J. B. Ding, J. N. Guzman, J. D. Peterson, J. A. Goldberg, and D. J. Surmeier, Thalamic gating of corticostriatal signaling by cholinergic interneurons, Neuron, vol.67, pp.294-307, 2010.

A. M. Graybiel, T. Aosaki, A. W. Flaherty, and M. Kimura, The basal ganglia and adaptive motor control, Science, vol.265, pp.1826-1831, 1994.

P. Apicella, E. Legallet, and E. Trouche, Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp, Brain. Res, vol.116, pp.456-466, 1997.

T. W. Faust, M. Assous, F. Shah, J. M. Tepper, and T. Koós, Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons, Eur. J. Neurosci, vol.42, pp.1764-1774, 2015.
DOI : 10.1111/ejn.12915

URL : http://europepmc.org/articles/pmc4510010?pdf=render

D. F. English, GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons, Nat. Neurosci, vol.15, pp.123-130, 2012.

P. Apicella, The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals, Neuroscience, vol.360, pp.81-94, 2017.

B. D. Bennett and C. J. Wilson, Spontaneous activity of neostriatal cholinergic interneurons in vitro, J. Neurosci, vol.19, pp.5586-5596, 1999.

P. N. Izzo and J. P. Bolam, Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat, J. Comp. Neurol, vol.269, pp.219-234, 1988.

V. M. Pickel and J. Chan, Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum, J. Neurosci. Res, vol.25, pp.263-280, 1990.

J. M. Tepper and J. P. Bolam, Functional diversity and specificity of neostriatal interneurons, Curr. Opin. Neurobiol, vol.14, pp.685-692, 2004.

A. Raz, Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys, J. Neurosci, vol.21, p.128, 2001.

C. Hammond, H. Bergman, and P. Brown, Pathological synchronization in Parkinson's disease: networks, models and treatments, Trends Neurosci, vol.30, pp.357-364, 2007.

O. Marín and J. L. Rubenstein, A long, remarkable journey: tangential migration in the telencephalon, Nat. Rev. Neurosci, vol.2, pp.780-790, 2001.

P. Liodis, Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes, J. Neurosci, vol.27, pp.3078-3089, 2007.

A. Fragkouli, N. V. Van-wijk, R. Lopes, N. Kessaris, and V. Pachnis, LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons, Development, vol.136, pp.3841-3851, 2009.

L. Magno, NKX 2-1 is required in the embryonic septum for cholinergic system development, learning, and memory, Cell Rep, vol.20, pp.1572-1584, 2017.

M. Fogarty, Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex, J. Neurosci, vol.27, pp.10935-10946, 2007.

G. Miyoshi, J. Hjerling-leffler, T. Karayannis, V. H. Sousa, S. J. Butt et al., Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons, J. Neurosci, vol.30, pp.1582-1594, 2010.

K. Liu, Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep, Nature, vol.548, pp.582-587, 2017.

Y. Wang, Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse, Neuroscience, vol.164, pp.1031-1043, 2009.

M. Belle, Tridimensional visualization and analysis of early human development, Cell, vol.169, pp.161-173, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01497677

F. Casoni, Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains, Development, vol.143, pp.3969-3981, 2016.

Y. Ben-ari, The GABA excitatory/inhibitory developmental sequence: a personal journey, Neuroscience, vol.279, pp.187-219, 2014.

Y. Ben-ari, NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders, Trends Neurosci, vol.40, pp.536-554, 2017.
DOI : 10.1016/j.tins.2017.07.001

N. Dehorter, Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons, J. Neurosci, vol.29, pp.7776-7787, 2009.
DOI : 10.1523/jneurosci.1527-09.2009

URL : http://www.jneurosci.org/content/29/24/7776.full.pdf

N. Dehorter, Subthalamic lesion or levodopa treatment rescues giant GABAergic currents of PINK1-deficient striatum, J. Neurosci, vol.32, pp.18047-18053, 2012.

P. Jonas, J. Bischofberger, and J. Sandkühler, Corelease of two fast neurotransmitters at a central synapse, Science, vol.281, pp.419-424, 1998.

A. Saunders, A. J. Granger, and B. L. Sabatini, Corelease of acetylcholine and GABA from cholinergic forebrain neurons, vol.4, 2015.

S. Sethuramanujam, A central role for mixed acetylcholine/GABA transmission in direction coding in the retina, Neuron, vol.90, pp.1243-1256, 2016.

M. P. Nusbaum, D. M. Blitz, and E. Marder, Functional consequences of neuropeptide and small-molecule co-transmission, Nat. Rev. Neurosci, vol.18, pp.389-403, 2017.

M. J. Higley, Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum, PLoS ONE, vol.6, p.19155, 2011.

A. B. Nelson, T. G. Bussert, A. C. Kreitzer, and R. P. Seal, Striatal cholinergic neurotransmission requires VGLUT3, J. Neurosci, vol.34, pp.8772-8777, 2014.
DOI : 10.1523/jneurosci.0901-14.2014

URL : http://www.jneurosci.org/content/34/26/8772.full.pdf

S. Grillner and B. Robertson, The basal ganglia over 500 million years, Curr. Biol, vol.26, pp.1088-1100, 2016.

T. Koós and J. M. Tepper, Dual cholinergic control of fast-spiking interneurons in the neostriatum, J. Neurosci, vol.22, pp.529-535, 2002.

T. Aosaki, Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning, J. Neurosci, vol.14, pp.3969-3984, 1994.

N. Maurice, Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental Parkinsonism, Cell Rep, vol.13, pp.657-666, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01384026

H. Bergman and G. Deuschl, Pathophysiology of Parkinson's disease: from clinical neurology to basic neuroscience and back, Mov. Disord, vol.17, pp.28-40, 2002.

P. C. Tiwari and R. Pal, The potential role of neuroinflammation and transcription factors in Parkinson disease, Dialog. Clin. Neurosci, vol.19, pp.71-80, 2017.

F. García-oscos, The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling, Biol. Psychiatry, vol.71, pp.574-582, 2012.

S. Petryszyn, T. Di-paolo, A. Parent, and M. Parent, The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys, Neurobiol. Dis, vol.95, pp.46-53, 2016.

S. Petryszyn, A. Parent, and M. Parent, The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions, J. Neural Transm, 2017.

S. Petryszyn, J. Beaulieu, A. Parent, and M. Parent, Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates, J. Chem. Neuroanat, pp.51-61, 2014.

P. Damier, C. Hammond, and Y. Ben-ari, Bumetanide to treat Parkinson disease: a report of 4 cases, Clin. Neuropharmacol, vol.39, pp.57-59, 2016.

R. Iancu, P. Mohapel, P. Brundin, and G. Paul, Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice, Behav. Brain. Res, vol.162, pp.1-10, 2005.

G. Nagel, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl Acad. Sci. USA, vol.100, pp.13940-13945, 2003.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, Millisecondtimescale, genetically targeted optical control of neural activity, Nat. Neurosci, vol.8, pp.1263-1268, 2005.

T. Fukano and A. Miyawaki, Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples, Appl. Opt, vol.42, pp.4119-4124, 2003.

H. Wang, High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice, Proc. Natl Acad. Sci. USA, vol.104, pp.8143-8148, 2007.

C. Wyart, Optogenetic dissection of a behavioural module in the vertebrate spinal cord, Nature, vol.461, pp.407-410, 2009.

P. Zhu, O. Fajardo, J. Shum, Y. Zhang-schärer, and R. W. Friedrich, Highresolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device, Nat. Protoc, vol.7, pp.1410-1425, 2012.

S. Preibisch, S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3D microscopic image acquisitions, Bioinformatics, vol.25, pp.1463-1465, 2009.

M. H. Longair, D. A. Baker, and J. D. Armstrong, Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes, Bioinformatics, vol.27, pp.2453-2454, 2011.

T. A. Ferreira, Neuronal morphometry directly from bitmap images, Nat. Methods, vol.11, pp.982-984, 2014.

J. R. Geiger, Relative abundance of subunit mRNAs determines gating and Ca2+permeability of AMPA receptors in principal neurons and interneurons in rat CNS, Neuron, vol.15, pp.193-204, 1995.

K. E. Glajch, S. M. Fleming, D. J. Surmeier, and P. Osten, Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease, Behav. Brain Res, vol.230, pp.309-316, 2012.

K. Zhang, C. Chammas, and J. Soghomonian, Loss of glutamic acid decarboxylase (Gad67) in striatal neurons expressing the Drdr1a dopamine receptor prevents L-DOPA-induced dyskinesia in 6-hydroxydopaminelesioned mice, Neuroscience, vol.303, pp.586-594, 2015.

S. M. Flemming, O. R. Ekhator, and V. Ghisays, Assessment of Sensorimotor Function in Mouse Models of Parkinson's Disease, J Vis Exp, vol.17, issue.76, 2013.

N. Renier, iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging, Cell, vol.159, pp.896-910, 2014.

M. Belle, A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system, Cell Rep, vol.9, pp.1191-1201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01944649

E. S. Lein, Genome-wide atlas of gene expression in the adult mouse brain, Nature, vol.445, pp.168-176, 2007.

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, and . Nih, Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.