C. Allene, A. Cattani, J. B. Ackman, P. Bonifazi, L. Aniksztejn et al., Sequential generation of two distinct synapse-driven network patterns in developing neocortex, J Neurosci, vol.28, pp.12851-12863, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00483521

P. G. Anastasiades, A. Marques-smith, D. Lyngholm, T. Lickiss, S. Raffiq et al., GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex, Nature Commun, vol.7, pp.1-13, 2016.

R. Batista-brito and G. Fishell, Chapter 3: The developmental integration of cortical interneurons into a functional, 2009.

, B) The MGE-derived cells labeled in Lhx6-GFP mice that are also immunoreactive for Sst (arrows in B) represent 34% of the total MGE-derived cell population (inset) in the entorhinal cortex. (C-E) A neurobiotin-filled driver hub (arrow in C) that is also positive for GFP in Lhx6-GFP mice (arrow in D) is positive for Sst

, GABA Hub Neurons in Developing Entorhinal Cortex Mòdol et al. | 4659

, Development of neural circuitry, pp.81-118, 2018.

G. Bartolini, G. Ciceri, and O. Marin, Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults, Neuron, vol.79, pp.8490-8864, 2013.

R. Batista-brito, E. Rossignol, J. Hjerling-leffler, M. Denaxa, M. Wegner et al., The cellintrinsic requirement of Sox6 for cortical interneuron development, Neuron, vol.63, pp.466-481, 2009.

Y. Ben-ari, Excitatory actions of gaba during development: the nature of the nurture, Nat Rev Neurosci, vol.3, pp.728-739, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00484852

Y. Ben-ari, E. Cherubini, R. Corradetti, and J. L. Gaisar, Giant synaptic potentials in immature rat Ca3 hippocampal-neurons, 1989.

, J Physiol, vol.416, pp.303-325

A. G. Blankenship and M. B. Feller, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nat Rev Neurosci, vol.11, pp.18-29, 2009.

P. Bonifazi, M. Goldin, M. A. Picardo, I. Jorquera, A. Cattani et al., GABAergic hub neurons orchestrate synchrony in developing hippocampal networks, Science, vol.326, pp.1419-1424, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00483216

C. B. Canto and M. P. Witter, Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex, Hippocampus, vol.22, pp.1256-1276, 2012.

C. B. Canto, F. G. Wouterlood, and M. P. Witter, What does the anatomical organization of the entorhinal cortex tell us?, Neural Plast, p.381243, 2008.

R. Chittajallu, M. T. Craig, A. Mcfarland, X. Yuan, S. Gerfen et al., Dual origins of functionally distinc O-LM interneurons revealed by differential 5-HT(3A)Rexpression, Nat Neurosci, vol.16, pp.1598-1607, 2013.

J. Conhaim, E. R. Cedarbaum, M. Barahimi, J. G. Moore, M. I. Becker et al., Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex, Dev Neurobiol, vol.70, pp.679-692, 2010.

R. Cossart, Operational hub cells: a morphophysiologically diverse class of GABAergic neurons united by a common function, Curr Opin Neurobiol, vol.26, pp.51-56, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01848193

J. J. Couey, A. Witoelar, S. Zhang, K. Zheng, J. Ye et al., Recurrent inhibitory circuitry as a mechanism for grid formation, Nat Neurosci, vol.16, pp.318-324, 2013.

V. Crépel, D. Aronov, I. Jorquera, A. Represa, Y. Ben-ari et al., A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus, Neuron, vol.54, pp.105-120, 2007.

D. Marco-garcía, N. V. Karayannis, T. Fishell, and G. , Neuronal activity is required for the development of specific cortical interneuron subtypes, Nature, vol.472, pp.351-355, 2011.

F. Donato, R. I. Jacobsen, M. Moser, and E. I. Moser, Stellate cells drive maturation of the entorhinal-hippocampal circuit, Science, vol.355, 2017.

A. V. Egorov and A. Draguhn, Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity, Mech Dev, vol.130, pp.412-423, 2013.

M. Fogarty, M. Grist, D. Gelman, O. Marin, V. Pachnis et al., Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex, J Neurosci, vol.27, pp.10935-10946, 2007.

J. M. Hébert and G. Fishell, The genetics of early telencephalon patterning: some assembly required, Nat Rev Neurosci, vol.9, pp.678-685, 2008.

X. Jiang, S. Shen, C. R. Cadwell, P. Berens, F. Sinz et al., Principles of connectivity among morphologically defined cell types in adult neocortex, Science, vol.350, issue.6264, p.9462, 2015.

P. Kaifosh, M. Lovett-barron, G. F. Turi, T. R. Reardon, and A. Losonczy, Septo-hippocampal GABAergic signaling across multiple modalities in awake mice, Nat Neurosci, vol.16, pp.1182-1184, 2013.

M. M. Karnani, M. Agetsuma, and R. Yuste, A blanket of inhibition: functional inferences from dense inhibitory connectivity, Curr Opin Neurobiol, vol.26, pp.96-102, 2014.

K. M. Kerr, K. L. Agster, S. C. Furtak, and R. D. Burwell, Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas, Hippocampus, vol.17, pp.697-708, 2007.

S. E. Lauri, K. Lamsa, I. Pavlov, R. Riekki, B. E. Johnson et al., Activity blockade increases the number of functional synapses in the hippocampus of newborn rats, Mol Cell Neurosci, vol.22, pp.107-117, 2003.

M. S. Lazarus and Z. J. Huang, Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity, J Neurophysiol, vol.106, pp.775-787, 2011.

S. Lee, I. Kruglikov, Z. J. Huang, G. Fishell, and R. B. , A disinhibitory circuit mediates motor integration in the somatosensory cortex, Nat Neurosci, vol.16, pp.1662-1670, 2013.

S. Lee, I. Marchionni, M. Bezaire, C. Varga, N. Danielson et al., Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells, Neuron, vol.82, pp.1129-1144, 2014.

T. Marissal, P. Bonifazi, M. Picardo, R. Nardou, L. F. Petit et al., Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus, Nature Commun, vol.3, pp.1316-1328, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01848207

A. Marques-smith, D. Lyngholm, A. Kaufmann, J. A. Stacey, A. Hoerder-suabedissen et al., A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex, Neuron, vol.89, pp.536-549, 2016.

S. Melzer, M. Michael, A. Caputi, M. Eliava, E. C. Fuchs et al., Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex, Science, vol.335, pp.1506-1510, 2012.
DOI : 10.1126/science.1217139

M. Minlebaev, M. Colonnese, T. Tsintsadze, A. Sirota, and R. Khazipov, Early ? oscillations synchronize developing thalamus and cortex, Science, vol.334, pp.226-229, 2011.
DOI : 10.1126/science.1210574

G. Miyoshi, S. Butt, H. Takebayashi, and G. Fishell, Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors, J Neurosci, vol.27, pp.7786-7798, 2007.

G. Miyoshi and G. Fishell, GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development, Cereb Cortex, vol.21, pp.845-852, 2011.
DOI : 10.1093/cercor/bhq155

URL : https://academic.oup.com/cercor/article-pdf/21/4/845/17304598/bhq155.pdf

E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer, Automated analysis of cellular signals from large-scale calcium imaging data, Neuron, vol.63, pp.747-760, 2009.

W. Muñoz, R. Tremblay, and R. B. , Channelrhodopsinassisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain, Cell Rep, vol.9, pp.2304-2316, 2014.

I. Namiki, T. Ishida, and Y. Akiyama, Acceleration of sequence clustering using longest common subsequence filtering, BMC Bioinformatics, vol.14, pp.1-8, 2013.

W. C. Oh, S. Lutzu, P. E. Castillo, and H. Kwon, De novo synaptogenesis induced by GABA in the developing mouse cortex, Science, vol.353, pp.1037-1040, 2016.

C. K. Pfeffer, M. Xue, M. He, Z. J. Huang, and M. Scanziani, Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons, Nat Neurosci, vol.16, pp.1068-1076, 2013.

H. Pi, B. Hangya, D. Kvitsiani, J. I. Sanders, Z. J. Huang et al., Cortical interneurons that specialize in disinhibitory control, Nature, vol.503, pp.521-524, 2013.

M. A. Picardo, P. Guigue, P. Bonifazi, R. Batista-brito, A. C. Ribas et al., Pioneer GABA cells comprise a subpopulation of hub neurons in the developing hippocampus, Neuron, vol.71, pp.695-709, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01833210

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Dev Neurobiol, vol.71, pp.45-61, 2010.

V. H. Sousa, G. Miyoshi, J. Hjerling-leffler, T. Karayannis, and G. Fishell, Characterization of Nkx6-2-derived neocortical interneuron lineages, Cereb Cortex, vol.19, pp.1-10, 2009.

N. Tamamaki, Y. Yanagawa, R. Tomioka, J. Miyazaki, K. Obata et al., Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse, J Comp Neurol, vol.467, pp.60-79, 2003.

B. Tasic, V. Menon, T. N. Nguyen, T. K. Kim, T. Jarsky et al., Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nat Neurosci, vol.19, pp.335-346, 2016.
DOI : 10.1038/nn.4216

URL : http://europepmc.org/articles/pmc4985242?pdf=render

R. Tomioka, K. Okamoto, T. Furuta, F. Fujiyama, T. Iwasato et al., Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex, Front Neurosci, vol.21, pp.1587-1600, 2005.
DOI : 10.1111/j.1460-9568.2005.04163.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1460-9568.2005.04163.x

L. Tricoire, K. A. Pelkey, B. E. Erkkila, B. W. Jeffries, X. Yuan et al., A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity, J Neurosci, vol.31, pp.10948-10970, 2011.

S. N. Tuncdemir, B. Wamsley, F. J. Stam, F. Osakada, M. Goulding et al., Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits, Neuron, vol.89, pp.521-535, 2016.
DOI : 10.1016/j.neuron.2015.11.020

URL : https://doi.org/10.1016/j.neuron.2015.11.020

P. Unichenko, J. Yang, H. J. Luhmann, and S. Kirischuk, Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex, Eur J Physiol, vol.467, pp.1565-1575, 2014.

V. Villette, P. Guigue, M. A. Picardo, V. H. Sousa, E. Leprince et al., Development of early-born ?-aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood, J Comp Neurol, vol.524, pp.2440-2461, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01847021

J. C. Wester and C. J. Mcbain, Interneurons differentially contribute to spontaneous network activity in the developing hippocampus dependent on their embryonic lineage, J Neurosci, vol.36, pp.2646-2662, 2016.
DOI : 10.1523/jneurosci.4000-15.2016

URL : http://www.jneurosci.org/content/36/9/2646.full.pdf

C. P. Wonders and S. A. Anderson, The origin and specification of cortical interneurons, Nature Rev Neurosci, vol.7, pp.687-696, 2006.
DOI : 10.1038/nrn1954

Q. Xu, I. Cobos, D. Cruz, E. Rubenstein, J. L. Anderson et al., Origins of cortical interneuron subtypes, J Neurosci, vol.24, pp.2612-2622, 2004.
DOI : 10.1523/jneurosci.5667-03.2004

URL : http://www.jneurosci.org/content/24/11/2612.full.pdf

H. T. Xu, Z. Han, P. Gao, S. He, Z. Li et al., Distinc lineage-dependent structural and functional organization of the hippocampus, Neuron, vol.157, pp.1552-1564, 2014.
DOI : 10.1016/j.cell.2014.03.067

URL : https://doi.org/10.1016/j.cell.2014.03.067

X. Xu, K. D. Roby, and E. M. Callaway, Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells, J Comp Neurol, vol.518, pp.389-404, 2010.

Y. Yu, R. S. Bultje, X. Wang, and S. Shi, Specific synapses develop preferentially among sister excitatory neurons in the neocortex, Nature, vol.458, pp.501-504, 2009.
DOI : 10.1038/nature07722

URL : http://europepmc.org/articles/pmc2727717?pdf=render

, GABA Hub Neurons in Developing Entorhinal Cortex Mòdol et al. | 4661