, N. W. Alcock, H. H. Dayal, X. C. Chen et al., A preliminary report: effects of zinc and micronutrient repletion on growth and neuropsychological function of urban Chinese children, J. Am. Coll. Nutr, vol.16, pp.268-272, 1997.

S. E. Permyakov, A. M. Cherskaya, I. I. Senin, A. A. Zargarov, S. V. Shulga-morskoy et al., Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites, Protein Eng, vol.13, pp.783-790, 2000.

S. E. Permyakov, A. M. Cherskaya, L. A. Wasserman, T. I. Khokhlova, I. I. Senin et al., Recoverin is a zinc-binding protein, J. Proteome Res, vol.2, pp.51-57, 2003.
DOI : 10.1021/pr025553i

S. E. Permyakov, E. Y. Zernii, E. L. Knyazeva, A. I. Denesyuk, A. A. Nazipova et al., Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association, Amino acids, vol.42, pp.1435-1442, 2012.

I. V. Peshenko and A. M. Dizhoor, Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors, J. Biol. Chem, vol.279, pp.16903-16906, 2004.

I. V. Peshenko, E. V. Olshevskaya, S. Lim, J. B. Ames, and A. M. Dizhoor, Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclaseactivating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity, J. Biol. Chem, vol.287, pp.13972-13984, 2012.

E. Pidcock, M. , and G. R. , Structural characteristics of protein binding sites for calcium and lanthanide ions, J. Biol. Inorg. Chem, vol.6, pp.479-489, 2001.

A. Romani and A. Scarpa, Regulation of cell magnesium, Arch. Biochem. Biophys, vol.298, pp.1-12, 1992.

B. L. Sabatini, T. G. Oertner, and K. Svoboda, The life cycle of Ca(2+) ions in dendritic spines, Neuron, vol.33, pp.439-452, 2002.

I. I. Senin, N. Tikhomirova, V. Churumova, I. Grigoriev, T. Kolpakova et al., Amino acid sequences of two immune-dominant epitopes of recoverin are involved in Ca 2+/recoverin-dependent inhibition of phosphorylation of rhodopsin, Biochemistry, vol.76, pp.332-338, 2011.

S. L. Sensi, D. Ton-that, P. G. Sullivan, E. A. Jonas, K. R. Gee et al., Modulation of mitochondrial function by endogenous Zn2+ pools, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.6157-6162, 2003.

C. T. Sheline, A. L. Cai, J. Zhu, and C. Shi, Serum or target deprivationinduced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+, Eur. J. Neurosci, vol.32, pp.894-904, 2010.

C. T. Sheline, Y. Zhou, and S. Bai, Light-induced photoreceptor and RPE degeneration involve zinc toxicity and are attenuated by pyruvate, nicotinamide, or cyclic light, Mol. Vis, vol.16, pp.2639-2652, 2010.

T. Sippy, A. Cruz-martín, A. Jeromin, and F. E. Schweizer, Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1, Nat. Neurosci, vol.6, pp.1031-1038, 2003.

N. Sreerama and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal. Biochem, vol.287, pp.252-260, 2000.

S. W. Suh, J. W. Chen, M. Motamedi, B. Bell, K. Listiak et al., Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury, Brain Res, vol.852, pp.2095-2103, 2000.

S. W. Suh, A. M. Hamby, E. T. Gum, B. S. Shin, S. J. Won et al., Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death, J. Cereb. Blood Flow Metab, vol.28, pp.1697-1706, 2008.

T. Tsujimoto, A. Jeromin, N. Saitoh, J. C. Roder, and T. Takahashi, Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals, Science, vol.295, pp.2276-2279, 2002.

P. Tsvetkov, P. Barbier, G. Breuzard, V. Peyrot, D. et al., Microtubule-associated proteins and tubulin interaction by isothermal titration calorimetry, Methods in cell biology, pp.283-302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01478645

P. Tsvetkov, F. Devred, and A. Makarov, Thermodynamics of zinc binding to human S100A2, Mol. Biol, vol.44, pp.832-835, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01756874

P. O. Tsvetkov, A. A. Makarov, S. Malesinski, V. Peyrot, D. et al., New insights into tau-microtubules interaction revealed by isothermal titration calorimetry, Biochimie, vol.94, pp.916-919, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01749107

M. Ugarte, G. W. Grime, G. Lord, K. Geraki, J. F. Collingwood et al., Concentration of various trace elements in the rat retina and their distribution in different structures, Metallomics, vol.4, pp.1245-1254, 2012.

M. Ugarte and N. N. Osborne, Recent advances in the understanding of the role of zinc in ocular tissues, Metallomics, vol.6, pp.189-200, 2014.

V. I. Vladimirov, E. Y. Zernii, V. E. Baksheeva, H. Wimberg, A. S. Kazakov et al., Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1, Cell Calcium, vol.73, pp.55-69, 2018.

J. T. Warren, Q. Guo, and W. J. Tang, A 1.3-Å structure of zinc-bound N-terminal domain of calmodulin elucidates potential early ion-binding step, J. Mol. Biol, vol.374, pp.517-527, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00426282

N. J. Waters, R. Jones, G. Williams, and B. Sohal, Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding, J. Pharm. Sci, vol.97, pp.4586-4595, 2008.

O. H. Weiergräber, I. I. Senin, E. Y. Zernii, V. A. Churumova, N. A. Kovaleva et al., Tuning of a neuronal calcium sensor, J. Biol. Chem, vol.281, pp.37594-37602, 2006.

N. Wills, V. S. Ramanujam, N. Kalariya, J. Lewis, and F. Van-kuijk, Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender, Exp. Eye Res, vol.87, pp.80-88, 2008.

M. P. Woll, D. A. De-cotiis, M. C. Bewley, D. M. Tacelosky, R. Levenson et al., Interaction between the D2 dopamine receptor and neuronal calcium sensor-1 analyzed by fluorescence anisotropy, Biochemistry, vol.50, pp.8780-8791, 2011.

J. P. Wood and N. N. Osborne, The influence of zinc on caspase-3 and DNA breakdown in cultured human retinal pigment epithelial cells, Arch. Ophthalmol, vol.119, pp.81-88, 2001.

M. Yanez, J. Gil-longo, and M. Campos-toimil, Calcium binding proteins, Adv. Exp. Med. Biol, vol.740, pp.461-482, 2012.

P. K. Yip, L. F. Wong, T. A. Sears, R. J. Yáñez-muñoz, and S. B. Mcmahon, Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat, PLoS Biol, vol.8, p.1000399, 2010.

M. H. Yoo, J. Y. Lee, S. E. Lee, J. Y. Koh, and Y. H. Yoon, Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo, Invest. Ophthalmol. Vis. Sci, vol.45, 2004.

E. Y. Zernii, K. E. Komolov, S. E. Permyakov, T. Kolpakova, D. Dell'orco et al., Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase, Biochem. J, vol.435, pp.441-450, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581539

E. Y. Zernii, A. A. Nazipova, O. S. Gancharova, A. S. Kazakov, M. V. Serebryakova et al., Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radic, Biol. Med, vol.83, pp.283-295, 2015.

E. Y. Zernii, N. Tikhomirova, P. Philippov, and I. I. Senin, Detection of annexin IV in bovine retinal rods, Biochemistry, vol.68, pp.129-134, 2003.

S. Zozulya and L. Stryer, Calcium-myristoyl protein switch, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.11569-11573, 1992.