R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.8110-8115, 2000.
DOI : 10.1073/pnas.130200797

URL : https://www.pnas.org/content/pnas/97/14/8110.full.pdf

B. Orth, C. Schultz, C. Muller, C. M. Frotscher, M. Deller et al., Loss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin-deficient mice, Journal of Comparative Neurology, vol.504, pp.441-449, 2007.

B. P. Bean, The action potential in mammalian central neurons, Nature Review Neuroscience, vol.8, pp.451-465, 2007.
DOI : 10.1038/nrn2148

K. J. Bender, C. P. Ford, and L. O. Trussell, Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation, Neuron, vol.68, pp.500-511, 2010.
DOI : 10.1016/j.neuron.2010.09.026

URL : https://doi.org/10.1016/j.neuron.2010.09.026

K. J. Bender and L. O. Trussell, The physiology of the axon initial segment, Annual Review of Neuroscience, vol.35, pp.249-265, 2012.

I. Benedeczky, E. Molnar, and P. Somogyi, The cisternal organelle as a Ca(2+)-storing compartment associated with GABAergic synapses in the axon initial segment of hippocampal pyramidal neurones, Experimental Brain Research, vol.101, pp.216-230, 1994.

S. L. Berger, A. Leo-macias, and S. Yuen, Localized myosin II activity regulates assembly and plasticity of the axon initial segment, Neuron, vol.97, p.556, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01701359

R. Brette, Sharpness of spike initiation in neurons explained by compartmentalization, PLoS Computational Biology, vol.9, p.1003338, 2013.

C. Sb, D. Blas, and A. L. , GABAergic and glutamatergic axons innervate the axon initial segment and organize GABA(A) receptor clusters of cultured hippocampal pyramidal cells, Journal of Comparative Neurology, vol.456, pp.361-374, 2003.

R. H. Cudmore, L. Fronzaroli-molinieres, G. P. Debanne, and D. , Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current, Journal of Neuroscience, vol.30, pp.12885-12895, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01766845

D. Puerto, A. Fronzaroli-molinieres, L. Perez-alvarez, and M. J. , ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury, Cerebral Cortex, vol.25, pp.2282-2294, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01766835

M. D. Evans, R. P. Sammons, and S. Lebron, Calcineurin signaling mediates activity-dependent relocation of the axon initial segment, Journal of Neuroscience, vol.33, pp.6950-6963, 2013.
DOI : 10.1523/jneurosci.0277-13.2013

URL : http://www.jneurosci.org/content/33/16/6950.full.pdf

J. J. Garrido, P. Giraud, and E. Carlier, A targeting motif involved in sodium channel clustering at the axonal initial segment, Science, vol.300, pp.2091-2094, 2003.
DOI : 10.1126/science.1085167

URL : https://digital.csic.es/bitstream/10261/145898/1/accesoRestringido.pdf

M. S. Grubb and J. Burrone, Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability, Nature, vol.465, pp.1070-1074, 2010.
DOI : 10.1038/nature09160

URL : http://europepmc.org/articles/pmc3196626?pdf=render

K. L. Hedstrom, Y. Ogawa, and M. N. Rasband, AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity, Journal of Cell Biology, vol.183, pp.635-640, 2008.
DOI : 10.1083/jcb.200806112

URL : http://jcb.rupress.org/content/jcb/183/4/635.full.pdf

M. H. Higgs and W. J. Spain, Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones, Journal of Physiology, vol.589, pp.5125-5142, 2011.
DOI : 10.1113/jphysiol.2011.216721

URL : https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.2011.216721

W. Hu, C. Tian, and T. Li, Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation, Nature Neuroscience, vol.12, pp.996-1002, 2009.

A. Janssen, R. P. Tas, and P. Van-bergeijk, Myosin-V induces cargo immobilization and clustering at the axon initial segment, Frontiers in Cellular Neuroscience, vol.11, p.260, 2017.
DOI : 10.3389/fncel.2017.00260

URL : https://www.frontiersin.org/articles/10.3389/fncel.2017.00260/pdf

S. M. Jenkins and V. Bennett, Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments, Journal of Cell Biology, vol.155, pp.739-746, 2001.
DOI : 10.1083/jcb.200109026

URL : http://jcb.rupress.org/content/155/5/739.full.pdf

C. S. Jensen, S. Watanabe, and J. I. Stas, Trafficking of Kv2.1 channels to the axon initial segment by a novel nonconventional secretory pathway, Journal of Neuroscience, vol.37, pp.11523-11536, 2017.

K. W. Ko, M. N. Rasband, V. Meseguer, R. H. Kramer, and N. L. Golding, Serotonin modulates spike probability in the axon initial segment through HCN channels, Nature Neuroscience, vol.19, pp.826-834, 2016.

T. Kobayashi, B. Storrie, K. Simons, and C. G. Dotti, A functional barrier to movement of lipids in polarized neurons, Nature, vol.359, pp.647-650, 1992.

M. H. Kole, S. U. Ilschner, and B. M. Kampa, Action potential generation requires a high sodium channel density in the axon initial segment, Nature Neuroscience, vol.11, pp.178-186, 2008.

M. H. Kole and G. J. Stuart, Is action potential threshold lowest in the axon?, Nature Neuroscience, vol.11, pp.1253-1255, 2008.

H. Kuba, Y. Oichi, and H. Ohmori, Presynaptic activity regulates Na(+) channel distribution at the axon initial segment, Nature, vol.465, pp.1075-1078, 2010.

H. Kuba, R. Yamada, G. Ishiguro, and R. Adachi, Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity, Nature Communications, vol.6, p.8815, 2015.

J. Lezmy, M. Lipinsky, and Y. Khrapunsky, M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment, Proceedings of the National Academy of Sciences of the United States of America, vol.114, pp.10234-10243, 2017.

Z. Nusser, J. D. Roberts, and A. Baude, Immunocytochemical localization of the alpha 1 and beta 2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus, European Journal of Neuroscience, vol.7, pp.630-646, 1995.

Y. Ogawa, I. Horresh, and J. S. Trimmer, Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2, Journal of Neuroscience, vol.28, pp.5731-5739, 2008.

S. L. Palay, C. Sotelo, A. Peters, and P. M. Orkand, The axon hillock and the initial segment, Journal of Cell Biology, vol.38, pp.193-201, 1968.

L. M. Palmer and G. J. Stuart, Site of action potential initiation in layer 5 pyramidal neurons, Journal of Neuroscience, vol.26, pp.1854-1863, 2006.

Z. Pan, T. Kao, and Z. Horvath, A common ankyrin-G-based mechanism retains KCNQ and Na V channels at electrically active domains of the axon, Journal of Neuroscience, vol.26, pp.2599-2613, 2006.

M. A. Popovic, A. J. Foust, D. A. Mccormick, and D. Zecevic, The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study, Journal of Physiology, vol.589, pp.4167-4187, 2011.

M. N. Rasband, The axon initial segment and the maintenance of neuronal polarity, Nature Review Neuroscience, vol.11, pp.552-562, 2010.

D. Sanchez-ponce, J. Defelipe, J. J. Garrido, and A. Munoz, Developmental expression of Kv potassium channels at the axon initial segment of cultured hippocampal neurons, PLoS One, vol.7, 2012.

D. Sanchez-ponce, A. Munoz, and J. J. Garrido, Casein kinase 2 and microtubules control axon initial segment formation, Molecular and Cellular Neuroscience, vol.46, pp.222-234, 2011.

D. P. Schafer, S. Jha, and F. Liu, Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury, Journal of Neuroscience, vol.29, pp.13242-13254, 2009.

A. Schluter, D. Turco, D. Deller, and T. , Structural plasticity of synaptopodin in the axon initial segment during visual cortex development, Cerebral Cortex, vol.27, pp.4662-4675, 2017.

T. B. Shea, Selective stabilization of microtubules within the proximal region of developing axonal neurites, Brain Research Bulletin, vol.48, pp.255-261, 1999.

A. H. Song, D. Wang, and G. Chen, A selective filter for cytoplasmic transport at the axon initial segment, Cell, vol.136, pp.1148-1160, 2009.

M. Tapia, F. Wandosell, and J. J. Garrido, Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development, PLoS One, vol.5, p.12908, 2010.

M. Tapia, D. Puerto, A. Puime, and A. , GSK3 and beta-catenin determines functional expression of sodium channels at the axon initial segment, Cellular and Molecular Life Sciences, vol.70, pp.105-120, 2013.

M. Tapia, A. Dominguez, and W. Zhang, Cannabinoid receptors modulate neuronal morphology and AnkyrinG density at the axon initial segment, Frontiers in Cellular Neuroscience, vol.11, p.5, 2017.

H. Vacher, D. P. Mohapatra, and J. S. Trimmer, Localization and targeting of voltage-dependent ion channels in mammalian central neurons, Physiological Reviews, vol.88, pp.1407-1447, 2008.

S. Van-beuningen, L. Will, and M. Harterink, TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays, Neuron, vol.88, pp.1208-1226, 2015.

J. C. Wester and D. Contreras, Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current, Journal of Computational Neuroscience, vol.35, pp.1-17, 2013.

B. Winckler, P. Forscher, and I. Mellman, A diffusion barrier maintains distribution of membrane proteins in polarized neurons, Nature, vol.397, pp.698-701, 1999.

K. Xu, G. Zhong, and X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons, Science, vol.339, pp.452-456, 2013.

T. Yoshimura, S. R. Stevens, C. Leterrier, M. C. Stankewich, and M. N. Rasband, Developmental changes in expression of betaIV spectrin splice variants at axon initial segments and nodes of ranvier, Frontiers in Cellular Neuroscience, vol.10, p.304, 2016.

Y. Yu, Y. Shu, and D. A. Mccormick, Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics, Journal of Neuroscience, vol.28, pp.7260-7272, 2008.

X. Zhang, J. Q. Davis, S. Carpenter, and V. Bennett, Structural requirements for association of neurofascin with ankyrin, Journal of Biological Chemistry, vol.273, pp.30785-30794, 1998.

D. Further-reading-debanne, E. Campanac, A. Bialowas, C. E. Alacaraz, and G. , Axon physiology, Physiological Reviews, vol.91, pp.555-602, 2011.

C. Y. Huang and M. Rasband, Axon initial segments: structure, function, and disease, Annals of the New York Academy of Sciences, vol.1420, pp.46-61, 2018.

N. Jamann, J. M. Engelhardt, and M. , Activity-dependent axonal plasticity in sensory systems, Neuroscience, vol.368, pp.268-282, 2018.

M. H. Kole and G. Stuart, Signal processing in the axon initial segment, Neuron, vol.73, pp.235-247, 2012.

H. Kuba, Structural tuning and plasticity of the axon initial segment in auditory neurons, Journal of Physiology, vol.590, pp.5571-5579, 2012.

C. Leterrier, The axon initial segment: an updated viewpoint, Journal of Neuroscience, vol.38, pp.2135-2145, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736917

S. Rama, M. Zbili, and D. Debanne, Signal propagation along the axon, Current Opinion in Neurobiology, vol.51, pp.37-44, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01963472