S. Gozem, H. L. Luk, I. Schapiro, M. Olivucci, A. V. Akimov et al., Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores, Chem. Rev, vol.117, issue.2, pp.5797-5890, 2015.

, Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States, Chem. Rev, vol.115, issue.4, pp.6217-6263, 2015.

R. Crespo-otero and M. Barbatti, Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics, Chem. Rev, vol.118, issue.5, pp.7026-7068, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02091892

F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, and K. Burke,

K. Müller, Bypassing the Kohn-Sham Equations with Machine Learning, Nat. Commun, vol.8, issue.6, p.872, 2017.

D. Hu, Y. Xie, X. Li, L. Li, and Z. Lan, Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-theFly Nonadiabatic Molecular Dynamics Simulation, J. Phys. Chem. Lett, vol.9, issue.7, pp.2725-2732, 2018.

P. O. Dral, A. Owens, S. N. Yurchenko, and W. Thiel, StructureBased Sampling and Self-Correcting Machine Learning for Accurate Calculations of Potential Energy Surfaces and Vibrational Levels, J. Chem. Phys, vol.146, issue.8, p.244108, 2017.

S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt et al., Machine Learning of Accurate EnergyConserving Molecular Force Fields. Sci. Adv, issue.9, 2017.

K. Hansen, G. Montavon, F. Biegler, S. Fazli, and M. Rupp,

M. Scheffler, O. A. Von-lilienfeld, A. Tkatchenko, and K. Müller, Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies, J. Chem. Theory Comput, vol.9, issue.10, pp.3404-3419, 2013.

M. Rupp, R. Ramakrishnan, M. Hartmann, and E. Tapavicza, Electronic Spectra from TDDFT and Machine Learning in Chemical Space, Int. J. Quantum Chem, vol.115, issue.11, p.84111, 2015.

O. T. Unke and M. Meuwly, Toolkit for the Construction of Reproducing Kernel-Based Representations of Data: Application to Multidimensional Potential Energy Surfaces, J. Chem. Inf. Model, vol.57, issue.13, 1923.

A. P. Bartók and G. Csányi, Gaussian Approximation Potentials: A Brief Tutorial Introduction, Int. J. Quantum Chem, vol.115, issue.14, pp.1051-1057, 2015.

A. Denzel and J. Kästner, Gaussian Process Regression for Geometry Optimization, J. Chem. Phys, vol.148, issue.15, p.94114, 2018.

M. Gastegger, J. Behler, and P. Marquetand, Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra, Chem. Sci, vol.8, issue.16, pp.6924-6935, 2017.

Z. Li, J. R. Kermode, A. De-vita, G. W. Richings, and S. Habershon, Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces, J. Chem. Theory Comput, vol.114, issue.17, pp.3192-3203, 2015.

F. Hase, C. Kreisbeck, and A. Aspuru-guzik, Machine Learning for Quantum Dynamics: Deep Learning of Excitation Energy Transfer Properties. Chem. Sci, vol.8, pp.8419-8426, 1920.

L. Zhang, J. Han, H. Wang, R. ;. Car, and W. , Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics, Phys. Rev. Lett, 2018.

G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler et al., Automatic Selection of Atomic Fingerprints and Reference Configurations for Machine-Learning Potentials, J. Chem. Phys, vol.148, issue.22, p.94306, 2015.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2009.

I. M. Sobol, D. Asotsky, A. Kreinin, and S. Kucherenko, Construction and Comparison of High-Dimensional Sobol' Generators. Wilmott, pp.64-79, 2011.

L. Wang and O. V. Prezhdo, ) Zhu, C.; Nakamura, H. The Two-State Linear Curve Crossing Problems Revisited. III. Analytical Approximations for Stokes Constant and Scattering Matrix: Nonadiabatic Tunneling Case, J. Phys. Chem. Lett, vol.5, issue.26, pp.6208-6222, 1993.

F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico et al., Surface Hopping Dynamics Using a Locally Diabatic Formalism: Charge Transfer in the Ethylene Dimer Cation and Excited State Dynamics in the 2-Pyridone Dimer, J. Chem. Phys, pp.22-514, 2012.