I. Vitali and D. Jabaudon, Synaptic biology of barrel cortex circuit assembly, Semin. Cell Dev. Biol, vol.35, pp.156-164, 2014.

R. S. Erzurumlu and P. Gaspar, Development and critical period plasticity of the barrel cortex, Eur. J. Neurosci, vol.35, pp.1540-1553, 2012.

A. H. Leighton and C. Lohmann, The wiring of developing sensory circuits-From patterned spontaneous activity to synaptic plasticity mechanisms, Front. Neural Circuits, vol.10, p.71, 2016.

A. Tiriac and M. S. Blumberg, The case of the disappearing spindle burst, Neural Plast, p.8037321, 2016.

H. J. Luhmann, A. Sinning, J. W. Yang, V. Reyes-puerta, M. C. Stuttgen et al., Spontaneous neuronal activity in developing neocortical networks: from single cells to large-Scale interactions, vol.10, p.40, 2016.

C. Lindemann, J. Ahlbeck, S. H. Bitzenhofer, and I. L. Hanganu-opatz, Spindle activity orchestrates plasticity during development and sleep, p.5787423, 2016.

J. W. Yang, V. Reyes-puerta, W. Kilb, and H. J. Luhmann, Spindle bursts in neonatal rat cerebral cortex, p.3467832, 2016.

A. V. Egorov and A. Draguhn, Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity, Mech. Dev, vol.130, pp.412-423, 2013.

M. Minlebaev, Y. Ben-ari, and R. Khazipov, Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo, J. Neurophysiol, vol.97, pp.692-700, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483860

M. Colonnese and R. Khazipov, Spontaneous activity in developing sensory circuits: implications for resting state fMRI, Neuroimage, vol.62, pp.2212-2221, 2012.

R. Khazipov, M. Minlebaev, and G. Valeeva, Early gamma oscillations, Neuroscience, vol.250, pp.240-252, 2013.

P. J. Marshall and A. N. Meltzoff, Body maps in the infant brain, Trends Cogn. Sci, vol.19, pp.499-505, 2015.

C. Cirelli and G. Tononi, Cortical development, electroencephalogram rhythms, and the sleep/wake cycle, Biol. Psychiatry, vol.77, pp.1071-1078, 2015.

R. Khazipov and H. J. Luhmann, Early patterns of electrical activity in the developing cerebral cortex of humans and rodents, Trends Neurosci, vol.29, pp.414-418, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00483896

H. J. Luhmann and R. Khazipov, Neuronal activity patterns in the developing barrel cortex, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01963813

P. J. Marshall and A. N. Meltzoff, Body maps in the infant brain, Trends Cogn. Sci, vol.19, pp.499-505, 2015.

M. S. Blumberg, G. Sokoloff, A. Tiriac, and C. Del-rio-bermudez, A valuable and promising method for recording brain activity in behaving newborn rodents, Dev. Psychobiol, vol.57, pp.506-517, 2015.

A. Tiriac, G. Sokoloff, and M. S. Blumberg, Myoclonic twitching and sleep-dependent plasticity in the developing sensorimotor system, Curr. Sleep Med. Rep, vol.1, pp.74-79, 2015.

H. J. Luhmann, Review of imaging network activities in developing rodent cerebral cortex in vivo, Neurophotonics, vol.4, p.31202, 2017.

M. S. Blumberg, Developing sensorimotor systems in our sleep, Curr. Dir. Psychol. Sci, vol.24, pp.32-37, 2015.

M. S. Blumberg, A. J. Gall, and W. D. Todd, The development of sleep-wake rhythms and the search for elemental circuits in the infant brain, Behav. Neurosci, vol.128, pp.250-263, 2014.

H. Lagercrantz, The emergence of consciousness: science and ethics, Semin. Fetal Neonatal. Med, vol.19, pp.300-305, 2014.

M. Andre, M. D. Lamblin, A. M. .-d'allest, L. Curzi-dascalova, F. Moussalli-salefranque et al., Electroencephalography in premature and full-term infants. Developmental features and glossary, Neurophysiol. Clin, vol.40, pp.59-124, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00530978

S. Vanhatalo, P. Tallgren, S. Andersson, K. Sainio, J. Voipio et al., DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants, Clin. Neurophysiol, vol.113, pp.1822-1825, 2002.

S. Vanhatalo and K. Kaila, Development of neonatal EEG activity: from phenomenology to physiology, Fetal Neonatal Med, vol.11, pp.471-478, 2006.

A. Hrbek, P. Karlberg, and T. Olsson, Development of visual and somatosensory evoked responses in pre-term newborn infants, Electroencephalogr. Clin. Neurophysiol, vol.34, pp.225-232, 1973.

M. Milh, A. Kaminska, C. Huon, A. Lapillonne, Y. Ben-ari et al., Rapid cortical oscillations and early motor activity in premature human neonate, Cereb. Cortex, vol.17, pp.1582-1594, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483869

S. Stjerna, J. Voipio, M. Metsaranta, K. Kaila, and S. Vanhatalo, Preterm EEG: a multimodal neurophysiological protocol, J. Vis. Exp, 2012.

S. Vanhatalo, V. Jousmaki, S. Andersson, and M. Metsaranta, An easy and practical method for routine, bedside testing of somatosensory systems in extremely low birth weight infants, Pediatr. Res, vol.66, pp.710-713, 2009.

M. T. Colonnese, A. Kaminska, M. Minlebaev, M. Milh, B. Bloem et al., A conserved switch in sensory processing prepares developing neocortex for vision, Neuron, vol.67, pp.480-498, 2010.

M. Chipaux, M. T. Colonnese, A. Mauguen, L. Fellous, M. Mokhtari et al., Auditory stimuli mimicking ambient sounds drive temporal delta-brushes in premature infants, PLoS One, vol.8, p.79028, 2013.

A. G. Allievi, T. Arichi, N. Tusor, J. Kimpton, S. Arulkumaran et al., Maturation of sensori-motor functional responses in the preterm brain, Cereb. Cortex, vol.26, pp.402-413, 2016.

I. L. Hanganu, Y. Ben-ari, and R. Khazipov, Retinal waves trigger spindle bursts in the neonatal rat visual cortex, J. Neurosci, vol.26, pp.6728-6736, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00484329

I. L. Hanganu, J. F. Staiger, Y. Ben-ari, and R. Khazipov, Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo, J. Neurosci, vol.27, pp.5694-5705, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483854

M. T. Colonnese and R. Khazipov, Slow activity transients in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves, J. Neurosci, vol.30, pp.4325-4337, 2010.

J. B. Ackman, T. J. Burbridge, and M. C. Crair, Retinal waves coordinate patterned activity throughout the developing visual system, Nature, vol.490, p.219, 2012.

J. Y. Zhang, J. B. Ackman, H. P. Xu, and M. C. Crair, Visual map development depends on the temporal pattern of binocular activity in mice, Nat. Neurosci, vol.15, pp.298-307, 2012.

H. P. Xu, T. J. Burbridge, M. G. Chen, X. Ge, Y. Zhang et al., Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency, Dev. Neurobiol, vol.75, pp.621-640, 2015.

A. D. Huberman, M. B. Feller, and B. Chapman, Mechanisms underlying development of visual maps and receptive fields, Annu. Rev. Neurosci, vol.31, pp.479-509, 2008.

J. B. Ackman and M. C. Crair, Role of emergent neural activity in visual map development, Curr. Opin. Neurobiol, vol.24, pp.166-175, 2014.

N. X. Tritsch, E. Y. Yi, J. E. Gale, E. Glowatzki, and D. E. Bergles, The origin of spontaneous activity in the developing auditory system, Nature, vol.450, p.50, 2007.

H. C. Wang, C. C. Lin, R. Cheung, Y. Zhang-hooks, A. Agarwal et al., Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells, Cell, vol.163, pp.1348-1359, 2015.

H. C. Wang and D. E. Bergles, Spontaneous activity in the developing auditory system, Cell Tissue Res, vol.361, pp.65-75, 2015.

D. Jouvet-mounier, L. Astic, and D. Lacote, Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month, Dev. Psychobiol, vol.2, pp.216-239, 1970.

O. Mitrukhina, D. Suchkov, R. Khazipov, and M. Minlebaev, Imprecise whisker map in the neonatal rat barrel cortex, vol.25, pp.3458-3467, 2015.

J. W. Yang, S. An, J. J. Sun, V. Reyes-puerta, J. Kindler et al., Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex, Cereb.Cortex, vol.23, pp.1299-1316, 2013.

Z. Molnar, T. Kurotani, S. Higashi, N. Yamamoto, and K. Toyama, Development of functional thalamocortical synapses studied with current source-density analysis in whole forebrain slices in the rat, Brain Res. Bull, vol.60, pp.355-371, 2003.

I. Kostovic and M. Judas, The development of the subplate and thalamocortical connections in the human foetal brain, Acta Paediatr, vol.99, pp.1119-1127, 2010.

G. Benshalom and E. L. White, Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex, J. Comp. Neurol, vol.253, pp.303-314, 1986.

D. Feldmeyer, V. Egger, J. Lubke, and B. Sakmann, Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex, J. Physiol, vol.521, pp.169-190, 1999.

S. Lefort, C. Tomm, J. C. Floyd-sarria, and C. C. Petersen, The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex, Neuron, vol.61, pp.301-316, 2009.

F. Valiullina, D. Akhmetshina, A. Nasretdinov, M. Mukhtarov, G. Valeeva et al., Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex, Front. Neural Circuits, vol.10, p.1, 2016.

D. Contreras, I. Timofeev, and M. Steriade, Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks, J. Physiol, vol.494, pp.251-264, 1996.

M. V. Sanchez-vives and D. A. Mccormick, Cellular and network mechanisms of rhythmic recurrent activity in neocortex, Nat. Neurosci, vol.3, pp.1027-1034, 2000.

I. Timofeev, F. Grenier, M. Bazhenov, T. J. Sejnowski, and M. Steriade, Origin of slow cortical oscillations in deafferented cortical slabs, Cereb. Cortex, vol.10, pp.1185-1199, 2000.

M. Minlebaev, M. Colonnese, T. Tsintsadze, A. Sirota, and R. Khazipov, Early gamma oscillations synchronize developing thalamus and cortex, Science, vol.334, pp.226-229, 2011.

W. Kilb, S. Kirischuk, and H. J. Luhmann, Electrical activity patterns and the functional maturation of the neocortex, Eur. J. Neurosci, vol.34, pp.1677-1686, 2011.

M. S. Blumberg, A. J. Gall, and W. D. Todd, The development of sleep-wake rhythms and the search for elemental circuits in the infant brain, Behav. Neurosci, vol.128, pp.250-263, 2014.

I. L. Hanganu-opatz, Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities, Brain Res. Rev, vol.64, pp.160-176, 2010.

C. Cirelli and G. Tononi, Cortical development, electroencephalogram rhythms, and the sleep/wake cycle, Biol. Psychiatry, vol.77, pp.1071-1078, 2015.

R. Khazipov, A. Sirota, X. Leinekugel, G. L. Holmes, Y. Ben-ari et al., Early motor activity drives spindle bursts in the developing somatosensory cortex, Nature, vol.432, pp.758-761, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00484640

J. W. Yang, I. L. Hanganu-opatz, J. J. Sun, and H. J. Luhmann, Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo, J. Neurosci, vol.29, pp.9011-9025, 2009.

D. Akhmetshina, A. Nasretdinov, A. Zakharov, G. Valeeva, and R. Khazipov, The nature of the sensory input to the neonatal rat barrel cortex, J. Neurosci, vol.36, pp.9922-9932, 2016.

A. Tiriac, B. D. Uitermarkt, A. S. Fanning, G. Sokoloff, and M. S. Blumberg, Rapid whisker movements in sleeping newborn rats, Curr. Biol, vol.22, pp.2075-2080, 2012.
DOI : 10.1016/j.cub.2012.09.009

URL : https://doi.org/10.1016/j.cub.2012.09.009

A. Tiriac, C. Del-rio-bermudez, and M. S. Blumberg, Self-generated movements with unexpected sensory consequences, Curr. Biol, vol.24, pp.2136-2141, 2014.
DOI : 10.1016/j.cub.2014.07.053

URL : https://doi.org/10.1016/j.cub.2014.07.053

E. V. Gerasimova, A. V. Zakharov, Y. A. Lebedeva, A. R. Inacio, M. G. Minlebaev et al., Gamma oscillations in the somatosensory cortex of newborn rats, Bull. Exp. Biol. Med, vol.156, pp.295-298, 2014.

M. Minlebaev, Y. Ben-ari, and R. Khazipov, NMDA receptors pattern early activity in the developing barrel cortex In vivo, Cereb. Cortex, vol.19, pp.688-696, 2009.

A. J. Marcano-reik and M. S. Blumberg, The corpus callosum modulates spindle-burst activity within homotopic regions of somatosensory cortex in newborn rats, Eur. J. Neurosci, vol.28, pp.1457-1466, 2008.

M. I. Daw, M. C. Ashby, and J. T. Isaac, Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex, Nat. Neurosci, vol.10, pp.453-461, 2007.

V. Tsintsadze, M. Minlebaev, D. Suchkov, M. O. Cunningham, and R. Khazipov, Ontogeny of kainate-induced gamma oscillations in the rat CA3 hippocampus in vitro, Front. Cell. Neurosci, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208494

H. Monyer, N. Burnashev, D. J. Laurie, B. Sakmann, and P. H. Seeburg, Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, Neuron, vol.12, pp.529-540, 1994.

R. Khazipov, D. Ragozzino, and P. Bregestovski, Kinetics and Mg 2+ block of N-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons, Neuroscience, vol.69, pp.1057-1065, 1995.

A. R. Inacio, A. Nasretdinov, J. Lebedeva, and R. Khazipov, Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord, Nat. Commun, vol.7, p.13060, 2016.

S. Fellipa-marques, L. Vinay, and F. Clarac, Spontaneous and locomotor-related GABAergic input onto primary afferents in the neonatal rat, Eur. J. Neurosci, vol.12, pp.155-164, 2000.

F. Clarac, F. Brocard, and L. Vinay, The maturation of locomotor networks, Prog. Brain Res, vol.143, pp.57-66, 2004.

R. Bos, F. Brocard, and L. Vinay, Primary afferent terminals acting as excitatory interneurons contribute to spontaneous motor activities in the immature spinal cord, J. Neurosci, vol.31, pp.10184-10188, 2011.

E. Bracci, L. Ballerini, and A. Nistri, Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord, J. Neurosci, vol.16, pp.7063-7076, 1996.

P. Petersson, A. Waldenstrom, C. Fahraeus, and J. Schouenborg, Spontaneous muscle twitches during sleep guide spinal self-organization, Nature, vol.424, pp.72-75, 2003.
DOI : 10.1038/nature01719

J. C. Kreider and M. S. Blumberg, Mesopontine contribution to the expression of active 'twitch' sleep in decerebrate week-old rats, Brain Res, vol.872, pp.149-159, 2000.

K. A. Karlsson, A. J. Gall, E. J. Mohns, A. M. Seelke, and M. S. Blumberg, The neural substrates of infant sleep in rats, PLoS Biol, vol.3, p.143, 2005.

C. Del-rio-bermudez, G. Sokoloff, and M. S. Blumberg, Sensorimotor processing in the newborn rat red nucleus during active sleep, J. Neurosci, vol.35, pp.8322-8332, 2015.

C. Del-rio-bermudez, G. Sokoloff, and M. S. Blumberg, Sensorimotor processing in the newborn rat red nucleus during active sleep, J. Neurosci, vol.35, pp.8322-8332, 2015.

C. Del-rio-bermudez, A. M. Plumeau, N. J. Sattler, G. Sokoloff, and M. S. Blumberg, Spontaneous activity and functional connectivity in the developing cerebellorubral system, J. Neurophysiol, vol.116, pp.1316-1327, 2016.

C. Del-rio-bermudez, A. M. Plumeau, N. J. Sattler, G. Sokoloff, and M. S. Blumberg, Spontaneous activity and functional connectivity in the developing cerebellorubral system, J. Neurophysiol, vol.116, pp.1316-1327, 2016.

G. Sokoloff, B. D. Uitermarkt, and M. S. Blumberg, REM sleep twitches rouse nascent cerebellar circuits: implications for sensorimotor development, Dev. Neurobiol, vol.75, pp.1140-1153, 2015.

D. A. Mcvea, M. H. Mohajerani, and T. H. Murphy, Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat, J. Neurosci, vol.32, pp.10982-10994, 2012.

A. G. Allievi, T. Arichi, N. Tusor, J. Kimpton, S. Arulkumaran et al., Maturation of sensori-motor functional responses in the preterm brain, Cereb. Cortex, vol.26, pp.402-413, 2016.

A. Tiriac and M. S. Blumberg, Gating of reafference in the external cuneate nucleus during self-generated movements in wake but not sleep, Elife, vol.5, 2016.

S. M. An, W. Kilb, and H. J. Luhmann, Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex, J. Neurosci, vol.34, pp.10870-10883, 2014.

W. I. Welker, Analysis of sniffing of the albino rat, Behaviour, vol.22, pp.223-244, 1964.

M. Landers and Z. H. Philip, Development of rodent whisking: trigeminal input and central pattern generation, Somatosens. Mot. Res, vol.23, pp.1-10, 2006.

R. A. Grant, B. Mitchinson, and T. J. Prescott, The development of whisker control in rats in relation to locomotion, Dev. Psychobiol, vol.54, pp.151-168, 2012.

R. Bermejo, A. Vyas, and H. P. Zeigler, Topography of rodent whisking ? I. Two-dimensional monitoring of whisker movements, Somatosens. Mot. Res, vol.19, pp.341-346, 2002.

D. N. Hill, R. Bermejo, H. P. Zeigler, and D. Kleinfeld, Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity, J. Neurosci, vol.28, pp.3438-3455, 2008.

L. C. Katz and C. J. Shatz, Synaptic activity and the construction of cortical circuits, Science, vol.274, pp.1133-1138, 1996.

A. G. Blankenship and M. B. Feller, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nat. Rev. Neurosci, vol.11, pp.18-29, 2010.

D. D. O'leary, N. L. Ruff, and R. H. Dyck, Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems, Curr. Opin. Neurobiol, vol.4, pp.535-544, 1994.

D. E. Feldman and M. Brecht, Map plasticity in somatosensory cortex, vol.310, pp.810-815, 2005.

D. E. Feldman, Synaptic mechanisms for plasticity in neocortex, Annu. Rev. Neurosci, vol.32, pp.33-55, 2009.

G. Lopez-bendito and Z. Molnar, Thalamocortical development: how are we going to get there, Nat. Rev. Neurosci, vol.4, pp.276-289, 2003.

D. E. Feldman and E. I. Knudsen, Experience-dependent plasticity and the maturation of glutamatergic synapses, Neuron, vol.20, pp.1067-1071, 1998.

J. T. Isaac, M. C. Crair, R. A. Nicoll, and R. C. Malenka, Silent synapses during development of thalamocortical inputs, Neuron, vol.18, pp.269-280, 1997.

M. C. Crair and R. C. Malenka, A critical period for long-term potentiation at thalamocortical synapses, Nature, vol.375, pp.325-328, 1995.

S. An, J. W. Yang, H. Sun, W. Kilb, and H. J. Luhmann, Long-term potentiation in the neonatal rat barrel cortex in vivo, J. Neurosci, vol.32, pp.9511-9516, 2012.

K. Fox, A critical period for experience-dependent synaptic plasticity in rat barrel cortex, J. Neurosci, vol.12, pp.1826-1838, 1992.

R. S. Erzurumlu and S. Jhaveri, Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex, Brain Res. Dev. Brain Res, vol.56, pp.229-234, 1990.

R. W. Rhoades, C. A. Nett-clarke, N. L. Chiaia, F. A. White, G. J. Macdonald et al., Development and lesion induced reorganization of the cortical representation of the rat's body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol, vol.293, pp.190-207, 1990.

A. Agmon, L. T. Yang, E. G. Jones, and D. K. O'dowd, Topological precision in the thalamic projection to neonatal mouse barrel cortex, J. Neurosci, vol.15, pp.549-561, 1995.

J. S. Espinosa, D. G. Wheeler, R. W. Tsien, and L. Luo, Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B, Neuron, vol.62, pp.205-217, 2009.

A. Agmon, L. T. Yang, D. K. O'dowd, and E. G. Jones, Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex, J. Neurosci, vol.13, pp.5365-5382, 1993.

S. M. Catalano, R. T. Robertson, and H. P. Killackey, Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex, J. Comp. Neurol, vol.367, pp.36-53, 1996.

J. S. Espinosa, D. G. Wheeler, R. W. Tsien, and L. Luo, Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B, Neuron, vol.62, pp.205-217, 2009.

A. Crocker-buque, S. M. Brown, P. C. Kind, J. T. Isaac, and M. I. Daw, Experience-dependent, layer-specific development of divergent thalamocortical connectivity, Cereb. Cortex, vol.25, pp.2255-2266, 2015.

R. M. Bruno and B. Sakmann, Cortex is driven by weak but synchronously active thalamocortical synapses, Science, vol.312, pp.1622-1627, 2006.

C. E. Creeley and J. W. Olney, Drug-Induced apoptosis mechanism by which alcohol and many other drugs can disrupt brain development, Brain Sci, vol.3, pp.1153-1181, 2013.

O. Blanquie, W. Kilb, A. Sinning, and H. J. Luhmann, Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex, Neuroscience, vol.358, pp.190-200, 2017.

N. Lotfullina and R. Khazipov, Ethanol and the developing brain: inhibition of neuronal activity and neuroapoptosis, Neuroscientist, p.1073858417712667, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01962291

S. Mennerick and C. F. Zorumski, Neural activity and survival in the developing nervous system, Mol. Neurobiol, vol.22, pp.41-54, 2000.

M. Nikolic, H. A. Gardner, and K. L. Tucker, Postnatal neuronal apoptosis in the cerebral cortex: physiological and pathophysiological mechanisms, Neuroscience, vol.254, pp.369-378, 2013.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis et al., Internally mediated developmental desynchronization of neocortical network activity, J. Neurosci, vol.29, pp.10890-10899, 2009.

K. Kirmse, M. Kummer, Y. Kovalchuk, O. W. Witte, O. Garaschuk et al., GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo, Nat. Commun, vol.6, p.7750, 2015.

M. Kummer, K. Kirmse, C. Zhang, J. Haueisen, O. W. Witte et al., Column-like Ca(2+) clusters in the mouse neonatal neocortex revealed by three-dimensional two-photon Ca(2+) imaging in vivo, Neuroimage, vol.138, pp.64-75, 2016.

J. Lebedeva, A. Zakharov, E. Ogievetsky, A. Minlebaeva, R. Kurbanov et al., Inhibition of cortical activity and apoptosis caused by ethanol in neonatal rats In vivo, Cereb. Cortex, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01962304

K. Chernova, G. Burkhanova, A. Zakharov, R. Khazipov, and G. Sitdikova, Inhibitory effects of ethanol in the neonatal rat hippocampus In vivo, BioNanoScience, pp.1-3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01962095

C. Ikonomidou, P. Bittigau, M. J. Ishimaru, D. F. Wozniak, C. Koch et al., Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome, Science, vol.287, pp.1056-1060, 2000.

G. Sitdikova, A. Zakharov, S. Janackova, E. Gerasimova, J. Lebedeva et al., Isoflurane suppresses early cortical activity, vol.1, pp.15-26, 2014.

V. Jevtovic-todorovic, R. E. Hartman, Y. Izumi, N. D. Benshoff, K. Dikranian et al., Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits, J. Neurosci, vol.23, pp.876-882, 2003.

Y. A. Lebedeva, A. V. Zakharova, G. F. Sitdikova, A. L. Zefirov, and R. N. Khazipov, Ketamine-Midazolam anesthesia induces total inhibition of cortical activity in the brain of newborn rats, Bull. Exp. Biol. Med, vol.161, pp.15-19, 2016.

C. Ikonomidou, F. Bosch, M. Miksa, P. Bittigau, J. Vockler et al., Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain, Science, vol.283, pp.70-74, 1999.

C. Young, V. Jevtovic-todorovic, Y. Q. Qin, T. Tenkova, H. H. Wang et al., Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain, Br. J. Pharmacol, vol.146, pp.189-197, 2005.

M. J. Benders, K. Palmu, C. Menache, C. Borradori-tolsa, F. Lazeyras et al., Early brain activity relates to subsequent brain growth in premature infants, Cereb. Cortex, vol.25, pp.3014-3024, 2015.

K. K. Iyer, J. A. Roberts, L. Hellstrom-westas, S. Wikstrom, P. Hansen et al., Cortical burst dynamics predict clinical outcome early in extremely preterm infants, Brain, vol.138, pp.2206-2218, 2015.

G. L. Holmes, R. Khazipov, and Y. B. Ari, Seizure-induced damage in the developing human: relevance of experimental models, Prog. Brain Res, vol.135, pp.321-334, 2002.

G. L. Holmes, R. Khazipov, and Y. B. Ari, New concepts in neonatal seizures, Neuroreport, vol.13, pp.3-8, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00484863

S. Ranasinghe, G. Or, E. Y. Wang, A. Ievins, M. A. Mclean et al., Reduced cortical activity impairs development and plasticity after neonatal hypoxia ischemia, J. Neurosci, vol.35, pp.11946-11959, 2015.

N. K. Domnick, S. Gretenkord, F. V. De, J. Sedlacik, M. D. Brockmann et al., Hanganu-Opatz, Neonatal hypoxia-ischemia impairs juvenile recognition memory by disrupting the maturation of prefrontal-hippocampal networks, Exp. Neurol, vol.273, pp.202-214, 2015.

M. D. Brockmann, M. Kukovic, M. Schonfeld, J. Sedlacik, and I. L. , Hanganu-Opatz, Hypoxia-ischemia disrupts directed interactions within neonatal prefrontal-hippocampal networks, PLoS One, vol.8, p.83074, 2013.

S. A. Reincke and I. L. Hanganu-opatz, Early-life stress impairs recognition memory and perturbs the functional maturation of prefrontal-hippocampal-perirhinal networks, Sci. Rep, vol.7, p.42042, 2017.

H. Hartung, N. Cichon, F. V. De, S. Riemann, S. Schildt et al., From shortage to surge: a developmental switch in hippocampal-prefrontal coupling in a gene-environment model of neuropsychiatric disorders, Cereb. Cortex, 2016.

K. Malk, M. Metsaranta, and S. Vanhatalo, Drug effects on endogenous brain activity in preterm babies, Brain Dev, vol.36, pp.116-123, 2014.

M. Videman, A. Tokariev, S. Stjerna, R. Roivainen, E. Gaily et al., Effects of prenatal antiepileptic drug exposure on newborn brain activity, Epilepsia, vol.57, pp.252-262, 2016.

M. Videman, A. Tokariev, H. Saikkonen, S. Stjerna, H. Heiskala et al., Newborn brain function is affected by fetal exposure to maternal serotonin reuptake inhibitors, Cereb. Cortex, 2016.

R. W. Rhoades, C. A. Bennett-clarke, M. Y. Shi, and R. D. Mooney, Effects of 5-HT on thalamocortical synaptic transmission in the developing rat, J. Neurophysiol, vol.72, pp.2438-2450, 1994.

A. Laurent, J. M. Goaillard, O. Cases, C. Lebrand, P. Gaspar et al., Activity-dependent presynaptic effect of serotonin 1B receptors on the somatosensory thalamocortical transmission in neonatal mice, J. Neurosci, vol.22, pp.886-900, 2002.

D. Akhmetshina, A. Zakharov, D. Vinokurova, A. Nasretdinov, G. Valeeva et al., The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo, Brain Res. Bull, vol.124, pp.48-54, 2016.

O. Cases, T. Vitalis, I. Seif, E. De-maeyer, C. Sotelo et al., Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period, Neuron, vol.16, pp.297-307, 1996.

A. M. Persico, E. Mengual, R. Moessner, S. F. Hall, R. S. Revay et al., Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release, J. Neurosci, vol.21, pp.6862-6873, 2001.

N. Salichon, P. Gaspar, A. L. Upton, S. Picaud, N. Hanoun et al., Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice, J. Neurosci, vol.21, pp.884-896, 2001.

T. Toda, D. Homma, H. Tokuoka, I. Hayakawa, Y. Sugimoto et al., Birth regulates the initiation of sensory map formation through serotonin signaling, Dev. Cell, vol.27, pp.32-46, 2013.

E. S. Van-kleef, P. Gaspar, and A. Bonnin, Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development, Eur. J. Neurosci, vol.35, pp.1563-1572, 2012.

A. T. Berg, J. T. Langfitt, F. M. Testa, S. R. Levy, F. Dimario et al., Global cognitive function in children with epilepsy: a community-based study, Epilepsia, vol.49, pp.608-614, 2008.

E. K. Benn, D. C. Hesdorffer, S. R. Levy, F. M. Testa, F. J. Dimario et al., Parental report of behavioral and cognitive diagnoses in childhood-onset epilepsy: a case-sibling-controlled analysis, Epilepsy Behav, vol.18, pp.276-279, 2010.

A. T. Berg, F. A. Zelko, S. R. Levy, and F. M. Testa, Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: a prospective cohort study, Neurology, vol.79, pp.1384-1391, 2012.

E. Vasconcellos, E. Wyllie, S. Sullivan, L. Stanford, J. Bulacio et al., Mental retardation in pediatric candidates for epilepsy surgery: the role of early seizure onset, Epilepsia, vol.42, pp.268-274, 2001.

R. Nabbout, N. Chemaly, M. Chipaux, G. Barcia, C. Bouis et al., Encephalopathy in children with Dravet syndrome is not a pure consequence of epilepsy, Orphanet J. Rare Dis, vol.8, p.176, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00915201

N. Villeneuve, V. Laguitton, M. Viellard, A. Lepine, B. Chabrol et al., Cognitive and adaptive evaluation of 21 consecutive patients with Dravet syndrome, Epilepsy Behav, vol.31, pp.143-148, 2014.

S. L. Marguet, V. T. Le-schulte, A. Merseburg, A. Neu, R. Eichler et al., Treatment during a vulnerable developmental period rescues a genetic epilepsy, Nat. Med, vol.21, pp.1436-1444, 2015.

R. M. Pressler, G. B. Boylan, N. Marlow, M. Blennow, C. Chiron et al., Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial, Lancet Neurol, vol.14, pp.469-477, 2015.

E. Delpire, J. Lu, R. England, C. Dull, and T. Thorne, Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter, Nat. Genet, vol.22, pp.192-195, 1999.

R. M. Pressler, G. B. Boylan, N. Marlow, M. Blennow, C. Chiron et al., Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial, Lancet Neurol, vol.14, pp.469-477, 2015.

P. Golshani and E. G. Jones, Synchronized paroxysmal activity in the developing thalamocortical network mediated by corticothalamic projections and silent synapses, J. Neurosci, vol.19, pp.2865-2875, 1999.

A. Evrard and N. Ropert, Early development of the thalamic inhibitory feedback loop in the primary somatosensory system of the newborn mice, J. Neurosci, vol.29, pp.9930-9940, 2009.

Y. Murata and M. T. Colonnese, An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus, Elife, 2016.

E. Dupont, I. L. Hanganu, W. Kilb, S. Hirsch, and H. J. Luhmann, Rapid developmental switch in the mechanisms driving early cortical columnar networks, Nature, vol.439, pp.79-83, 2006.

P. O. Kanold and H. J. Luhmann, The subplate and early cortical circuits, Annu. Rev. Neurosci, vol.33, pp.23-48, 2010.

A. Hoerder-suabedissen and Z. Molnar, Development, evolution and pathology of neocortical subplate neurons, Nat. Rev. Neurosci, vol.16, pp.133-146, 2015.

E. A. Tolner, A. Sheikh, A. Y. Yukin, K. Kaila, and P. O. Kanold, Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex, J. Neurosci, vol.32, pp.692-702, 2012.

S. N. Tuncdemir, B. Wamsley, F. J. Stam, F. Osakada, M. Goulding et al., Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits, Neuron, vol.89, pp.521-535, 2016.

A. Marques-smith, D. Lyngholm, A. K. Kaufmann, J. A. Stacey, A. Hoerder-suabedissen et al., A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex, Neuron, vol.89, pp.536-549, 2016.

Y. Ben-ari, J. L. Gaiarsa, R. Tyzio, and R. G. Khazipov, A pioneer transmitter that excites immature neurons and generates primitive oscillations, Physiol. Rev, vol.87, pp.1215-1284, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483857

M. M. Myers, P. G. Grieve, A. Izraelit, W. P. Fifer, J. R. Isler et al., Developmental profiles of infant EEG: overlap with transient cortical circuits, Clin. Neurophysiol, vol.123, pp.1502-1511, 2012.

S. Vanhatalo, J. M. Palva, S. Andersson, C. Rivera, J. Voipio et al., Slow endogenous activity transients and developmental expression of K+-Clcotransporter 2 in the immature human cortex, Eur. J. Neurosci, vol.22, pp.2799-2804, 2005.

V. I. Dzhala, K. V. Kuchibhotla, J. C. Glykys, K. T. Kahle, W. B. Swiercz et al., Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures, J. Neurosci, vol.30, pp.11745-11761, 2010.

C. Rivera, J. Voipio, J. A. Payne, E. Ruusuvuori, H. Lahtinen et al., The K+/Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

G. Valeeva, T. Tressard, M. Mukhtarov, A. Baude, and R. Khazipov, An optogenetic approach for investigation of excitatory and inhibitory network GABA actions in mice expressing channelrhodopsin-2 in GABAergic neurons, J. Neurosci, vol.36, pp.5961-5973, 2016.