D. Johnston, S. M. Wu, and .. , Foundations Of Cellular Neurophysiology, 1995.

B. Hille, Ion Channels Of Excitable Membranes, 2001.

J. M. Goaillard, A. L. Taylor, D. J. Schulz, and E. Marder, Functional consequences of animal-to-animal variation in circuit parameters, Nat Neurosci, vol.12, pp.1424-1430, 2009.

G. Drion, L. Massotte, R. Sepulchre, and V. Seutin, How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons, PLoS Comput Biol, vol.7, p.1002050, 2011.

J. Amendola, A. Woodhouse, M. F. Martin-eauclaire, J. M. Goaillard, and . Ca, +)/cAMP-sensitive covariation of I(A) and I(H) voltage dependences tunes rebound firing in dopaminergic neurons, J Neurosci, vol.32, issue.2, pp.2166-2181, 2012.

M. A. Dufour, A. Woodhouse, J. Amendola, and J. M. Goaillard, Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons, Elife, vol.3, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01244665

B. Liss, Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription, EMBO J, vol.20, pp.5715-5724, 2001.

D. J. Schulz, J. M. Goaillard, and E. Marder, Variable channel expression in identified single and electrically coupled neurons in different animals, Nat Neurosci, vol.9, pp.356-362, 2006.

D. J. Schulz, J. M. Goaillard, and E. E. Marder, Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression, Proc Natl Acad Sci, vol.104, pp.13187-13191, 2007.

A. E. Tobin, N. D. Cruz-bermudez, E. Marder, and D. J. Schulz, Correlations in ion channel mRNA in rhythmically active neurons, PLoS One, vol.4, p.6742, 2009.

S. Temporal, Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion, J Neurophysiol, vol.107, pp.718-727, 2012.

G. M. Edelman and J. A. Gally, Degeneracy and complexity in biological systems, Proc Natl Acad Sci, vol.98, pp.13763-13768, 2001.

A. A. Prinz, D. Bucher, and E. Marder, Similar network activity from disparate circuit parameters, Nat Neurosci, vol.7, pp.1345-1352, 2004.

E. Marder and J. M. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nat Rev Neurosci, vol.7, pp.563-574, 2006.

T. O'leary, A. H. Williams, J. S. Caplan, and E. Marder, Correlations in ion channel expression emerge from homeostatic tuning rules, Proc Natl Acad Sci, vol.110, pp.2645-2654, 2013.

G. Drion, T. O'leary, and E. Marder, Ion channel degeneracy enables robust and tunable neuronal firing rates, Proc Natl Acad Sci, vol.112, pp.5361-5370, 2015.
DOI : 10.1073/pnas.1516400112

URL : http://europepmc.org/articles/pmc4586887?pdf=render

H. Neuhoff, A. Neu, B. Liss, and J. Roeper, I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain, J Neurosci, vol.22, pp.1290-1302, 2002.

J. Wolfart, H. Neuhoff, O. Franz, and J. Roeper, Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons, J Neurosci, vol.21, pp.3443-3456, 2001.

A. A. Grace and S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, J Neurosci, vol.9, pp.3463-3481, 1989.

M. A. Ungless and A. A. Grace, Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons, Trends Neurosci, vol.35, pp.422-430, 2012.

B. Liss and J. Roeper, Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease, Brain Res Rev, vol.58, pp.314-321, 2008.

E. Dragicevic, J. Schiemann, and B. Liss, Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltagegated calcium channels and ATP-sensitive potassium channels, Neuroscience, vol.284, pp.798-814, 2015.

S. C. Gantz, C. P. Ford, H. Morikawa, and J. T. Williams, The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area, Annu Rev Physiol, vol.80, pp.219-241, 2018.

M. Puopolo, E. Raviola, and B. P. Bean, Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons, J Neurosci, vol.27, pp.645-656, 2007.

I. Putzier, P. H. Kullmann, J. P. Horn, E. S. Levitan, and . Cav1, 3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons, J Neurosci, vol.29, pp.15414-15419, 2009.

Z. M. Khaliq and B. P. Bean, Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances, J Neurosci, vol.30, pp.7401-7413, 2010.

O. Franz, B. Liss, A. Neu, and J. Roeper, Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons, Eur J Neurosci, vol.12, pp.2685-2693, 2000.

V. Seutin, L. Massotte, M. F. Renette, and A. Dresse, Evidence for a modulatory role of Ih on the firing of a subgroup of midbrain dopamine neurons, Neuroreport, vol.12, pp.255-258, 2001.

H. X. Ping and P. D. Shepard, Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons, J Neurophysiol, vol.81, pp.977-984, 1999.

J. Deignan, SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons, Neuroscience, vol.217, pp.67-76, 2012.

J. F. Huggett, J. O'grady, S. Bustin, . Qpcr, N. Dpcr et al., Biomol Detect Quantif, vol.3, pp.1-5, 2015.

C. D. Richards, T. Shiroyama, and S. T. Kitai, Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat, Neuroscience, vol.80, pp.545-557, 1997.

M. A. Ungless, P. J. Magill, and J. P. Bolam, Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli, Science, vol.303, pp.2040-2042, 2004.

S. Lammel, Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons, Neuron, vol.85, pp.429-438, 2015.

J. Park, Inputs drive cell phenotype variability, Genome Res, vol.24, pp.930-941, 2014.
DOI : 10.1101/gr.161802.113

URL : http://genome.cshlp.org/content/24/6/930.full.pdf

R. Scientific, C. Gaiteri, Y. Ding, B. French, G. C. Tseng et al., Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders, Genes Brain Behav, vol.8, pp.13-24, 2014.

J. Watkinson, K. C. Liang, X. Wang, T. Zheng, and D. Anastassiou, Inference of regulatory gene interactions from expression data using three-way mutual information, Ann N Y Acad Sci, vol.1158, pp.302-313, 2009.

A. F. Villaverde, J. Ross, and J. R. Banga, Reverse engineering cellular networks with information theoretic methods, vol.2, pp.306-329, 2013.

A. A. Margolin, K. Wang, A. Califano, and I. Nemenman, Multivariate dependence and genetic networks inference, IET Syst Biol, vol.4, pp.428-440, 2010.
DOI : 10.1049/iet-syb.2010.0009

P. Baudot and D. Bennequin, The Homological Nature of Entropy, Entropy, vol.17, pp.3253-3318, 2015.

P. Baudot, M. Tapia, and J. M. Goaillard, Topological Information Data Analysis: Poincare-Shannon Machine and Statistical Physic of Finite Heterogeneous Systems, 2018.

R. W. Yeung, Information Theory and Network Coding, 2008.

K. T. Hu, On the amount of information, Theory of Probability and its Applications, vol.7, pp.439-447, 1962.

T. Gonzalez-hernandez, P. Barroso-chinea, A. Acevedo, E. Salido, and M. Rodriguez, Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons, Eur J Neurosci, vol.13, pp.57-67, 2001.

R. C. Evans, M. Zhu, and Z. M. Khaliq, Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels, J Neurosci, vol.37, pp.3704-3720, 2017.

D. N. Reshef, Detecting novel associations in large data sets, Science, vol.334, pp.1518-1524, 2011.

D. M. Vogt-weisenhorn, F. Giesert, and W. Wurst, Diversity matters-heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease, J Neurochem, vol.139, pp.8-26, 2016.

A. Anderegg, J. F. Poulin, and R. Awatramani, Molecular heterogeneity of midbrain dopaminergic neurons-Moving toward single cell resolution, FEBS Lett, vol.589, pp.3714-3726, 2015.

J. F. Poulin, Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling, Cell Rep, vol.9, pp.930-943, 2014.

H. Zeng and J. R. Sanes, Neuronal cell-type classification: challenges, opportunities and the path forward, Nat Rev Neurosci, vol.18, pp.530-546, 2017.

M. S. Cembrowski, Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons, Neuron, vol.89, pp.351-368, 2016.

H. Morikawa and C. A. Paladini, Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms, Neuroscience, vol.198, pp.95-111, 2011.

F. M. Jacobs, Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons, Development, vol.136, pp.2363-2373, 2009.

T. Aumann and M. Horne, Activity-dependent regulation of the dopamine phenotype in substantia nigra neurons, J Neurochem, vol.121, pp.497-515, 2012.

M. A. Dufour, A. Woodhouse, and J. M. Goaillard, Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development, J Neurosci Res, vol.92, pp.981-999, 2014.

M. Hausser, G. Stuart, C. Racca, and B. Sakmann, Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons, Neuron, vol.15, pp.637-647, 1995.

C. P. Ford, The role of D2-autoreceptors in regulating dopamine neuron activity and transmission, Neuroscience, vol.282, pp.13-22, 2014.

T. Tkatch, G. Baranauskas, D. J. Surmeier, and . Kv4, 2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons, J Neurosci, vol.20, pp.579-588, 2000.

K. Veys, A. J. Labro, . De, E. Schutter, and D. J. Snyders, Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp, J Neurosci Methods, vol.209, pp.227-234, 2012.

J. L. Ransdell, S. S. Nair, and D. J. Schulz, Rapid homeostatic plasticity of intrinsic excitability in a central pattern generator network stabilizes functional neural network output, J Neurosci, vol.32, pp.9649-9658, 2012.

C. R. Cadwell, Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq, Nat Biotechnol, vol.34, pp.199-203, 2016.

K. Sawamoto, Visualization, direct isolation, and transplantation of midbrain dopaminergic neurons, Proc Natl Acad Sci, vol.98, pp.6423-6428, 2001.

A. Guyon, S. Laurent, D. Paupardin-tritsch, J. Rossier, and D. Eugene, Incremental conductance levels of GABAA receptors in dopaminergic neurones of the rat substantia nigra pars compacta, J Physiol, vol.516, pp.719-737, 1999.

S. A. Bustin, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin Chem, vol.55, pp.611-622, 2009.

A. Citri, Z. P. Pang, T. C. Sudhof, M. Wernig, and R. C. Malenka, Comprehensive qPCR profiling of gene expression in single neuronal cells, Nat Protoc, vol.7, pp.118-127, 2011.

A. Stahlberg, V. Rusnakova, A. Forootan, M. Anderova, and M. Kubista, RT-qPCR work-flow for single-cell data analysis, Methods, vol.59, pp.80-88, 2013.

S. D. Pethel and D. W. Hahs, Exact test of independence using mutual information, Entropy, vol.16, pp.2839-2849, 2014.