W. Zhang and D. J. Linden, The other side of the engram: experiencedriven changes in neuronal intrinsic excitability, Nat Rev Neurosci, vol.4, pp.885-900, 2003.

G. Daoudal and D. Debanne, Long-term plasticity of intrinsic excitability: learning rules and mechanisms, Learn Mem, vol.10, pp.456-465, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01766856

P. J. Sjostrom, E. A. Rancz, A. Roth, and M. Hausser, Dendritic excitability and synaptic plasticity, Physiol Rev, vol.88, pp.769-840, 2008.

H. K. Titley, N. Brunel, and C. Hansel, Toward a neurocentric view of learning, Neuron, vol.95, pp.19-32, 2017.

J. Lisman, K. Cooper, M. Sehgal, and A. J. Silva, Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability, Nat Neurosci, vol.21, pp.309-314, 2018.

J. Zylberberg and B. W. Strowbridge, Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory, Annu Rev Neurosci, vol.40, pp.603-627, 2017.

A. V. Egorov, B. N. Hamam, E. Fransen, M. E. Hasselmo, and A. A. Alonso, Graded persistent activity in entorhinal cortex neurons, Nature, vol.420, pp.173-178, 2002.

J. Rahman and T. Berger, Persistent activity in layer 5 pyramidal neurons following cholinergic activation of mouse primary cortices, Eur J Neurosci, vol.34, pp.22-30, 2011.

A. Jochems and M. Yoshida, Persistent firing supported by an intrinsic cellular mechanism in hippocampal CA3 pyramidal cells, Eur J Neurosci, vol.38, pp.2250-2259, 2013.

C. D. Aizenman and D. J. Linden, Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons, Nat Neurosci, vol.3, pp.109-111, 2000.

S. Armano, P. Rossi, V. Taglietti, D. Angelo, and E. , Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum, J Neurosci, vol.20, pp.5208-5216, 2000.

A. Belmeguenai, E. Hosy, F. Bengtsson, C. M. Pedroarena, C. Piochon et al., Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells, J Neurosci, vol.30, pp.13630-13643, 2010.

H. G. Shim, D. C. Jang, J. Lee, G. Chung, S. Lee et al., Long-term depression of intrinsic excitability accompanied by synaptic depression in cerebellar Purkinje cells, J Neurosci, vol.37, pp.5659-5669, 2017.

K. Ganguly, L. Kiss, and M. Poo, Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking, Nat Neurosci, vol.3, pp.1018-1026, 2000.

C. Y. Li, J. T. Lu, C. P. Wu, S. M. Duan, and M. M. Poo, Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity, Neuron, vol.41, pp.257-268, 2004.

G. G. Turrigiano and S. B. Nelson, Homeostatic plasticity in the developing nervous system, Nat Rev Neurosci, vol.5, pp.97-107, 2004.

N. S. Desai, L. C. Rutherford, and G. G. Turrigiano, Plasticity in the intrinsic excitability of cortical pyramidal neurons, Nat Neurosci, vol.2, pp.515-520, 1999.

U. R. Karmarkar and D. V. Buonomano, Different forms of homeostatic plasticity are engaged with distinct temporal profiles, Eur J Neurosci, vol.23, pp.1575-1584, 2006.

R. H. Cudmore, L. Fronzaroli-molinieres, G. P. Debanne, and D. , Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current, J Neurosci, vol.30, pp.12885-12895, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01766845

C. Gasselin, Y. Inglebert, and D. Debanne, Homeostatic regulation of h-conductance controls intrinsic excitability and stabilizes the threshold for synaptic modification in CA1 neurons, J Physiol, vol.593, pp.4855-4869, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01766843

H. G. Shim, S. S. Jang, D. C. Jang, J. Y. Chang, W. Park et al., mGlu1 receptor mediates homeostatic control of intrinsic excitability through Ih in cerebellar Purkinje cells, J Neurophysiol, vol.115, pp.2446-2455, 2016.

A. Maffei and G. G. Turrigiano, Multiple modes of network homeostasis in visual cortical layer 2/3, J Neurosci, vol.28, pp.4377-4384, 2008.

H. Milshtein-parush, S. Frere, L. Regev, C. Lahav, A. Benbenishty et al., Sensory deprivation triggers synaptic and intrinsic plasticity in the hippocampus, Cereb Cortex, vol.27, pp.3457-3470, 2017.

F. Kirchheim, S. Tinnes, C. A. Haas, M. Stegen, and J. Wolfart, Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy, Front Cell Neurosci, vol.7, p.248, 2013.

E. Marder and J. M. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nat Rev Neurosci, vol.7, pp.563-574, 2006.

S. Rama, M. Zbili, A. Fekete, M. Tapia, M. J. Benitez et al., The role of axonal Kv1 channels in CA3 pyramidal cell excitability. Sci Rep, vol.7, p.315, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766826

Y. Fan, D. Fricker, D. H. Brager, X. Chen, H. C. Lu et al., Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I(h), Nat Neurosci, vol.8, pp.1542-1551, 2005.

D. H. Brager and D. Johnston, Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in I(h) in hippocampal CA1 pyramidal neurons, J Neurosci, vol.27, pp.13926-13937, 2007.

A. B. Nelson, C. M. Krispel, C. Sekirnjak, and S. Du-lac, Long-lasting increases in intrinsic excitability triggered by inhibition, Neuron, vol.40, pp.609-620, 2003.

C. A. Hull, Y. Chu, M. Thanawala, and W. G. Regehr, Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells, J Neurosci, vol.33, pp.5895-5902, 2013.

A. B. Nelson, M. Faulstich, S. Moghadam, K. Onori, A. Meredith et al.,

, Lac S: BK channels are required for multisensory plasticity in the oculomotor system, Neuron, vol.93, pp.211-220, 2017.

, This paper shows that unilateral vestibular deafferentation triggers rapid potentiation of IE in vestibular neurons and occludes induction of intrinsic plasticity

F. Zenke and W. Gerstner, Hebbian plasticity requires compensatory processes on multiple timescales, Philos Trans R Soc Lond B Biol Sci, p.372, 2017.

C. Gasselin, Y. Inglebert, N. Ankri, and D. Debanne, This study shows that the magnitude of LTD determines the polarity of intrinsic changes in CA1 pyramidal neurons, thus providing support to a continuum rule linking synergistic (Hebbian) and compensatory (homeostatic) changes in excitability, Sci Rep, vol.7, p.14418, 2017.

B. Santoro, R. A. Piskorowski, P. Pian, L. Hu, H. Liu et al., TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain, Neuron, vol.62, pp.802-813, 2009.

S. T. Ross and I. Soltesz, Long-term plasticity in interneurons of the dentate gyrus, Proc Natl Acad Sci U S A, vol.98, pp.8874-8879, 2001.

K. X. Li, Y. M. Lu, Z. H. Xu, J. Zhang, J. M. Zhu et al., Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy, Nat Neurosci, vol.15, pp.267-273, 2011.

E. Campanac, C. Gasselin, A. Baude, S. Rama, N. Ankri et al., Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits, Neuron, vol.77, pp.712-722, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01774392

, This study shows that high frequency stimulation of the Schaffer collaterals that induces LTP and intrinsic excitability in CA1 pyramidal cells also enhances intrinsic excitability in PV-BC through an mGluR5-dependent reduction of Kv1 channel activity. Enhanced intrinsic excitability promotes spiking activity at the gamma frequency

M. A. Gainey, J. W. Aman, and D. E. Feldman, Rapid disinhibition by adjustment of PV intrinsic excitability during whisker map plasticity in mouse S1, J Neurosci, vol.38, pp.4749-4761, 2018.

, The authors show that brief sensory deprivation rapidly weakens excitability of PV interneurons in the barrel cortex through the upregulation of Kv1 channel activity

N. Dehorter, G. Ciceri, G. Bartolini, L. Lim, I. Del-pino et al., Tuning of fast-spiking interneuron properties by an activitydependent transcriptional switch, Science, vol.349, pp.1216-1220, 2015.

, The authors show that network activity modulates intrinsic excitability of neocortical PV-BC through the post-mitotic expression of the transcriptional regulator Er81 and the regulation of Kv1, vol.1

H. Eichenbaum, Time cells in the hippocampus: a new dimension for mapping memories, Nat Rev Neurosci, vol.15, pp.732-744, 2014.

J. J. Paton and D. V. Buonomano, The neural basis of timing: distributed mechanisms for diverse functions, Neuron, vol.98, pp.687-705, 2018.

Y. Z. Liu, Y. Wang, W. Shen, and Z. Wang, Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory, J Physiol, vol.595, pp.5327-5340, 2017.

D. Fricker and R. Miles, EPSP amplification and the precision of spike timing in hippocampal neurons, Neuron, vol.28, pp.559-569, 2000.

P. Gastrein, E. Campanac, C. Gasselin, R. H. Cudmore, A. Bialowas et al., The role of hyperpolarization-activated cationic current in spike-time Intrinsic plasticity Debanne, p.81

, www.sciencedirect.com Current Opinion in Neurobiology, vol.54, pp.73-82, 2019.

, precision and intrinsic resonance in cortical neurons in vitro, J Physiol, vol.589, pp.3753-3773, 2011.

R. Narayanan and D. Johnston, Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability, Neuron, vol.56, pp.1061-1075, 2007.

G. Grasselli, Q. He, V. Wan, J. P. Adelman, G. Ohtsuki et al., Activity-dependent plasticity of spike pauses in cerebellar Purkinje cells, Cell Rep, vol.14, pp.2546-2553, 2016.

, This study demonstrates that in cerebellar Purkinje cells the pauses following spike bursts can be modulated by the activity-dependent regulation of SK2, thus altering the spike output pattern of these neurons. 83. Whittington MA, Traub RD, Jefferys JG: Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation, Nature, vol.373, pp.612-615, 1995.

K. Nataraj, L. Roux, N. Nahmani, M. Lefort, S. Turrigiano et al., Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity, Neuron, vol.68, pp.750-762, 2010.