, particular interest, published within the period of review, have been highlighted as: of special interest of outstanding interest

D. Debanne, Information processing in the axon, Nat Rev Neurosci, vol.5, pp.304-316, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01766862

Y. Grossman, I. Parnas, and M. E. Spira, Differential conduction block in branches of a bifurcating axon, J Physiol, vol.295, pp.283-305, 1979.

Y. Grossman, I. Parnas, and M. E. Spira, Mechanisms involved in differential conduction of potentials at high frequency in a branching axon, J Physiol, vol.295, pp.307-322, 1979.

P. Monsivais, B. A. Clark, A. Roth, and M. Hausser, Determinants of action potential propagation in cerebellar Purkinje cell axons, J Neurosci, vol.25, pp.464-472, 2005.

Z. M. Khaliq and I. M. Raman, Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons, J Neurosci, vol.25, pp.454-463, 2005.

I. M. Raman and B. P. Bean, Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons, J Neurosci, vol.17, pp.4517-4526, 1997.

A. H. Lewis and I. M. Raman, Resurgent current of voltage-gated Na(+) channels, J Physiol, vol.592, pp.4825-4838, 2014.

J. Grundemann and B. A. Clark, Calcium-activated potassium channels at nodes of ranvier secure axonal spike propagation, Cell Rep, vol.12, pp.1715-1722, 2015.

C. Chen, V. Bharucha, Y. Chen, R. E. Westenbroek, A. Brown et al., Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel beta 2-subunits, Proc Natl Acad Sci U S A, vol.99, pp.17072-17077, 2002.

I. H. Cho, L. C. Panzera, M. Chin, and M. B. Hoppa, Sodium channel beta2 subunits prevent action potential propagation failures at axonal branch points, J Neurosci, vol.37, pp.9519-9533, 2017.

, This paper shows using genetically encoded voltage and calcium indicators that repression of Navb2 subunits leads to failures of action potential conduction in axon branches

M. J. Rowan, G. Delcanto, J. J. Yu, N. Kamasawa, and J. M. Christie, Synapse-level determination of action potential duration by K (+) channel clustering in axons, Neuron, vol.91, pp.370-383, 2016.

, This study shows that action potential width is not uniform across the axon arbor of cerebellar interneurons

A. Battefeld, B. T. Tran, J. Gavrilis, E. C. Cooper, and M. H. Kole, Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons, J Neurosci, vol.34, pp.3719-3732, 2014.

H. Alle and J. R. Geiger, Analog signalling in mammalian cortical axons, Curr Opin Neurobiol, vol.18, pp.314-320, 2008.

B. Clark and M. Hausser, Neural coding: hybrid analog and digital signalling in axons, vol.16, pp.585-588, 2006.

D. Debanne, A. Bialowas, and S. Rama, What are the mechanisms for analogue and digital signalling in the brain?, Nat Rev Neurosci, vol.14, pp.63-69, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01766838

M. Juusola, H. P. Robinson, and G. G. De-polavieja, Coding with spike shapes and graded potentials in cortical networks, Bioessays, vol.29, pp.178-187, 2007.

J. Bischofberger, J. R. Geiger, and J. P. , Timing and efficacy of Ca 2+ channel activation in hippocampal mossy fiber boutons, J Neurosci, vol.22, pp.10593-10602, 2002.

T. Hori and T. Takahashi, Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization, J Physiol, vol.587, pp.2987-3000, 2009.

A. Fekete, J. Johnston, and K. R. Delaney, Presynaptic T-type Ca 2+ channels modulate dendrodendritic mitral-mitral and mitralperiglomerular connections in mouse olfactory bulb, J Neurosci, vol.34, pp.14032-14045, 2014.

B. C. Ludwar, C. G. Evans, M. Cambi, and E. C. Cropper, Activitydependent increases in [Ca2+]i contribute to digital-analog plasticity at a molluscan synapse, J Neurophysiol, vol.117, pp.2104-2112, 2017.

H. Alle and J. R. Geiger, Combined analog and action potential coding in hippocampal mossy fibers, Science, vol.311, pp.1290-1293, 2006.

W. Hu, C. Tian, T. Li, M. Yang, H. Hou et al., Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation, Nat Neurosci, vol.12, pp.996-1002, 2009.

D. Engel and J. P. , Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons, Neuron, vol.45, pp.405-417, 2005.

C. Schmidt-hieber and J. Bischofberger, Fast sodium channel gating supports localized and efficient axonal action potential initiation, J Neurosci, vol.30, pp.10233-10242, 2010.

S. Rama, M. Zbili, A. Bialowas, L. Fronzaroli-molinieres, N. Ankri et al., Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels, Nat Commun, vol.6, p.10163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01766831

, This study shows that hyperpolarization preceding presynaptic spike by a few tens of milliseconds increases spike amplitude in pyramidal cell axons and amplitude of post-synaptic response

G. W. Crabtree, Z. Sun, M. Kvajo, J. A. Broek, K. Fenelon et al., Alteration of neuronal excitability and short-term synaptic plasticity in the prefrontal cortex of a mouse model of mental illness, J Neurosci, vol.37, pp.4158-4180, 2017.

R. Begum, Y. Bakiri, K. E. Volynski, and D. M. Kullmann, Action potential broadening in a presynaptic channelopathy, Nat Commun, vol.7, p.12102, 2016.

U. Vivekananda, P. Novak, O. D. Bello, Y. E. Korchev, S. S. Krishnakumar et al., Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization, Proc Natl Acad Sci, vol.114, pp.2395-2400, 2017.

M. Seagar, M. Russier, O. Caillard, Y. Maulet, L. Fronzaroli-molinieres et al., LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels, Proc Natl Acad Sci, vol.114, pp.7719-7724, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01708767

S. Rama, M. Zbili, A. Fekete, M. Tapia, M. J. Benitez et al., The role of axonal Kv1 channels in CA3 pyramidal cell excitability. Sci Rep, vol.7, p.315, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766826

T. Sasaki, N. Matsuki, and Y. Ikegaya, Action-potential modulation during axonal conduction, Science, vol.331, pp.599-601, 2011.

, This study reveals that activation of astrocyte broadens the spike in the axon and increase postsynaptic response

F. F. Trigo, M. Chat, and A. Marty, Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum, J Neurosci, vol.27, pp.12452-12463, 2007.

A. Ruiz, R. Fabian-fine, R. Scott, M. C. Walker, D. A. Rusakov et al., GABAA receptors at hippocampal mossy fibers, Neuron, vol.39, pp.961-973, 2003.

H. Alle and J. R. Geiger, GABAergic spill-over transmission onto hippocampal mossy fiber boutons, J Neurosci, vol.27, pp.942-950, 2007.

A. Ruiz, E. Campanac, R. S. Scott, D. A. Rusakov, and D. M. Kullmann, Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses, Nat Neurosci, vol.13, pp.431-438, 2010.

Y. Xia, Y. Zhao, M. Yang, S. Zeng, and Y. Shu, Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons, PLoS One, vol.9, p.100968, 2014.

K. Chida, K. Kaneko, S. Fujii, and Y. Yamazaki, Activity-dependent modulation of the axonal conduction of action potentials along rat hippocampal mossy fibers, Eur J Neurosci, vol.41, pp.45-54, 2015.

R. Chereau, G. E. Saraceno, J. Angibaud, D. Cattaert, and U. V. Nagerl, Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity, Proc Natl Acad Sci, vol.114, pp.1401-1406, 2017.

, This study shows using super-resolution microscopy that long-term potentiation is associated with an increase in axon diameter that in turn augments action potential conduction velocity

S. Boudkkazi, E. Carlier, N. Ankri, O. Caillard, P. Giraud et al., Release-dependent variations in synaptic latency: a putative code for short-and long-term synaptic dynamics, Neuron, vol.56, pp.1048-1060, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00184608

R. D. Fields, A new mechanism of nervous system plasticity: activity-dependent myelination, Nat Rev Neurosci, vol.16, pp.756-767, 2015.

Y. Yamazaki, Y. Hozumi, K. Kaneko, T. Sugihara, S. Fujii et al., Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region, Neuron Glia Biol, vol.3, pp.325-334, 2007.

H. Wake, P. R. Lee, and R. D. Fields, Control of local protein synthesis and initial events in myelination by action potentials, Science, vol.333, pp.1647-1651, 2011.

H. Wake, F. C. Ortiz, D. H. Woo, P. R. Lee, M. C. Angulo et al., Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons, Nat Commun, vol.6, p.7844, 2015.

M. C. Ford, O. Alexandrova, L. Cossell, A. Stange-marten, J. Sinclair et al., Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing, Nat Commun, vol.6, p.8073, 2015.

B. L. Mcnaughton, J. Shen, G. Rao, T. C. Foster, and C. A. Barnes, Persistent increase of hippocampal presynaptic axon excitability after repetitive electrical stimulation: dependence on N-methyl-D-aspartate receptor activity, nitric-oxide synthase, and temperature, Proc Natl Acad Sci U S A, vol.91, pp.4830-4834, 1994.

M. E. Sheffield, T. K. Best, B. D. Mensh, W. L. Kath, and N. Spruston, Slow integration leads to persistent action potential firing in distal axons of coupled interneurons, Nat Neurosci, vol.14, pp.200-207, 2011.

, This paper shows that stimulation of cortical interneurons at 20-40 Hz leads to increased action potential firing lasting several minutes

M. B. Hoppa, G. Gouzer, M. Armbruster, and T. A. Ryan, Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals, Neuron, vol.84, pp.778-789, 2014.

P. Novak, J. Gorelik, U. Vivekananda, A. I. Shevchuk, Y. S. Ermolyuk et al., Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels, Neuron, vol.79, pp.1067-1077, 2013.

S. Y. Kawaguchi and T. Sakaba, Control of inhibitory synaptic outputs by low excitability of axon terminals revealed by direct recording, Neuron, vol.85, pp.1273-1288, 2015.

M. S. Grubb and J. Burrone, Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability, Nature, vol.465, pp.1070-1074, 2010.

H. Kuba, Y. Oichi, and H. Ohmori, Presynaptic activity regulates Na(+) channel distribution at the axon initial segment, Nature, vol.465, pp.1075-1078, 2010.

H. Kuba, R. Yamada, G. Ishiguro, and R. Adachi, Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity, Nat Commun, vol.6, p.8815, 2015.

M. D. Evans, A. S. Dumitrescu, D. Kruijssen, S. E. Taylor, and M. S. Grubb, Rapid modulation of axon initial segment length influences repetitive spike firing, Cell Rep, vol.13, pp.1233-1245, 2015.

J. Lezmy, M. Lipinsky, Y. Khrapunsky, E. Patrich, L. Shalom et al., M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment, Proc Natl Acad Sci, vol.114, pp.10234-10243, 2017.

N. S. Desai, L. C. Rutherford, and G. G. Turrigiano, Plasticity in the intrinsic excitability of cortical pyramidal neurons, Nat Neurosci, vol.2, pp.515-520, 1999.

R. H. Cudmore, L. Fronzaroli-molinieres, G. P. Debanne, and D. , Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current, J Neurosci, vol.30, pp.12885-12895, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01766845

F. Kirchheim, S. Tinnes, C. A. Haas, M. Stegen, and J. Wolfart, Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy, Front Cell Neurosci, vol.7, p.248, 2013.