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Abstract—This paper proposes efficient structures of Adaptive
Notch Filters (ANF) implemented as constrained ARMA models.
These ANF suit very well for fast frequencies tracking and evolu-
tionary spectrum analysis for narrow band and sinusoidal signals
in additive noise. Lastly, non-stationary ANF are considered and
an estimation procedure implemented.
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I. INTRODUCTION

A. Objective

The main interest in this contribution, is the retrieval of
the parameters of sinusoidal signal components (amplitudes,
phases and frequencies), in noise. We assume (slowly) varying
frequencies and varying amplitudes and phases. This is the
case when the process is perturbed by the wind (cars, planes,
flying robots, wind turbines ...) or the sea waves, swell (boats,
submarine robots, wave turbines...). Other examples are the vi-
brations of processes in mechanics, hydraulics or pneumatics.
It is often crucial to detect and predict the vibration signals in
order to compensate or tackle their effects.

Recently introduced adaptive control techniques use com-
pensation of the narrow band perturbation signals based on
ANF [1], [2], [3], [4]. Autoregressive (AR) and ARMA
(Autoregressive with Mean Average) modeling techniques
have shown powerful potentialities. They are well suited for
recursive signal spectral analysis, interesting for time varying
signal spectrum [5], [6], [7].

However, when the noise level is too high and / or when
the signal model has poles near or on the unit circle, serious
(numerical or stability) problems arise [6].

B. Previous work

In the narrow-band signals case, successful applications
have been realized with AR models [5], [8] but, they need high
order autoregressive FIR filter. Very high order AR models has
been shown to be asymptotically equivalent to an Adaptive
Notch Filter (ANF). Additionally the noise effect is reduced
by increasing the order of the AR filter. This adds the expense
of computational cost [9]. This has been studied in extensive
simulations [8], [10], [7].

Thus, the use of the a priori knowledge of a narrow-
band feature of the signal, lead us to the design of Notch
Filter Structure (NFS) with constrained poles and zeros. The
Adaptive Notch Filters (ANF) have been proposed to provide
the frequencies estimation and tracking [11] [9], [12]. These

estimators can be used by implementation in a cascaded blocks
of second order cells.

Some strategies has been proposed to track time varying
parameters (like frequencies amplitudes and phases), which
may be used in line [13]. ANF(s) are used to estimated the
frequency components in a first step. Then, in a second step,
after frequencies tracking the estimated frequencies are used
to provide the estimation of amplitudes and phases. This can
also be implemented in a recursive manner.

The proposed recursive algorithm consists in two steps.
The first step involves a Recursive Maximum Likelihood
algorithm to adapt the cascaded filters parameters [7], which
will provide the frequencies estimates. The second step uses
the last estimates, and then the estimations of amplitudes
and phases are given by a Recursive Extended Least Squares
(RELS) algorithm .

A theoretical analysis of these algorithms, have been pre-
sented in [6], [10] and the applicable estimation methods are
reviewed in [10], [11] [14], [9], [15]. These last structures
introduce in Parameter Adaptation Algorithms (PAA) some
nonlinearity which may give some problems in the transient
period of the estimation. The cascade implementation of
second order sub models, have been claimed possible.

C. Contribution of this work

In this paper clarifies the rationale behind the Adaptive
Notch Filters that we have proposed in the past and revisited in
this paper. We give a complete theoretical analysis and prove
the convergence of the two estimation algorithms:n one to
estimate the frequency components by an ARML algorithm
and the second to estimate the amplitudes and phases by an
RLS algorithm with exponential weighting and a forgetting
factor. These algorithms are applied for adaptive prediction of
the swell perturbations on a boat.

In section II of this paper we present the Recursive esti-
mation algorithms and the filter structure. We then develop
an implementation of the cascaded ANF. The Prediction Error
Method (PEM) is applied. This application leads to an Approx-
imate Recursive Maximum Likelihood (ARML) algorithm for
frequencies estimation. In a second step, using these estimates,
a Recursive Least Squares (RLS) algorithm is employed for
the estimation of amplitudes and phases.

The theoretical analysis of these algorithms and their per-
formance evaluation is presented in section III.

Section for will be dedicated to effective Prediction of
narrow band signals and parameters estimation. The narrow



band signals, considered are the sea waves. After the ANF
for the signal Prediction, we estimate the frequencies and
the deduce the estimations of the amplitudes and phase. The
algorithms Validation is done by using the swell signals
perturbing a boat motion.

II. RECURSIVE ESTIMATION ALGORITHMS AND FILTER
STRUCTURE

The proposed recursive estimation procedure consists of two
stages, as the parameters to estimated are in non linear com-
bination. The first step processed involves an ANF structure
implemented in cascaded form for the estimation of the signal
frequencies. An Approximate Recursive Maximum Likelihood
(ARML) method is developed and used. The second step
uses Recursive Instrumental Variables (RIV) to avoid non
linearities and get an appropriate model for linear prediction
techniques. This leads us a model linear in its parameters
(to be estimated). An adaptive estimation algorithm, based on
Weighted Recursive Least Squares (WRLS), is used to provide
the amplitudes and phases estimations.

The involved signals may be modeled as follows where vk
is the noise disturbance, Ci(k) and βi(k) are, respectively, the
time varying amplitude and phase of the frequency component
fi(k). All the parameters are susceptible to vary in time. Te
is the sampling period.

yk =

p∑
i=1

Ci(k).Sin(2.πfi.Te.k + βi(k)) + vk (1)

A. Amplitudes and Phases Estimation with RIV-WRLS

In this step, we assume that the frequencies of the signal
are known (well estimated by the proposed ARLM algorithm)
and we develop an estimator for the amplitudes and phases
of each frequency component. We use a Weighted Recursive
Least Squares algorithm, as in [11], to estimate the amplitude
and phase of each sinusoid. The frequencies estimations are
provided by the ANF, as will be developed in the next
subsection in a previous step.

The signal Model of equation (1 ), can be decomposed in
Fourier Series. It may be written as linear combination of the
Fourier basis elements (which are the Instrumental Variables
(IV) to be used in estimation):

yk =

p∑
l=1

(glCos(2πflTe.k + hlSin(2πflTe.k)) + vk (2)

where the amplitudes Cl and phases βl for (l = 1...p) are
given from the Fourier series parameters by

Cl =
√
g2
l + h2

l and tan(βl) = gl/hl (3)

It is worthwhile to note that the Fourier series parameters
are identifiable. We can then define the parameter θ̂(k) and
the regression (by Recursive Instrumental Variable RIV) ψ(̂k)

vectors as follows
θ̂(k) = [g1, g2, ..., gp, h1, h2, ..., hp]

T

Φk = [C, S]
T
with

C = [Cos(2πfl.Te.k) .., Cos(2πfp.Te.k)]

S = [Sin(2πfl.Te.k) , ..., Sin(2πfp.Te.k)]

(4)

The parameters are then estimated using an WRLS algorithm
as follows:

y0
k = θ̂(k − 1)T .Φk

ε0(k) = yk − θ̂(k − 1)T .Φk

Gk = 1
λ0

(
Gk−1 − Gk−1ΦkΦT

kGk−1

λ0+ΦT
kGk−1Φk

)
θ̂(k) = θ̂(k − 1) +Gk.Φk.ε

0(k)

Cl =
√
g2
l + h2

l tan(βl) = gl/hl

(5)

where y0
k is the a priori prediction and ε0(k) is the a priori

prediction error. In equation (5) filtered versions of the signal
yk can be used; For example, we can use the prediction (of the
ANF) produced by the frequency estimation stage. Doing this
we will get the RIV coupled with the signal Output Prediction
Error Method (RIV-OPEM).

We can note, also, that the RIV regression vector will
verify the Persistent Excitation Condition (PEC). The use of a
constant λ0 as an exponential forgetting factor will help for the
alertness of the amplitudes and phases estimation by WRLS.
The adaptation gain Gk will not decrease to zero and remain
positive. Then estimation will remain correct in case of slowly
time varying parameters.

B. Frequency estimation whit cascaded ANF

Adaptive Notch Filters are very well suited for estimation
of the sinusoidal component frequencies. The ith sinusoidal
component will be filtered by the ith second order ANF:

Hi(z
−1) =

1 + aiz
−1 + z−2

1 + r.aiz−1 + r2z−2
(6)

The last equation presents a second order notch filter. Let us
note that the transfer function does not depend on amplitudes
and phases. Those informations are in the initial conditions.
The notch bandwidth is defined by the parameter 0<r<1. The
parameter ai depends on the notch frequency

ai = −2cos(2πfiTe) (7)

(for i = 1...p). As they are p sinusoidal components in
equation (1), let us consider the notch filter transfer function
as p cascaded second order Notch cells:

H(z−1) =

p∏
i=1

Hi(z
−1) (8)

With no loss of generality we assume identical bandwidth
parameter r for the notches. Thus independence between fre-
quencies yields independence between the parameters of each
second order cell. Then each cell can be adapted independently
of the others after pre-filtering the signal by the others. For
comb filter, relations between the frequencies can be used



to reduce the computational burden. If all the frequency
components are independent we can write

ỹjk =

p∏
i = 1
i 6= j

Hi(q
−1)yk (9)

If we suppose that the cascaded filters Hi(z
−1) with central

frequency fi (for i = l...p and i 6= j) have converged then
the filter Hj(z

−1) will remove one of the jth sinusoidal
components, remaining after the filters Hi(z

−1), for i = 1...p
and i 6= j.

ỹjk =

p∏
i = 1
i 6= j

1 + aiq
−1 + q−2

1 + r.aiq−1 + r2q−2
.yk (10)

This means that in the signal ỹjk the p-1 sinusoidal components
have been removed by the corresponding notches and then the
prediction error εk is obtained by removing the jth one:

εk = Hj(q
−1)ỹjk =

1 + ajq
−1 + q−2

1 + r.ajq−1 + r2q−2
ỹjk (11)

Thus, there will exit a unique global minimum for the Mean
Squared Error (MSE) Criterion, as each notch remove one
frequency component. Following the approach of the Output
Prediction Error Method (OPEM), for the estimation algo-
rithm, we obtain as the estimation gradient:

ψjk−1 = −dεk
daj

=
(1− r)(1− rq−2)

1 + r.ajq−1 + r2q−2
.ỹjk−1 (12)

The RML algorithm may be summarized by the following
equations, where F jk is the adaptation gain and 0 < λ < 1 the
forgetting factor:

for j = 1, ..., p, do

âjk = âjk−1 + F jk−1.ψ
j
k−1.εk

F jk = F jk−1/(λ+ ψjk−1.F
j
k−1.ψ

j
k−1)

(13)

The computational complexity of the RML algorithm comes
essentially from the computation of the gradient and the
successive filtering (equations 10,11,12). A first approximation
can be done to reduce computational complexity. It yields an
Approximate RML (ARML) algorithm. We can then use the
formula (using equation II-B instead of 12):

ψjk−1 '
sjk−1 − rεk−1

1 + r.ajq−1 + r2q−2
.ỹjk (14)

with the signals sjk computed as follows
forj = (p− 1), ..., 1do

yjk =
∏p
l=j+1Hl(q

−1).yk

sjk = yjk − y
j−1
k

(15)

Another suggestion is to adapt the Notch filter second order
cells successively for i = 1, .., p in a cascaded way or recur-

sively. Each cell get as input the output error computed from
the previous cells only, in a recursive manner. The bandwidth
or what we call the de-biasing parameter rk must be a positive.
In our experience we choose this parameter exponentially time
varying, from 0 or r0 to one (or to rf ), according to the
following expression: rk = rd.rk−1 + (1− rd).rf .

III. ANALYSIS AND PERFORMANCE EVALUATION

A. Convergence of the ANF (OPEM RML)

1) Second order ANF with an RML algorithm: Let us first
consider the case of a single cell Hj(z

−1) (see (6)) driven by
the signal defined in (1) with p = 1.

Assume, either if p > 1, that the preceding filters Hi(z
−1)

(for i = 1.. j − 1, j + 1, .. n and i 6= j) have, all of them,
converged to their optimal value. The bandwidth, of the filter
Hi(z

−1) are assumed large enough to remove (or attenuate)
the other frequencies (fi respectively i 6= j).

Thus ỹjk is composed by a single frequency fj plus an
additive independent noise ηk.

ỹjk = Cj(k).Sin(2.πfj .Te.k + βj(k)) + ηk (16)

Tacking for the signal an AR model with two complex
conjugate poles on the unit circle and applying the RML
Parameter Estimation algorithm, the a posteriori error can be
written:

εk =
Âj(rq

−1)

Aj(rq−1)
.(âj − aj).ψjk−1 +

ηk
Aj(rq−1)

(17)

with
ỹjk = −aj ỹjk−1 − ỹ

j
k−2 + ηk

Aj(rq
−1) = 1 + r.ajq

−1 + r2q−2

Âj(rq
−1) = 1 + r.âjq

−1 + r2q−2

(18)

It is well known, in the general case, that the RML algorithm
needs a stability monitoring. For the ANF this procedure can
be removed in virtue of the following Lemma. We use a time
varying de-biasing parameter.

Lemma 1. Let rk be a positive (bandwidth) parameter ex-
ponentially time varying, from 0 to one, according to the
following expression:

rk = rd.rk−1 + (1− rd).rf (19)

.
Then there exit positive constants, less than 1, (r0, rd, rf )

such that Â(rk, q
−1) is infinitely often stable.

Proof: The bandwidth (or de-biasing) parameter rk acts
like a contraction of the poles, attracting them toward the
center of the unit circle. In addition rk starts at r0, for k=0,
and goes to rf , when k goes to infinity. We can then take rf
less than the inverse of the maximum modulus of the unstable
poles of Â(rk, q

−1).
Now applying the theoretical background, on convergence

of adaptation algorithms, presented in [16] and particularly
the Theorem 4 of [16] leads to the following Theorem to
establish the convergence of the ANF OPRM RML algorithm.



Theorem 2. : Under the following assumptions:
• Â(rk, q

−1) is infinitely often stable (rk.âj(k) < 2)
• for some âj fixed ψjk , εk and ηk

Aj(rq−1) are quasi
stationary signal.

• ηk is independent of ψjk−1 and

• the transfer function Â(rz−1)
A(rz−1)−

1
2 is SPR (Strictly Positive

Real).
Then we get, for the estimation algorithm, the following:

• Dc ={a such as E{(âj − aj).ψ
j
k−1} = 0} is the

convergence domain
• lim(εk − ηk) = 0 WP1 (With probability one)
• lim(âj(k))εDc WP1 (With probability one)

To ensure the SPR condition we consider the following
lemma.

Lemma 3. : There always exist an r such that
ˆA(r.q−1)

A(r.q−1) is a
Strictly Positive Real transfer function (SPR).

The last condition on r is less restrictive than the one for
the stability. We can then conclude that the Lemmas 1 and 2,
with the last theorem, allow us to assert the global stability
of the ANF if r is appropriately chosen such that Â(r.q−l) is
always stable during estimation progress.

2) Second order ANF with an ELS algorithm: If the ELS
estimation method is applied, the estimation error becomes
[13]:

εk =
1

Aj(rq−1)
.(âj − aj).ψjk−1 + ηk (20)

There exits an upper limit l for the de-biasing parameter in
order to get the SPR condition. This limit l depends on the
signal frequency and limits the accuracy of the estimation. The
SPR condition on r is more restrictive than the stability one.
Then Theorem 2 cannot be applied in all cases.

Thus the local stability cannot be established although the
global stability can be ensured.

3) Uniqueness of the RML estimates: In theorem 2 we have
got asymptotically WPl: εk = ηk

Aj(rq−1)

Equations 4 and 14 yield

εk =
Âj(q

−1)

Âj(rq−1)
.ỹjk =

Âj(q
−1)

Âj(rq−1)
.

ηk
Aj(q−1)

(21)

It then follows from 17 and 18 that:

Âj(q
−1)

Âj(rq−1)
=

Aj(q
−1)

Aj(rq−1)
(22)

and then, â1 = a1 with probability one (WP1) if r 6= 1.

Theorem 4. : : If the order is correctly chosen (the number of
the frequency components is matched), then the RML estimates
for ANF are unique

The main results concerning ANF are then:
1) The global convergence can be ensured with an appro-

priate choice of r the de-biasing parameter without any
stability monitoring.

2) The RML estimates are unique.

For p cascaded cells adapted along the same procedure, each
cell will converge near to a local minimum. The filtering by
ANFs will make these minima distinct, removing, for each
cell, one of the other frequencies. This will not be the case
if the implementation of the Notch cells is made in parallel
instead of in cascaded form.

B. Convergence of Amplitudes and phases estimation, RIV-
WRLS

The Exponential Convergence of the estimation of the am-
plitudes and the phases is guaranteed by the WRLS algorithm
properties, as shown in the following theorem which uses the
concept of persistent excitation see eg [5], [7].

Theorem 5. Convergence of the WRLS algorithm
The WRLS estimation scheme of equations (II-A) with an

exponential forgetting factor λ is exponentially stable, under
persistent excitation condition.

Proof. The proof of this theorem can be conducted in the same
lines as in [17].

The regression vectors (RIV) are composed by p sinusoids
having different frequencies and phases. Then the Persistent
Excitation Condition (PEC) is satisfied.

Equation (23) yields by lemma 1 of [17]. The regressors are
composed by p sinusoids having different frequencies. Then
the persistent excitation condition is satisfied:

0 < γ1.I <

j+s∑
k=j

ΦkΦTk < γ2.I <∞ (23)

Equation (23) yields by lemma 1 of [17]:

0 <
γ1.(λ

−1 − 1)

(λ−(s+1) − 1)
.I < F−1

k−1 <
γ2

1− λs+1
.I + o(λk) (24)

The adaptation gain is bounded and will never be zero
(the alertness property of WRLS and its tracking capabilities).
Finally reasoning as in [17] we obtain:∥∥∥θ̃k∥∥∥2

<
λs+1 − 1

γ1(λ−1 − 1)
.λk.λmax(F−1

0 ).
∥∥∥θ̃0

∥∥∥2

(25)

This means that the parameter estimation error will be
always strictly decreasing. Then the convergence of the es-
timations.

Comparative Simulation results will be presented in the final
version of this paper.

IV. SIMULATIONS AND EXPERIMENTAL VALIDATION

In order to test the proposed ARML and RLS for predicting
narrow band signals, we consider simulation of non-stationary
signal with 3 frequency components and an additive centered
and normal white noise vk (with variance σ2

v = 1) and signal
to noise ratio SNR = 25dB.

yk =

3∑
i=1

Ci(k).Sin(2.πfi.Te.k + βi(k)) + vk (26)



Frequencies, amplitudes and phases of the three
components are slowly time varying to prove the
tracking capability of the estimation. The sampling rate
is Fe = 2Hz and the 3 frequencies are set initially to
f1 = 0.2Hz, f2 = 0.3Hz, f3 = 0.4Hz and vary as in
Figure (13).
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Fig. 1: Signal (blue) and its ANF prediction (green)

A. Frequencies estimation by cascaded ANF and ARML

The first stage estimates the three cascaded Notch Filter
parameters. The parameters estimates âi(0) are set to zero at
the beginning. All ANF bandwidths are initially set at r0 = 0.1
and exponentially increases to rf = 0.8 with a factor of rd =
0.99 (see equation 19). The figure 2 depicts the evolution of the
ANF parameters estimation âi(k) versus time (t = kTe). The
dotted lines represent the true values of these parameters. The
convergence is fast and estimations are precise and accurate.
This results in a good (one step ahead) prediction of the signal
as shown as in Figure (1).
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Fig. 2: Notch Filters parameters estimates versus time

The frequencies deduced, on line, from the estimated param-
eters using equations 7. The following figure (3) illustrates the
good convergence of the on line frequency estimations, after
a short transient period (less than 20s). We observe that the
frequency estimation converges after 36 sampling points (18s)
and tracks simultaneous linear variations of the instantaneous
frequencies.

B. Amplitude and phase estimation by WRLS

Using previous estimated frequencies, this second stage
estimates amplitudes Ci and phases βi of each one of the
three components, using the proposed Weighted Recursive
Least Squares algorithm. The regression vector and the
parameters vector to be estimated are defined in the equation
(4) and the setimations are given by equations (5 and II-A).
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Fig. 3: Frequencies estimates versus time

The initial value of the adaptation gain is set to G0 = 100 and
the forgetting factor lambda λ0 is set to 0.99. The parameters
vector θ̂ is initially set to 0. Components of θ̂ : gl and hl are
used to compute Ci and βi using the last equation of 5.

The following figures illustrate the convergence of WRLS
for amplitude/phase estimation. The figure 4 depicts the evo-
lution of components amplitudes estimates versus time.
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Fig. 4: Amplitudes estimates versus time
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Fig. 5: Phases estimates versus time
The figure 4 shows the evolution of components phases

estimates versus time. We observe that the amplitude/phase
estimation converges after 50 points (25s) and tracks simul-
taneous linear variations of amplitudes and phases. The last
figure shows that the prediction is quite good for a signal
with 6 frequency components.

V. CONCLUSION

The main interest of the ANF in Cascade form is to simplify
computation of the estimated frequencies and in case of
independently time varying frequencies. A second order filter
model appears to be faster to track variation than a higher
order one.

The main results in this paper demonstrate the good per-
formances observed in simulation for the ANF. This confirm
the theoretical analysis and convergence proves (for RML and
ELS PAAs). The exponential convergence of the estimation of
the amplitudes and phases has been also proved.



Fig. 6: Phases estimates for 6 components

The proposed (OPEM-RML) algorithm is asymptotically
consistent and robust faced with the neglected dynamics and
noise. In addition, for case of time varying signals, its tracking
capabilities insure very good estimations and tracking of the
parameters time variation.

Several estimation algorithms may be applied with these
structures, like RELS, ARML, RIV (Recursive Extended Least
Squares, Approximate Recursive Maximum Likelihood, Re-
cursive Instrumental Variables with WRLS). Some special
procedures may be employed to increase the convergence rate
(by adjusting the bandwidth parameter r) and to enhance the
estimation consistency and reduce the algorithm complexity.

The obtained estimation accuracy is better with the RML
Adaptation Algorithm than with the Recursive Extended Least
Squares method for which an upper limit of the de-biasing
parameter is crucial in order to have a convergence without
local instabilities.

The exponential convergence of the RIV-WRLS estimates
of amplitudes and phases is proved by use of the theoretical
background on persistent excitation. These results are very
important for the time varying systems or in case of neglected
dynamics due to the resulting robustness of the proposed
algorithms. The implementation form studied here is compu-
tationally attractive and robust also when frequency, amplitude
or phase are time varying.
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