K. Abe and H. Kimura, The possible role of hydrogen sulfide as an endogenous neuromodulator, J Neurosci, vol.16, pp.1066-1071, 1996.

Y. Ben-ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, Giant synaptic potentials in immature rat CA3 hippocampal neurones, J Physiol, vol.416, pp.303-325, 1989.

Y. Ben-ari, I. Khalilov, K. T. Kahle, and E. Cherubini, The GABA excitatory/inhibitory shift in brain maturation and neurological disorders, Neuroscience, vol.18, pp.467-486, 2012.

J. J. Bruintjes, R. H. Henning, W. Douwenga, and E. A. Van-der-zee, Hippocampal cystathionine beta synthase in young and aged mice, Neurosci Lett, vol.563, pp.135-139, 2014.

P. Calabresi, G. A. Marfia, D. Centonze, A. Pisani, and G. Bernardi, Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons, Stroke, vol.30, pp.171-179, 1999.

L. R. Chang, J. P. Liu, N. Zhang, Y. J. Wang, X. L. Gao et al., Different expression of NR2B and PSD-95 in rat hippocampal subregions during postnatal development, Microsc Res Technol, vol.72, pp.517-524, 2009.

L. Chen, J. Zhang, Y. Ding, H. Li, L. Nie et al., KATP channels of parafacial respiratory group (pFRG) neurons are involved in H 2 S-mediated central inhibition of respiratory rhythm in medullary slices of neonatal rats, Brain Res, vol.1527, pp.141-148, 2013.

P. F. Costa, The kinetic parameters of sodium currents in maturing acutely isolated rat hippocampal CA1 neurones, Brain Res Dev Brain Res, vol.91, issue.1, pp.29-40, 1996.

E. R. Deleon, G. F. Stoy, and K. R. Olson, Passive loss of hydrogen sulfide in biological experiments, Anal Biochem, vol.421, issue.1, pp.203-207, 2012.

L. Diwakar and V. Ravindranath, Inhibition of cystathionine-c-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS, Neurochem Int, vol.50, issue.2, pp.418-426, 2007.

J. E. Dominy and M. H. Stipanuk, New roles for cysteine and transsulfuration enzymes: production of H 2 S, a neuromodulator and smooth muscle relaxant, Nutr Rev, vol.62, issue.9, pp.348-353, 2004.

J. W. Elrod, J. W. Calvert, J. Morrison, J. E. Doeller, D. W. Kraus et al., Hydrogen sulfide attenuates myocardial ischemiareperfusion injury by preservation of mitochondrial function, Proc Natl Acad Sci U S A, vol.104, issue.39, pp.15560-15565, 2007.

Y. Enokido, E. Suzuki, K. Iwasawa, K. Namekata, H. Okazawa et al., Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS, FASEB J, vol.19, pp.1854-1856, 2005.

A. Erb and M. Althaus, Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis), PLoS One, vol.9, issue.6, p.100971, 2014.

J. R. Evans and K. Bielefeldt, Regulation of sodium currents through oxidation and reduction of thiol residues, Neuroscience, vol.101, issue.1, pp.229-236, 2000.

X. Feng, Y. L. Zhou, X. Meng, F. H. Qi, W. Chen et al., Hydrogen sulfide increases excitability through suppression of sustained potassium channel currents of rat trigeminal ganglion neurons, Mol Pain, vol.9, p.4, 2013.

J. Furne, A. Saeed, and M. D. Levitt, Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values, Am J Physiol Regul Integr Comp Physiol, vol.295, pp.1479-1485, 2008.

S. N. Ge, M. M. Zhao, D. Wu, D. D. Chen, Y. Wang et al., Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na + /K +-ATPase endocytosis and inhibition in renal tubular epithelial cells and Increase sodium excretion in chronic salt-loaded rats, Antioxid Redox Signal, vol.21, issue.15, pp.2061-2082, 2014.

E. V. Gerasimova, O. V. Yakovleva, A. L. Zefirov, and G. F. Sitdikova, Role of ryanodine receptors in the effects of hydrogen sulfide on transmitter release from the frog motor nerve ending, Bull Exp Biol Med, vol.155, pp.11-13, 2013.

E. Gerasimova, J. Lebedeva, A. Yakovlev, A. Zefirov, R. Giniatullin et al., Mechanisms of hydrogen sulfide (H 2 S) action on synaptic transmission at the mouse neuromuscular junction, Neuroscience, vol.303, pp.577-585, 2015.

Y. Han, J. Qin, X. Chang, Z. Yang, X. Tang et al., Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats, Biochem Biophys Res Commun, vol.327, pp.431-436, 2005.

A. Hermann, G. F. Sitdikova, and T. Weiger, Gasotransmitters: physiology and pathophysiology, 2012.

A. Hermann, G. F. Sitdikova, and T. Weiger, Modulated by gasotransmitters-BK channels, Gasotransmitters: physiology and pathophysiology, pp.163-201, 2012.

A. Hermann, G. F. Sitdikova, and T. Weiger, Oxidative stress and maxi calcium-activated potassium, vol.5, pp.1870-1911, 2015.

M. Ishigami, K. Hiraki, K. Umemura, O. Yuki, I. Kazuyuki et al., A source of hydrogen sulfide and a mechanism of its release in the brain, Antioxid Redox Signal, vol.11, pp.205-214, 2009.

R. Janaky, V. Varga, A. Hermann, P. Saransaari, and S. S. Oja, Mechanisms of L-cysteine neurotoxicity, Neurochem Res, vol.25, issue.9, pp.1397-1405, 2000.

C. S. Khademullah and A. V. Ferguson, Depolarizing actions of hydrogen sulfide on hypothalamic paraventricular nucleus neurons, PLoS One, vol.8, issue.5, p.64495, 2013.

I. Khalilov, V. Dzhala, Y. Ben-ari, and R. Khazipov, Dual role of GABA in the neonatal rat hippocampus, Dev Neurosci, vol.21, pp.310-319, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00486267

I. Khalilov, G. L. Holmes, and Y. Ben-ari, In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures, Nat Neurosci, vol.6, pp.1079-1085, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00484787

R. Khazipov, X. Leinekugel, I. Khalilov, J. Gaiarsa, and Y. Ben-ari, Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices, J Physiol, vol.498, pp.763-772, 1997.

H. Kimura, Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor, Biochem Biophys Res Commun, vol.267, issue.1, pp.129-133, 2000.

H. Kimura, Hydrogen sulfide: from brain to gut, Antioxid Redox Signal, vol.12, pp.1111-1123, 2010.

Y. Kimura and H. Kimura, Hydrogen sulfide protects neurons from oxidative stress, FASEB J, vol.18, issue.10, pp.1165-1167, 2004.

Y. Kimura, Y. Goto, and H. Kimura, Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria, Antioxid Redox Signal, vol.12, pp.1-13, 2010.

G. Ko¨hrko¨hr, NMDA receptor function: subunit composition versus spatial distribution, Cell Tissue Res, vol.326, pp.439-446, 2006.

M. Kuksis and A. V. Ferguson, Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltagegated calcium currents in neurons of the subfornical organ, J Neurophysiol, vol.114, pp.1641-1651, 2015.

M. Kuksis, P. M. Smith, and A. V. Ferguson, Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons, PLoS One, vol.9, p.105772, 2014.

X. Leinekugel, I. Medina, I. Khalilov, Y. Ben-ari, and R. Khazipov, Ca 2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus, Neuron, vol.18, issue.2, pp.243-255, 1997.
URL : https://hal.archives-ouvertes.fr/inserm-00522468

D. R. Linden, L. Sha, A. Mazzone, G. J. Stoltz, C. E. Bernard et al., Production of the gaseous signal molecule hydrogen sulfide in mouse tissues, J Neurochem, vol.106, issue.4, pp.1577-1585, 2008.

Y. Luo, X. Liu, Q. Zheng, X. Wan, S. Ouyang et al., Hydrogen sulfide prevents hypoxia-induced apoptosis via inhibition of an H 2 O 2-activated calcium signaling pathway in mouse hippocampal neurons, Biochem Biophys Res Commun, vol.425, issue.2, pp.473-477, 2012.

Y. Luo, P. F. Wu, J. Zhou, X. W. He, J. G. Guan et al., Aggravation of seizure-like events by hydrogen sulfide: involvement of multiple targets that control neuronal excitability, CNS Neurosci Ther, vol.20, pp.411-419, 2014.

R. Malik and A. V. Ferguson, Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat, Brain Res, vol.1633, pp.1-9, 2016.

G. R. Martin, G. W. Mcknight, M. S. Dicay, C. S. Coffin, J. G. Ferraz et al., Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract, Dig Liver Dis, vol.42, issue.2, pp.103-109, 2010.

M. J. Mason, A. K. Simpson, M. P. Mahaut-smith, and H. Robinson, The interpretation of current-clamp recordings in the cell-attached patch-clamp configuration, Biophys J, vol.88, issue.1, pp.739-750, 2005.

M. P. Mattson and T. B. Shea, Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders, Trends Neurosci, vol.26, pp.137-1463, 2003.

G. J. Mcbean, Handbook of neurochemistry and molecular neurobiology amino acids and peptides in the nervous system, pp.133-134, 2007.

O. B. Mitrukhina, A. V. Yakovlev, and G. F. Sitdikova, The effects of hydrogen sulfide on the processes of exo-and endocytosis of synaptic vesicles in the mouse motor nerve endings, Biochemistry (Moscow), vol.7, issue.2, pp.170-173, 2013.

A. N. Mustafina, A. V. Yakovlev, G. Ash, T. M. Weiger, A. Hermann et al., Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells, Biochem Biophys Res Commun, vol.465, issue.4, pp.825-831, 2015.

R. Nardou, S. Yamamoto, A. Bhar, N. Burnashev, Y. Ben-ari et al., Phenobarbital but not diazepam reduces AMPA/kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus, Front Cell Neurosci, vol.5, p.16, 2011.

L. Nowak, P. Bregestovski, P. Ascher, A. Herbert, and A. Prachiantz, Magnesium gates glutamate-activated channels in mouse central neurons, Nature, vol.307, pp.462-465, 1984.

J. W. Olney, C. Zorumski, M. T. Price, and J. Labruyere, L-cysteine, a bicarbonate-sensitive endogenous excitotoxin, Science, vol.248, pp.596-599, 1990.

J. G. Pan, H. Y. Hu, J. Zhang, H. Zhou, L. Chen et al., Protective effect of hydrogen sulfide on hypoxic respiratory suppression in medullary slice of neonatal rats, Respir Physiol Neurobiol, vol.171, pp.181-186, 2010.

K. L. Perkins, Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices, J Neurosci Methods, vol.154, pp.1-18, 2006.

M. Puka-sundvall, P. Eriksson, M. Nilsson, M. Sandberg, and A. Lehmann, Neurotoxicity of cysteine: interaction with glutamate, Brain Res, vol.705, pp.65-70, 1995.

R. J. Reiffenstein, W. C. Hulbert, and S. H. Roth, Toxicology of hydrogen sulfide, Annu Rev Pharmacol Toxicol, vol.32, pp.109-134, 1992.

B. Renga, Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE), Inflamm Allergy Drug Targets, vol.10, pp.85-91, 2011.

T. H. Rosenquist and R. H. Finnell, Genes, folate and homocysteine in embryonic development, Proc Nutr Soc, vol.60, pp.53-61, 2001.

F. Sekiguchi, Y. Miyamoto, D. Kanaoka, H. Ide, S. Yoshida et al., Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells, Biochem Biophys Res Commun, vol.445, pp.225-229, 2014.

N. Shibuya and H. Kimura, Production of hydrogen sulfide from dcysteine and its therapeutic potential, Front Endocrinol (Lausanne), vol.4, p.87, 2013.

N. Shibuya, S. Koike, M. Tanaka, M. Ishigami-yuasa, Y. Kimura et al., A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells, Nat Commun, vol.4, p.1366, 2013.

G. F. Sitdikova, T. M. Weiger, and A. Hermann, Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells, Pflugers Arch-Eur J Physiol, vol.459, pp.389-397, 2010.

G. F. Sitdikova, A. V. Yakovlev, Y. G. Odnoshivkina, and A. L. Zefirov, Effects of hydrogen sulfide on the exo-and endocytosis of synaptic vesicles in frog motor nerve endings, J. Neurochem, vol.5, issue.4, pp.245-250, 2011.

G. F. Sitdikova, R. Fuchs, V. Kainz, T. M. Weiger, and A. Hermann, Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H 2 S), Front Physiol, vol.12, p.431, 2014.

G. Tang, L. Wu, and R. Wang, Interaction of hydrogen sulfide with ion channels, Clin Exp Pharmacol Physiol, vol.37, issue.7, pp.753-763, 2010.

R. Tyzio, A. Ivanov, C. Bernard, G. L. Holmes, Y. Ben-ari et al., Membrane potential of CA3 hippocampal pyramidal cells during postnatal development, J Neurophysiol, vol.90, pp.2964-2972, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00484799

R. Wang, Physiological implications of hydrogen sulfide: a Whiff exploration that blossomed, Physiol Rev, vol.92, issue.2, pp.791-896, 2012.

R. Wedmann, S. Bertlein, I. Macinkovic, S. Boïtz, J. L. Miljkovic et al., Working with ''H 2 S": facts and apparent artifacts, Nitric Oxide, vol.41, pp.85-96, 2014.

N. L. Whitfield, E. Kreimier, F. C. Verdial, N. Skovgaard, R. Kenneth et al., Reappraisal of H 2 S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling, Am J Physiol Regul Integr Comp Physiol, vol.294, issue.6, pp.1930-1937, 2008.

A. V. Yakovlev, K. S. Koroleva, F. F. Valiullina, and R. N. Khazipov, Resting membrane potential of the rat ventroposteriomedial thalamic neurons during postnatal development, Biochemistry (Moscow), vol.7, pp.207-212, 2013.