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Abstract. Here we present a novel bio-inspired visual processing system, which

enables a robot to locate and follow a target, using an artificial compound eye

called CurvACE. This visual sensor actively scanned the environment at an imposed

frequency (50Hz) with an angular scanning amplitude of 4.2◦ and succeeded in locating

a textured cylindrical target with hyperacuity, i.e. much finer resolution than the

coarse inter-receptor angle of the compound eye. Equipped with this small, lightweight

visual scanning sensor, a Mecanum-wheeled mobile robot named ACEbot was able to

follow a target at a constant distance by localizing the right and left edges of the

target. The localization of the target’s contrasted edges is based on a bio-inspired

summation of Gaussian receptive fields in the visual system. By means of its auto-

adaptive pixels, ACEbot consistently achieved similar pursuit performances under

various lighting conditions with a high level of repeatability. The robotic pursuit

pattern mimics finely the behavior of the male fly Syritta Pipens L. while pursuing the

female. The high similarity in the trajectories as well as the biomimicry of the visual

system provides strong support for the hypothesis that flies do maintain center the

target and constant its subtended angle during smooth pursuit. Moreover, we discuss

the fact that such simple strategy can also provide a trajectory compatible with motion

camouflage.

1. Introduction

Highly efficient target tracking behaviors have been observed throughout the animal

kingdom [1]. Particularly, small insects, despite their limited sensory system, display

impressive capabilities like catching preys or mates, in order to survive in their ecological

environment. For example, the housefly (Fannia canicularis) tracks the female by

consistently flying towards it, making most likely no assumptions about its quarry’s

future position [2]. Likewise, Syritta pipiens L. hoverflies follow their potential mates,

keeping the same distance away before trying to catch them. Depending on the position

of the female in its field of view, the male will perform either body saccades and sway
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movements when the target is located on the side, or adopt a smooth pursuit strategy

[3] when the female is upfront. The male Lucilia can also follow its target for a while

before deciding whether it will be a suitable mate [4]. Based on field observations, these

Lucilia flies seem to use the size of their target in their Field-Of-View (FOV) and hold

its position on the frontal midline of the head. Others, like the robber fly (Holcocephala

fusca), chase their target with a constant bearing angle [5]. More complex chasing

strategies have also been observed in hoverflies Eristallis and Volucella [6] or in the

dragonflies [7], where it seems that a prediction of the target trajectory is involved [8].

The studies of the dragonfly visual system taught us that specific neurons called

Elementary Small Target Motion Detectors (ESTMDs) are implicated in the target

detection and tracking [9, 10]. A bio-inspired algorithm derived from these observations

was shown to be efficient and accurate [11] compared to the state of the art in computer

vision [12] and applicable in a robotic context [13]. Another bio-inspired example of

target tracking on a mobile robot has been made using an Event-based camera [14].

In this study, we focused on a pursuit scenario in which a holonomic mobile robot

(the pursuer) tracks a mobile target, maintaining its visual contact with the target at all

times and keeping a constant distance. It was assumed that the pursuer knows the size

of the target and that the speed of the target is bounded, as hypothesized by Collett

and Land [6]. Previous authors have tackled target following challenges using an omni-

directional camera without any communication between the pursuer and the target, and

by planning a suitable trajectory for the pursuer [15, 16, 17]. Follow-the-leader scenarios

can be said to be a particular case of target tracking, as the leader is identified and can

provide the follower(s) with relevant information. Some authors of robotic studies have

used infrared (IR) beacons [18, 19, 20, 21], visual pattern recognition processes [22]

based on the open-source code Whycon [23], and acoustic signals either alone [24] or

combined with radio signals to estimate the distance from a moving target [25]. Stereo

vision was also used on a UAV to intercept a moving colored target [26]. On the control

point of view, pursuit has been largely studied for missile guidance with Line-Of-Sight

techniques [27]. Some elaborated controllers have been designed to be robust to unknown

target acceleration and more energy efficient [21], or optimize the time to capture [28],

whereas others took the visual sensor FOV into account [29]. Motion camouflage is also

a complex pursuit strategy, which aims to make the pursuer either static or producing an

optic flow compatible with a fixed object onto the target retina. It has been suggested

to be biologically relevant [30] and observed on the dragonfly [31]. Several theoretical

studies have proposed algorithms to perform such behavior [32, 33, 34, 35].

The pursuit scenario is here achieved by using a bio-inspired artificial compound eye

called CurvACE featuring an optical resolution of only a few degrees imposed by the

angle between two adjacent artificial ommatidia (photoreceptor + lenslet) [36]. The

relatively coarse optical resolution and its low sensitivity (see fig. 15 in [37]) was

greatly improved by applying small periodic mechanical vibrations to the whole eye,

which resulted in a visual micro-scanning of the environment. Many visual sensors

based on active retinal micro-movements (see [38] for a review) have been used for
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various robotic purposes, such as enhancing edge detection [39, 40] and improving

obstacle avoidance [41]. Recent studies featuring hyperacuity, i.e. “locating features

with a greater accuracy than that corresponding to the resolution imposed by the

photoreceptor’s limited pitch” as defined by [42], have focused on the processing of

the amplitude of the photosensor’s output signals to locate an edge/bar using only 2

pixels [43], to locate and track a white cross using complex calibration process [44] or to

measure robot 1D egomotion [45]. The visual sensor is a vibrating artificial compound

eye called Active CurvACE (i.e. the scanning version of the CurvACE sensor) : Active

CurvACE was developed to locate features with hyperacuity [45]. The CurvACE sensor

is endowed with bio-inspired micro-scanning movements imposed by a tiny motor and

an eccentric mechanism [46, 45]. The Active CurvACE sensor is characterized by 4

specific bio-inspired principles:

• local light adaptation at the pixel level,

• a similar inter-ommatidial angle ∆ϕ to that observed from the fruitfly’s eye,

• a Gaussian shaped angular sensitivity function at the level of each artificial

ommatidium,

• a micro-scanning movement with its visual signal processing providing hyperacuity.

In addition, a new algorithm is introduced, inspired by the fusion of angular

Gaussian receptive fields observed by Heiligenberg on the electric fish [47], to aggregate

the visual signals of the artificial ommatidia. The algorithm takes advantage of the

angular Gaussian response of the sensors to improve the linearity of the angular position

of the target placed in the FOV of the Active CurvACE sensor. This new linear

characteristic was used to make a pursuer robot follow a target. Then, we established

that the pursuer equipped with a bio-inspired non-emissive visual sensor was capable

of achieving smooth pursuit when following a mobile cylindrical target at a constant

distance. Section 2 presents the experimental setup and the objectives. Section 3

describes the bio-inspired visual processing, including a receptive fields summation

method used to locate the cylindrical target over a large angular position range within

the horizontal FOV of Active CurvACE. Section 4 describes the control system and

the kinematics of the pursuer robot. Section 5 shows the performance of the pursuit

obtained under 3 different lighting conditions, the repeatability and the comparison with

hoverfly trajectories with a discussion on the motion camouflage. Section 6 draws some

conclusions and suggests some perspectives.

2. Experimental setup and objectives

The pursuer equipped with a bio-inspired visual sensor using only 23 artificial ommatidia

was able to perform smooth pursuits when following another mobile robot (the

cylindrical target) at a constant distance. The FOV covered by the 23 photosensors

was about 97◦. As shown in figure 1a, the two robots were used to test the pursuit

scenario:
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Figure 1. a) An experimental situation where the pursuer (i.e., the yellow robot

ACEbot) is following the target (a textured cylinder mounted on a moving wheeled

rover) at a constant distance. Thanks to its hyperacute visual sensor, the robot

ACEbot is able to lock its heading onto the target and keep a constant distance from

the target. b) Scheme of the various parameters and angles used in the control strategy

implemented here (see equation (5)).

Stepper motor
(vibration actuator)

eccentric 
shaft

roller
bearing

Artificial
Compound Eye 

Light 
sensor

1cma) b)

Figure 2. a) Picture of the ACEbot’s visual sensor called Active CurvACE and the

photodiode used for the illuminance measurements. b) Diagram of the mechanical

system, the eccentric shaft is used with a roller bearing to limit the wear in the slotted

hole. This Active CurvACE assembling is very compact (40 × 27 × 15mm) and light

(12.5 grams).

• The pursuer, named ACEbot, which stands for “Active Compound Eye on a robot”,

was a yellow rover equipped with a vibrating artificial compound eye, called Active

CurvACE visual sensor (see figure 2), and Mecanum wheels (see figures 1 and E1).

• The target was a non-holonomic rover carrying a textured cylinder (see figure 1a).

The two contrasting edges of the cylinder with respect to the background were the

two visual cues used by the sighted pursuer to track the target’s movement.
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As depicted in figure 1b, the following notation is used throughout this paper:

• θLeft, θRight are the angular position of each edge in the eye’s FOV,

• εr is the retinal error, i.e. the position of the target in the eye’s FOV,

• α is the subtended angle, i.e. the size of the target in the FOV,

• Rcyl is the radius of the cylinder.

3. Bio-inspired receptive fields summation to localize a target with

hyperacuity

3.1. From modulated visual signals to Gaussian-like responses

The first step of the visual processing is to perform a demodulation of the artificial

ommatidia signals which are submitted to a 50Hz scanning. It should be noticed that

though bio-inspired, the sensor scanning is made at a higher frequency than the one

observed on the fly (between 5 − 7Hz, see [38] for a review). Figure 3a details the

demodulation strategy. First, a peak filter centered on the scanning frequency extracts

the modulated signal, removing the constant value and some of the noise. The absolute

value allow to double the frequency, to facilitate the envelope detection. Then, an

envelope detector allow a first low-pass filtering without delay and finally a low-pass

filter smooth out the demodulated signal.

Compared to [45], the modification of the processing were the addition of the

envelope detector and modified filters. All these improvements enabled to increase the

dynamic response of the demodulation. Indeed, the cutoff frequency of the last low-pass

filter have been increased (from 5 to 20Hz), thus increasing the bandwidth of the visual

processing.

To test the responses of the visual processing algorithm, the artificial eye was

rotated back and forth in front of the target by activating the visual micro-scanning

movements. As shown in figure 3c, the “Edge receptive field” of each pixel’s output

signal, denoted PhD, can be approximated with a Gaussian-like function centered at

the angular position of the contrasting edge with respect to the eye (the gaze).

3.2. From Gaussian-like responses to angular position measurement within the triplet’s

FOV

3.2.1. Localization using Gaussian receptive fields Heiligenberg [47] has established

that the Weighted Sum (WS) of an array of overlapped Gaussian receptive fields in an

electric fish can provide a linear response to a stimulus position. WS computations on

an array of sensors with a Gaussian shaped response give an approximation of a straight

line (WS(x, σ) ≈
√
πσx, with x being the stimulus position). Appendix C.1 provides

the mathematical definition of the WS and further details about the computation in

the case of perfect Gaussian receptive fields. The validity of this linear approximation

was proved in [48].
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Figure 3. a) The demodulation signal processing algorithm applied to the visual

signals delivered by the vibrating artificial compound eye (Ψmod = A sin(2π50t) where

A ≈ ∆ϕ
2 ). Three Gaussian shaped optical angular sensitivities of the Active CurvACE

(defined by its acceptance angle ∆ρ) are shown. The CurvACE readout circuit is in

charge of digitizing each pixel’s output signal here at a sampling frequency of 500Hz.

The subsequent digital demodulation steps are performed using a peak filter center

at the scanning frequency cascaded with an absolute value function connected to a

digital envelope detector and a low-pass filter (see Appendix B). b) Scheme of the

Active CurvACE sensor in front of the target. c) Normalized Gaussian-like “Edge

receptive fields” (defined by their standard deviation σ) of 3 vibrating photosensors

after the demodulation process during two back and forth rotations of Active CurvACE

(vibration turned ON) in front of left and right edges of cylindrical target.

An adaptation of this principle was used here for the first time in the context of

bio-inspired artificial vision. It was applied to a group of three in-line adjacent pixels

(called a triplet) showing overlapped Gaussian-like responses of their “Edge receptive

field” (see figure 3)c, and showed that once the WS has been normalized, this system

produces a reliable output signal which can be used to locate an edge with great accuracy.

Although biologically plausible, no founding proves that it is how the flies and more

generally insects are processing the visual information. It is only a suggestion which in

the context of the study is working reliably.

3.2.2. Normalized Weighted Sum (NWS) Computation In the case of the present visual

system, the amplitude of the PhD signals depends on three main parameters: the

ambient illuminance, the contrast and the scanning frequency. The novel feature of

our approach is that it makes the visual sensor’s output signal independent of these

parameters by normalizing the WS by the sum of the PhD signals. As shown in the

Appendix C.2, the output of the normalized WS (WSnorm = WS/S) is still linear and

bounded. The hyperacuity of the WSnorm was also established because the maximum

linearity error amounts theoretically to less than 7% of the spacing between the receptive

fields δ. This makes it possible to measure the position of a contrasting edge. However,
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only one edge at a time must be present in the FOV of the photosensors used for the

computations at a time. It is therefore best to use as few photosensors as possible. It

was decided to use only three neighboring photosensors, i.e. one triplet, in the WSnorm,

because when an edge is in the neighborhood of the center of one triplet’s FOV (± δ
2
),

its 3 photosensors are contributing more than 99% to the total Sum.

To provide the pursuer with the angular position of one given edge, it is necessary to

scale theWSnorm value, depending on the spacing between each pixel. The mathematical

expression of the normalized and scaled WS (later noticed NWS) applied to an array of

pixels featuring Gaussian angular sensitivities separated by an angle ∆ϕ can therefore

be written as follows:

NWS(i) = ∆ϕ ·

i+1∑
k=i−1

k · PhD(k)

i+1∑
k=i−1

PhD(k)

+ bias (1)

where PhD denotes the photosensors’ demodulated signals and bias is a calibrated offset

used to set the zero position. Here, we intended to aligned the center of the cylinder

with the center of the eye. Figure 4a displays a schematic view of the computation from

the pixel to the NWS computation.

Demod.

Demod.

Demod.

Demod.

Demod.

NWS(i)
(see eq. 1)

NWS(i-1)

NWS(i+1)
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b)a)

Figure 4. a) Layout of the computation of the Normalized and scaled WS. The PhD
signals obtained after the demodulation process are the inputs of the different NWS

computations. b) NWS values of the 21 triplets as a function of the visual sensor’s

gaze (ψgaze) with respect to the fixed cylindrical target. The parts resulting from the

selection process (see section 3.3) are highlighted.

3.2.3. Characterization of the vibrating visual sensor To test the responses of the

hyperacute visual sensor (i.e., the Active CurvACE) depending on its orientation

(denoted ψgaze) with respect to a textured cylindrical target, the visual sensor was

turned towards a fixed target (a textured cylinder 30cm in diameter, placed 91cm ahead)

and rotated stepwise about its vertical axis via an accessory position servo (not shown

here) driven by a 0.1◦ staircase signal, as in figure 3. The responses of each of the 21
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NWS were monitored at each azimuthal orientation of the gaze ψgaze with respect to

the target. The various NWS were calculated by applying equation (1). Figure 4b gives

the results of all the NWS calculations. With a theoretical uniform background, one

can expect a constant response when no contrasts is present in the FOV. However, in

a real scenario, contrast variations always appear as shadows or small changes in color.

As the normalization makes the NWS independent to contrast amplitude, it is difficult

to identify the right contrast to track. Thus, a selection process is needed to obtain the

NWS of greatest interest, which will be used to locate the target.

3.3. Weighted Sum Selection : edge localization over a large angular position range

As shown in figure 4, a selection process was required to obtain the NWS values

corresponding to an edge. This process was performed using the following criteria:

SCriteria(i) = PhD(i− 1) + 2 · PhD(i) + PhD(i+ 1) (2)

The index cj, giving the NWS having the contrast j in its FOV at time t, is then

updated as follows:

cj(t) = arg max
i∈[cj(t−1)−1,cj(t−1)+1]

SCriteria(i) (3)

This selection process was based on the assumption that the target is not moving

faster than ∆ϕ between two successive sampling times. This means that an edge can

only be located either via the same selected NWS or via its nearest neighbor (cj(t)− 1

or cj(t) + 1). In this study, the sampling frequency of the measurements was 500Hz.

The selection process can be applied to any number of edges to be followed. In the

present case, as the target is a cylinder, two edges were tracked. Therefore, the edges

positions are given as follows:

θLeft = NWS(cLeft)

θRight = NWS(cRight)
(4)

Figure 5 summarizes the complete algorithm to get the edges localization and

displays the comparisons of the measurements of the two edges compared to ground

truth.

3.4. Application to Target localization

The two measured angular positions resulting from the selection process are denoted

θLeft and θRight.

This algorithm makes it possible to locate two contrasting edges at the same time

if they are separated by a sufficiently large angle, i.e. 2∆ϕ, in line with the hypothesis

that only one contrast can be located at a time in the FOV of 3 photosensors. Assuming

that these two edges belong to the same target, it is therefore possible to calculate its

orientation εr and its subtended angle α defined as follows:

εr = (θLeft + θRight)/2

α = θLeft − θRight
(5)
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Figure 5. a) Layout of the NWS computation and the Scriteria b) Scheme of

the computation from the pixel to the cylinder edges position measurement, through

demodulation, NWS processing and selection. c) Measured angular position of each

target’s edge (left and right) versus the visual sensor’s gaze. Comparisons between

the measured angular positions (red) and the ground truth values (green) based on a

motion capture system showed that the linearity error of the sensor amounted to only

5 percent. The resolution (equivalent to 6 times of the signal standard deviation σ)

was as small as 0.78◦ with a signal-to-noise ratio of 20.7dB. The two frames highlights

that the same results as in figure 4b are presented here differently.

Table 1 sums up the Active CurvACE performances.

4. Nonlinear control and kinematics of the pursuer robot

The artificial eye was placed on a robot equipped with Mecanum wheels (see Appendix

E for details), which allows omnidirectional movements. The maximum speed that the
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robot was able to reach was equal to 0.5m.s−1.

The control laws implemented onboard the pursuer were drawn up using the

kinematic model described previously by [49, 50]. The control strategy implemented

was based on a non-linear approach to control each degree of freedom and a bounded

control strategy adapted from [51] to control the 4-wheeled robot and also used in [52].

This controller takes in account the wheel speed limits, as it is impossible to go at full

forward speed and rotate in the same time.

ACEbot

Active
CurvACE 

Wheel Speed 
Controller

 Non-linear Control

εr*

εr

α

Frame 
Transformation

(see eq. 6)

r1,2,3

Vx*,Vy*
ωz*

Bounded 
Control

(see eq. 9)

Linearization
(see eq. 8)

e1,2,3
Kinematic 

Model
(see eq. 7)

ω*[1:4]

X^

+-

+
-

Visual Algorithm

α = θLeft - θRight

 

 

θLeft + θRightεr = 2

-1
err Ψ*

X*1,2,3

1,2,3

Phi  [1:23]

Figure 6. ACEbot non-linear controller scheme. The robot is using visual cues (εr, α)

to assess its orientation and distance to the target by controlling the 4 wheel speeds.

Figure 6 shows the ACEbot’s control strategy. The setpoints X∗ are the desired

position of the robot in the target frame. As the target is cylindrical, it has the same

shape when viewed from all directions in the azimuthal plane. The robot’s x direction

in the local target reference frame was therefore taken to be always co-linear with the

pursuer-to-Target’s direction, as shown in figure 1b. Therefore, the x reference is the

distance requirement, which has to be negative. The y reference in the target frame is

null to ensure that ACEbot is aligned with the Target. It also means that no sideway

movement will occur. The heading angle ψ was controlled in the closed-loop mode so

as to keep the retinal error εr equal to zero.

The estimated state vector can be expressed as follows:

X̂1,2,3 =

 xrob
yrob
ψrob

 =

 − cos(ψ∗) ·
(
Rtarget
sin(α/2)

)
−Deye

0

−ψ∗

 (6)

where Deye is the distance from the eye to the ACEbot center. It can be noticed that

−xrob corresponds to the distance measurement (noted Dmeas in Table 1).

The kinematic model is the transfer matrix from the velocity of the robot’s centre

to the wheel speed:
ω∗1
ω∗2
ω∗3
ω∗4

 =
1

Rw


1 −1 −(l + L)

1 1 (l + L)

1 1 −(l + L)

1 −1 (l + L)


 v∗x
v∗y
ω∗z

 (7)

where v∗x, v
∗
y and ω∗z are the robot speed control inputs. Rw, L, l are the wheel radius,

the wheelbase and the track width, respectively. The linearization is the transfer matrix
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from the global frame, or in this case, the Target, to the ACEbot frame, which is

expressed as follows:

v∗x = cos(ψrob) · r1 + sin(ψrob) · r2

v∗y = − sin(ψrob) · r1 + cos(ψrob) · r2

ω∗z = r3

(8)

where ri denotes the bounded control output signals. This transformation was also

useful for decoupling the control of each degree of freedom in the global frame.

Considering the notation ei = X∗i − X̂i, the ri are the results of the following

calculation:

ri = σMi3

(
Ẋ∗i + σMi2

(
ai1ei + σMi1

(ai2ei + ai1ai2
∫
ei)
))

(9)

where the saturation function is defined as:

σM(s) =

{
s, if | s |< M

sign(s) ·M, otherwise
(10)

The values aij and Mij are given in the Appendix D. It should be highlighted that

this control strategy does not use any measured or estimated target speed as input.

Therefore, there is no prediction on the future location of the target.

5. Experimental pursuit performances

5.1. Experimental setup

The experiments shows different pursuit trajectories. In all of them, the objective is to

keep the retinal error εr to zero and a constant distance to the target, 0.7m in sections 5.2

and 5.3 and 0.9m in section 5.4, respectively. The Target robot was controlled either

by a manual remote control system or via a feedback loop, using a VICON Motion

Capture System. This system can provide the position of the robots at a refresh rate of

500Hz with a precision of less than 1.5mm (see the Appendix B in [53]) and was used

as the ground truth. ACEbot and the robotic Target were equipped with infrared (IR)

LEDs used as active markers for the VICON system. The IR strobes of each VICON

camera were disabled to prevent any visual perturbations from occurring due to the

strong flickering infrared lighting.

5.2. Ambient Light Variations

Figure 7a shows the trajectory of the Target in green and that of the ACEbot in yellow.

The positions of both robots are shown every 8s, and it can be seen that the ACEbot

always kept close to the Target, while keeping it in its line of sight. The dark blue

triangle shows the measured subtended angle.

In this experiment, the Target followed an imposed smooth trajectory with some

small curves and ACEbot, after detecting the Target, was able to follow it unfailingly.
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Figure 7. Three different following trajectories under different ambient light

conditions. a) The trajectories of the center of inertia of the target and the pursuer

ACEbot are presented in green and orange, respectively. The robots are drawn every

8s, with the full FOV of ACEbot in light blue, and the measured subtended angle

of the target in dark blue. b-i) The retinal error εr, i.e. position of the target in

the FOV of ACEbot, with the setpoint, the measured angle and the ground truth in

dashed black, black and grey, respectively. b-ii) depicts the distance from the target,

and b-iii) the equivalent subtended angle in the FOV. The reference, the measurement

and the ground truth are in dashed black, black and grey, respectively. b-iv) Dynamic

responses of the light sensor shown in fig. 2a, reflecting the changes in the ambient

lighting, which measured 100 Lux in 1©, 780 Lux in 2© and 1500 Lux in 3©. These

responses show the robustness of the visual processing system with respect to several

light levels.
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As the photosensors in the artificial eye adapted fast to changes in the light level

[36], this pursuit behavior was consistently repeated under the various ambient lighting

conditions tested. The tests of figure 7 (and also in the video in the supplementary

data), were performed in a single experimental run, starting in the dark, where the

target was detected and followed up to the end of the arena before returning close to

the starting-point. The light was turned on when the target came to a stop. The

pursuit was repeated and the blinds of the robotic arena were finally opened for the last

pursuit. During this experiment, the target was remotely controlled by hand, giving

similar trajectories.

It can be seen from figure 7 that the distance was accurately estimated and remained

constant, although slightly above the reference value. This error was due to the fact

that the ACEbot’s speed is not large enough and no target speed is used in the control

loop. The ACEbot’s pursuit performances of the whole run are summarized in the table

1.

5.3. Repeatability

To test the robustness of both the visual algorithm and the robot’s control strategy,

the target’s and pursuer’s trajectories were repeated 20 times under the same lighting

conditions (fig. 8). It is worth noting that the pursuer took the same trajectory and

never lost visual contact with the target. The standard deviations of both the target’s

and pursuer’s trajectories were under 3cm.

5.4. Biologically plausible behavior: chasing and motion camouflage

5.4.1. Comparison with the hoverfly trajectories The strategy developed in this paper

is based on the measurements of the angular position of two edges of the target, in

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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X position [m]

Y 
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n 
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σTarget = 2.53cm
σACEbot = 2.29cm

Figure 8. 20 recordings of target following tasks. The target’s and pursuer’s

trajectories are plotted in green and yellow, respectively. This pursuing episode shows

the excellent repeatability of the robot’s ability to follow a target moving along several

similar paths. The ACEbot consistently produced the same behavior, thus showing

the high robustness of the visual processing algorithm.
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order to determine the subtended angle and the orientation of the target in the pursuer

FOV. The measured subtended angle can be converted into a distance measurement on

the assumption of a known target size. These measured orientation and distance are

assessed so as to keep εr and d equal to 0◦ and 0.9m, respectively.

Collett and Land [3] observed some trajectories of the hoverfly Syritta Pipens

L. that achieved a chasing behavior with a precision of 1cm at a distance of 10cm.

Similar trajectories between robotic and insect observations were achieved (see figure

9). Therefore, the strategy that consists of keeping the target in the middle of the

FOV seems to be compatible with the biological observations. It should be highlighted

d)
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Figure 9. Comparison between the smooth pursuit observed during Syritta pipens L.

mating process (a) and the target following trajectories of ACEbot (b, c and d). In

a), the female and the male are represented in black and grey respectively. Dots are

representing the head position and the lines are the orientation of the body. Each are

spaced by 40ms in time and the numbers indicate a 400ms interval. Redrawn from

[3]. Hoverfly picture source wikimedia commons. In b-d), the target is represented

by a green dot and a continuous line for the whole trajectory. ACEbot, the pursuer,

is represented in yellow; the dot is the eye position and the line represents the robot

orientation. The markers are separated by 400ms and the numbers indicate a 4s

interval.
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Figure 10. Connecting lines has been drawn between target-pursuer position on the

trajectories presented in figure 9. Convergence zones of these connecting lines have

been been highlighted. These zones of convergence indicates apparent static positions

of the pursuer to the target. The convergence zones appear between large pursuer

translation. The large radius of the convergence zone ellipses can be assessed to be

below 10cm in the robotic case.

that the insects are also using visual cues to maintain the distance from the mate.

However, establishing a difference between a controller based on either the distance or

the subtended angle measurement is difficult.

The Syritta pipiens L. seems to follow and maintain distance to its potential mate

before trying to catch it using two different pursuit behaviors, possibly depending on

the position of the mate in its field of view. It uses mostly continuous tracking when it

is upfront but does body saccades and sway movements when the target is on the side.

Sometimes, it was also observed that hoverfly does sideways movement even if the mate

is in front of it, but these movements were unpredictable [3].

5.4.2. Discussion on motion camouflage In [30], the authors hypothesize that the male

hoverfly follows the female while performing motion camouflage, i.e. assess its movement

in order to appear as static onto the female retina, based on observations presented in

[3]. One can notice that Collett and Land in their analysis did not suggested a motion

camouflage behavior but only a pursuit at constant distance by keeping the target in the
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center of the FOV of the pursuer. In addition, only three motion camouflage trajectories

were reported for the hoverfly Syritta Pipens L. (two in [30] and one here).

Figure 10 takes the same trajectories as in figure 9 with the addition of the directions

linking the target to the pursuer for several positions. Three dense areas of successive

connecting line crossings can be identified, similar for the insects and robots trajectories.

One can say that a first stationary point is selected and changed during the pursuit to

another one. For the hoverflies, it would have happened between time 2 and 3 and again

between 5 and 6 (see figure 10a), where the areas are nearly aligned.

In this paper, we showed that a motion camouflage pattern can be observed when

two simple rules are applied, keeping the target (i) in the center of the FOV of the

pursuer by yaw rotation and (ii) at a constant distance (or constant subtended angle)

by translation along the pursuer longitudinal axis (i.e. the pursuer-target direction).

Finally, with this simple control law, the resulting trajectory can create stationary

points from the target perspective during the pursuit. Hence, is the pursuit of the male

hoverfly the result of a specific strategy for motion camouflage or a consequence of a

simpler vision-based strategy (as the one proposed in this paper)? More neuroethological

researches should be done to be able to answer this question.

6. Conclusion

The Active CurvACE was used here as a biomimetic device to test successfully bio-

inspired strategy constrained by a bio-plausible visual sensor on a mobile robot. The

high similarity in the robots and hoverflies trajectories as well as the biomimicry of

the robotic visual system and of the summation processing provides support for the

hypothesis that flies do maintain center the target and make its subtended angle constant

during smooth pursuit. Indeed, the assessment of these two variables is sufficient to

reproduce the hoverfly behavior. It is worth noting that the same sensorimotor control

strategy was used in both cases: target following and fly-like smooth pursuit. The

trajectories obtained were also compatible with motion camouflage.

On the robotic side, it was established here that only 23 pixels part of a vibrating

artificial compound eye was able to locate a robotic target with hyperacuity and to

pursue it with great accuracy. Compared to a previous study [44], we obtained a similar

linearity in the target localization within a much larger visual range and without the

need of a complex calibration process. The robot’s orientation and its distance from the

mobile target were precisely estimated under various lighting conditions. Table 1 gives

the detailed results for the entire duration of the tests provided in the supplemental

video. The novel computationally lean, small, lightweight bio-inspired visual sensor

presented here is suitable for use in target following tasks.

The limitations of the present strategy concerned the existence of a sufficiently

subtended angle of the Target in the FOV (theoretically > 2∆ϕ) and the presence of

a nearly uniform background or one without any sharp contrasts. An improvement

of the pursuer dynamic responses could also be explored by providing the robot with
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Table 1. Active CurvACE and ACEbot performance summary

Active CurvACE characteristics

Static Optical parameters ∆ϕ = ∆ρ = 4.2◦

FOV 96.6◦

Scanning frequency 50Hz

Scanning angular amplitude A 2.1◦(≈ ∆ϕ
2

)

Sampling frequency 500Hz

Visual processing bandwidth 20Hz

Hyperacuity resolution 0.78◦ = 19% of ∆ϕ

Linearity 95% (R2 = 0.99)

Signal to Noise Ratio 20.7dB

Estimated Target localization using Active CurvACE

with respect to the Ground Truth (GT) (mean ± std)

Target ang. position εrmeas − εrGT −0.62± 1.28◦

Subtended angle αmeas − αGT −1.78± 1.49◦

Target distance Dmeas −DGT 3.1± 2.7cm

Closed-loop ACEbot pursuit accuracy

with respect to Ground Truth (GT) (mean ± std)

Target ang. position ε∗r − εrGT −0.67± 2.63◦

Subtended angle αRef − αGT −2.40± 5.09◦

Target distance DRef −DGT 2.8± 7.9cm

information about the target speed.

In the future, this active device could be embedded for example onboard a Micro-

Aerial Vehicle (MAV). However, in the case of free flight, a second active Curvace or a

2D scanning would be required to detect the elevation of the target. In the automotive

framework, a non-emissive optical sensor, like Active CurvACE, sensitive over a large

angular position range and over a high range of light level could also provide a suitable

alternative for the classical ultrasonic sensors and LIDARs which are being widely used

these days in adaptive cruise control applications.
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Appendix

Appendix A. Supplementary materials

Videos of the experiences described in sections 5.2 and 5.4, can be found

at the following links https://youtu.be/kdjJ6t7d2pM and https://youtu.be/

fciQr0o0G7g, respectively.

Appendix B. Demodulation processing details

The demodulation processing presented in figure 3 is the combination of different filters

that need to be tuned, a peak filter, an envelope detector and a low pass filter. All of

them are processed at a sampling frequency fs of 500Hz.

The peak filter is actually the combination of a second-order peak filter Hpf and an

equalizer filter Heq. The peak filter has a peak frequency f0 at 50Hz. Its z-transform is

expressed as follows:

Hpf (z) = (1− b) · 1− z−2

1− 2b cos(ω0)z−1 + (2b− 1)z−2
(B.1)

where ωo = 2πf0
fs

and b = 1
1+tan(10π/fs)

The z-transform of the equalizer filter is expressed as follows:

Heq(z) =
(1 +G · β)− 2 cos(ω0)z−1 + (1−G · β)z−2

1 + β − 2 cos(ω0)z−1 + (1− β)z−2

β =

√
G2
B − 1

G2 −G2
B

· tan

(
20π

fs

) (B.2)

where G = 1.5 and GB = 1.155.

The envelope detector reproduces digitally the behavior of an analogic envelop

detector. It means that its output (out) is following the input signal (in) when this

one is increasing. But it has an exponential decay when the input signal is decreasing.

Mathematically, it is defined as follows:

out(t) =

 out(t− 1) +
Ts
τ

(in(t)− out(t− 1)) if out(t− 1) > in(t)

in(t) otherwise
(B.3)

where Ts and τ are the sampling time and the time constant of the exponential

decay, respectively. τ is chosen to be smaller than the modulation period, in our setup

it is twice the period (i.e. 40ms).

Finally, the low-pass filter is simply a third-order low-pass filter with a cutoff

frequency of 20Hz.

https://youtu.be/kdjJ6t7d2pM
https://youtu.be/fciQr0o0G7g
https://youtu.be/fciQr0o0G7g
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Appendix C. Details about the Heiligenberg Weighted Sum and the

proposed normalization

Appendix C.1. Theoretical presentation of the Normalized Weighted Sum

Given that the response of a Gaussian receptive field according to a stimulus position

x can be expressed as e−(x−k
σ

)2 , the equation proposed by Heiligenberg [47] reads as

follows:

WS(x, σ) =
∞∑

k=−∞

k · e−(x−k
σ

)2 (C.1)

as e−(x−k
σ

)2 describes a Gaussian function, where σ is the standard deviation.

Let S(x, σ), the sum of the Gaussian receptive fields, be defined as:

S(x, σ) =
∞∑

k=−∞

e−(x−k
σ

)2 (C.2)

Figure C1 displays the responses of the WS, S and WSnorm, which is equal to

WS/S. It highlights that the Heiligenberg weighted sum linearity and its slope depend

on the Gaussian overlapping. However, it can be seen that the normalization by the

sum is helping, as it reduces the variation and ensures a constant slope whatever the

width of the Gaussian.

Appendix C.2. Linear approximation and error estimation for the Normalized

Weighted Sum computation

In order to bound the normalized weighted sum, we will apply a similar demonstration

to the one used in [48]. Let x = n+ y with n ∈ Z and y ∈ [0, 1], which means that:

WS(x, σ) = n · S(y, σ) +WS(y, σ) (C.3)

where WS and S have been defined in equations (C.1) and (C.2), respectively.

It was established in [48], that:

S(y, σ) =
√
πσ

(
1 + 2

∞∑
k=1

e−(σkπ)2 cos(2πky)

)

WS(y, σ) = yS(y, σ)− 2π
3
2σ3

∞∑
k=1

ke−(σkπ)2 sin(2πky)

(C.4)

From the definition, y = x − n, which means that S(x, σ) = S(y, σ) because S is

periodic with a period of 1. The ratio of the weighted sum over the sum of the Gaussian

functions is equal to WSnorm = WS(x,σ)
S(x,σ)

. From that:

WS(x, σ) =
√
πσ · x

(
1 + 2

∞∑
k=1

e−σ
2k2π2

cos(2πky)

)
(C.5)

− 2πσ2
√
πσ

∞∑
k=1

k · e−σ2k2π2

sin(2πky) (C.6)
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Figure C1. Presentation of the Weighted Sum and its normalization for perfectly

Gaussian receptive fields. a) An array of Gaussian receptive field response spaced by

an unitary space and with a half height width equal to one (i.e. σ = 1/(2
√

ln 2) ≈ 0.6).

b-d) The theoretical Weighted Sum, the Sum and the normalized Weighted Sum

(WSnorm = WS/S) expressed for various standard deviation σ.

it can be deduced that,

WSnorm = x− 2πσ2

∞∑
k=1

k · e−σ2k2π2
sin(2πky)

1 + 2
∞∑
k=1

e−σ2k2π2 cos(2πky)
(C.7)

The error ε (using WSnorm = x+ ε) can therefore be deduced as follows:

ε = −2πσ2

∞∑
k=1

k · e−σ2k2π2
sin(2πky)

1 + 2
∞∑
k=1

e−σ2k2π2 cos(2πky)
(C.8)

If ε is bounded, we establish here that WSnorm is similar to a linear function with a

slope of 1.
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From [48], crude bounds can be computed for the series, if the inequality
√

2 ln 2
2π
≤ σ

is true: ∣∣∣∣∣
∞∑
k=1

e−σ
2k2π2

cos(2πky)

∣∣∣∣∣ ≤ e−σ
2π2

1− e−σ2π2∣∣∣∣∣
∞∑
k=1

k · e−σ2k2π2

sin(2πky)

∣∣∣∣∣ < e−σ
2π2

1− e−σ2π2

(C.9)

Thus, the absolute value of ε can be bounded as follows:

|ε| ≤ 2πσ2 e−σ
2π2

1− 3e−σ2π2 (C.10)

In the present case, if we adopt the assumption that ∆ρ = ∆ϕ, σ = 1

2
√

ln(2)
,

which satisfies the inequation
√

2 ln 2
2π
≤ σ, the error ε will be equal to 7% of the spacing

between each pair of photosensors. This value results from a crude mathematical error

calculation, because one can obtain an error of 6.5% numerically with only 3 Gaussian

functions.

Appendix D. ACEbot control parameters

The values for each control parameter are equal to: a11 = 22.5, a12 = 0.0225, a21 =

22.5, a22 = 0.0225, a32 = 45.0, a33 = 0. These values make the trajectories very close

to the linear region and guarantee the stability of the system. The limits Mij for

i, j = 1, 2, 3 are described in table D1.

Table D1. Saturation limits summary

M11 = 0.54 M21 = 0.675 M31 = 0.9360

M12 = 2.5515 M22 = 2.835 M32 = 5.256

M13 = 7.0425 M23 = 7.0425 M33 = 1.5

Appendix E. Information about the Robotic platform ACEbot

The product reference of the platform is “Nexus 4WD Mecanum wheel mobile robot kit

10015” but the ultrasonic sensors are not used in the present application.

As regards the electronics, the main program was running on a Gumstix Overo

board, which, thanks to the RT-MaG toolbox, can be programmed directly from

Matlab/Simulink [54]. This Linux based Computer-On-Module (COM) was running the

signal processing algorithm for the 23 photosensors received from CurvACE through a

synchronous serial bus (SPI). It was also connected through UART to a Teensy board.

The latter was in charge of the acquisition of the photo-current sensor to record the

ambient light level and to switch the stepper motor in charge of the eye’s periodic tremor
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Batterie 3S

to host station

5cm

Vibrating artificial
compound eye

Light sensor

Gumstix

Figure E1. Picture from above of the robot, showing the electronic hardware. The

Gumstix communicates with the ground station through Wifi as well as with the Motor

control board and with the Teensy through an UART bus. Neither boards are visible

on the picture as they are under the robot.

on and off. The wheel speed setpoints computed on the Gumstix were transmitted

through a serial bus (UART) to the Arduino-compatible motor control board, which

then controlled each wheel’s speed with a PI controller. A WiFi connection between the

robot and the ground station was used to monitor the variables of interest during the

experiments and provided the rover with setpoints. The ACEbot robot was powered by

a 3-cell lithium polymer battery.
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Iberoamericana de Automática e Informática Industrial {RIAI}, 11(4):426 – 434, 2014.

[52] T. Raharijaona, R. Mawonou, T.V. Nguyen, F. Colonnier, M. Boyron, J. Diperi, and S. Viollet.

Local positioning system using flickering infrared leds. Sensors, 17(2518), 2017.

[53] A. Manecy, N. Marchand, F. Ruffier, and S. Viollet. X4-mag: A low-cost open-source micro-

quadrotor and its linux-based controller. International Journal of Micro Air Vehicles, 7(2):89–

110, 2015.

[54] A. Manecy. RT-MaG project. http://www.gipsa-lap.fr/projet/RT-MaG/.


	Introduction
	Experimental setup and objectives
	Bio-inspired receptive fields summation to localize a target with hyperacuity
	From modulated visual signals to Gaussian-like responses
	From Gaussian-like responses to angular position measurement within the triplet's FOV
	Localization using Gaussian receptive fields
	Normalized Weighted Sum (NWS) Computation
	Characterization of the vibrating visual sensor

	Weighted Sum Selection : edge localization over a large angular position range
	Application to Target localization

	Nonlinear control and kinematics of the pursuer robot
	Experimental pursuit performances
	Experimental setup
	Ambient Light Variations
	Repeatability
	Biologically plausible behavior: chasing and motion camouflage
	Comparison with the hoverfly trajectories
	Discussion on motion camouflage


	Conclusion
	Supplementary materials
	Demodulation processing details
	Details about the Heiligenberg Weighted Sum and the proposed normalization
	Theoretical presentation of the Normalized Weighted Sum
	Linear approximation and error estimation for the Normalized Weighted Sum computation

	ACEbot control parameters
	Information about the Robotic platform ACEbot

