S. De-rubeis and J. D. Buxbaum, Recent advances in the genetics of autism spectrum disorder, Curr. Neurol. Neurosci. Rep, vol.15, p.36, 2015.

D. H. Geschwind and P. Levitt, Autism spectrum disorders: developmental disconnection syndromes, Curr. Opin. Neurobiol, vol.17, pp.103-111, 2007.

M. E. Vissers, M. X. Cohen, and H. M. Geurts, Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links, Neurosci. Biobehav. Rev, vol.36, pp.604-625, 2012.

P. Rane, D. Cochran, S. M. Hodge, C. Haselgrove, D. N. Kennedy et al., Connectivity in autism: a review of MRI connectivity studies, Harv. Rev. Psychiatry, vol.23, pp.223-244, 2015.

J. Gilbert and H. Y. Man, Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity, Front. Cell. Neurosci, vol.11, p.359, 2017.

E. Y. Van-battum, S. Brignani, and R. J. Pasterkamp, Axon guidance proteins in neurological disorders, Lancet Neurol, vol.14, pp.532-546, 2015.

K. Mcfadden and N. J. Minshew, Evidence for dysregulation of axonal growth and guidance in the etiology of ASD, Front. Hum. Neurosci, vol.7, p.671, 2013.

P. Rodenas-cuadrado, J. Ho, and S. C. Vernes, Shining a light on CNTNAP2: complex functions to complex disorders, Eur. J. Hum. Genet, vol.22, pp.171-178, 2014.

O. Penagarikano and D. H. Geschwind, What does CNTNAP2 reveal about autism spectrum disorder?, Trends Mol. Med, vol.18, pp.156-163, 2012.

M. Poot, Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders, Mol. Syndromol, vol.6, pp.7-22, 2015.

S. Poliak, D. Salomon, H. Elhanany, H. Sabanay, B. Kiernan et al., Juxtaparanodal clustering of Shaker-like Kþ channels in myelinated axons depends on Caspr2 and TAG-1, J. Cell. Biol, vol.162, pp.1149-1160, 2003.

M. Traka, L. Goutebroze, N. Denisenko, M. Bessa, A. Nifli et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers, J. Cell. Biol, vol.162, pp.1161-1172, 2003.

S. Poliak, L. Gollan, R. Martinez, A. Custer, S. Einheber et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with Kþ channels, Neuron, vol.24, pp.1037-1047, 1999.

R. Scott, A. Sanchez-aguilera, K. Van-elst, L. Lim, N. Dehorter et al., Loss of Cntnap2 causes axonal excitability deficits, developmental delay in cortical myelination, and abnormal stereotyped motor behavior, Cereb. Cortex, 2017.

D. Vogt, K. K. Cho, S. M. Shelton, A. Paul, Z. J. Huang et al., Mouse Cntnap2 and human CNTNAP2 ASD alleles cell autonomously regulate PVþ cortical interneurons, Cereb. Cortex, vol.28, pp.1-12, 2017.

O. Penagarikano, B. S. Abrahams, E. I. Herman, K. D. Winden, A. Gdalyahu et al., Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits, Cell, vol.147, pp.235-246, 2011.

G. R. Anderson, T. Galfin, W. Xu, J. Aoto, R. C. Malenka et al., Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.18120-18125, 2012.

O. Varea, M. D. Martin-de-saavedra, K. J. Kopeikina, B. Schurmann, H. J. Fleming et al., Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.6176-6181, 2015.

A. Gdalyahu, M. Lazaro, O. Penagarikano, P. Golshani, J. T. Trachtenberg et al., The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: an in vivo mouse study, PLoS One, vol.10, p.125633, 2015.

J. D. Murdoch, A. R. Gupta, S. J. Sanders, M. F. Walker, J. Keaney et al., No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in other contactin-associated proteins or contactins, PLoS Genet, vol.11, p.1004852, 2015.

B. Bakkaloglu, B. J. O'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders, Am. J. Hum. Genet, vol.82, pp.165-173, 2008.

M. Poot, Intragenic CNTNAP2 deletions: a bridge too far?, Mol. Syndromol, vol.8, pp.118-130, 2017.

E. N. Rubio-marrero, G. Vincelli, C. M. Jeffries, T. R. Shaikh, I. S. Pakos et al., Structural characterization of the extracellular domain of CASPR2 and insights into its association with the novel ligand contactin1, J. Biol. Chem, vol.291, pp.5788-5802, 2016.

Z. Lu, M. V. Reddy, J. Liu, A. Kalichava, L. Zhang et al., Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2), J. Biol. Chem, vol.291, pp.24133-24147, 2016.

G. Falivelli, A. De-jaco, F. L. Favaloro, H. Kim, J. Wilson et al., Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation, Hum. Mol. Genet, vol.21, pp.4761-4773, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00974747

D. Pinatel, B. Hivert, J. Boucraut, M. Saint-martin, V. Rogemond et al., Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis, Front. Cell. Neurosci, vol.9, p.265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201572

E. Leyva-diaz and G. Lopez-bendito, In and out from the cortex: development of major forebrain connections, Neuroscience, vol.254, pp.26-44, 2013.

B. A. Barres and M. C. Raff, Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons, Nature, vol.361, pp.258-260, 1993.

J. J. Wolff, G. Gerig, J. D. Lewis, T. Soda, M. A. Styner et al., Altered corpus callosum morphology associated with autism over the first 2 years of life, Brain, vol.138, pp.2046-2058, 2015.

N. Fingher, I. Dinstein, M. Ben-shachar, S. Haar, A. M. Dale et al., Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers, Cortex, vol.97, pp.291-305, 2017.

E. A. Vitriol and J. Q. Zheng, Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane, Neuron, vol.73, pp.1068-1081, 2012.

J. P. Myers, M. Santiago-medina, and T. M. Gomez, Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions, Dev. Neurobiol, vol.71, pp.901-923, 2011.

S. M. Hansen, V. Berezin, and E. Bock, Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin, Cell. Mol. Life Sci, vol.65, pp.3809-3821, 2008.

P. F. Maness and M. Schachner, Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, Nat. Neurosci, vol.10, pp.19-26, 2007.

T. Sakurai, The role of NrCAM in neural development and disorders-beyond a simple glue in the brain, Mol. Cell. Neurosci, vol.49, pp.351-363, 2012.

N. Denisenko-nehrbass, K. Oguievetskaia, L. Goutebroze, T. Galvez, H. Yamakawa et al., Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres, Eur. J. Neurosci, vol.17, pp.411-416, 2003.

G. Gennarini, A. Bizzoca, S. Picocci, D. Puzzo, P. Corsi et al., The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders, Mol. Cell. Neurosci, vol.81, pp.49-63, 2017.

N. Denisenko-nehrbass, L. Goutebroze, T. Galvez, C. Bonnon, B. Stankoff et al., Association of Caspr/paranodin with tumour suppressor schwannomin/merlin and beta1 integrin in the central nervous system, J. Neurochem, vol.84, pp.209-221, 2003.

N. S. Pollock, K. Atkinson-leadbeater, J. Johnston, M. Larouche, W. C. Wildering et al., Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues, Eur. J. Neurosci, vol.22, pp.569-578, 2005.

S. Mcfarlane and N. S. Pollock, A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system, J. Neurosci, vol.20, pp.1020-1029, 2000.

E. Klingler, P. M. Martin, M. Garcia, C. Moreau-fauvarque, J. Falk et al., The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development, Development, vol.142, pp.2026-2036, 2015.