C. T. Middleton, K. De-la-harpe, C. Su, Y. K. Law, C. E. Crespo-hernández et al., DNA Excited-State Dynamics: From Single Bases to the Double Helix, Annu. Rev. Phys. Chem, vol.60, pp.217-239, 2009.

Y. Cheng and G. R. Fleming, Dynamics of Light Harvesting in Photosynthesis, Annu. Rev. Phys. Chem, vol.60, pp.241-262, 2009.

K. Wenderich and G. Mul, Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review, Chem. Rev, vol.116, pp.14587-14619, 2016.

K. A. Mazzio and C. K. Luscombe, The Future of Organic Photovoltaics, Chem. Soc. Rev, vol.44, pp.78-90, 2015.

T. Petrenko, F. Neese, A. Stolow, A. E. Bragg, and D. M. Neumark, Analysis and Prediction of Absorption Band Shapes, Fluorescence Band Shapes, Resonance Raman Intensities, and Excitation Profiles Using the TimeDependent Theory of Electronic Spectroscopy, J. Chem. Phys, vol.127, issue.6, pp.1719-1758, 2004.

M. Born and R. Oppenheimer, ) Born, M.; Huang, K. Dynamical Theory of Crystal Lattices, Ann. Phys, vol.389, issue.8, pp.457-484, 1927.

U. K. Oxford, F. Negri, and M. Z. Zgierski, On the Vibronic Structure of the S0?S1 Transitions in Azulene, 1954.

, J. Chem. Phys, vol.99, pp.4318-4326, 1993.

M. Dierksen and S. Grimme, Density Functional Calculations of the Vibronic Structure of Electronic Absorption Spectra, J. Chem. Phys, vol.120, pp.3544-3554, 2004.

A. M. Mebel, M. Hayashi, K. K. Liang, and S. H. Lin, Ab Initio Calculations of Vibronic Spectra and Dynamics for Small Polyatomic Molecules: Role of Duschinsky Effect, J. Phys. Chem. A, vol.103, pp.10674-10690, 1999.

J. B. Foresman, M. Head-gordon, J. A. Pople, and M. J. Frisch, Toward a Systematic Molecular Orbital Theory for Excited States, J. Phys. Chem, vol.96, pp.135-149, 1992.

J. F. Stanton and R. J. Bartlett, The Equation of Motion Coupled-cluster Method. A Systematic Biorthogonal Approach to Molecular Excitation Energies, Transition Probabilities, and Excited State Properties, J. Chem. Phys, vol.98, pp.7029-7039, 1993.

R. J. Bartlett, Coupled-Cluster Theory and Its Equation-of-Motion Extensions, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.2, pp.126-138, 2012.

A. I. Krylov, Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Electronically Excited Species: The Hitchhiker's Guide to Fock Space, Annu. Rev. Phys. Chem, vol.59, pp.433-462, 2008.

M. E. Casida, Time-Dependent Density Functional Response Theory for Molecules, Recent Advances in Density Functional Methods

D. P. Chong and . Ed, , pp.155-192, 1995.

F. Furche and R. Ahlrichs, Adiabatic Time-Dependent Density Functional Methods for Excited State Properties, J. Chem. Phys, vol.117, pp.7433-7447, 2002.

I. Shavitt, H. F. Schaefer, and E. , The Method of Configuration Interaction, Methods of Electronic Structure Theory, pp.189-275, 1977.

I. Shavitt, The History and Evolution of Configuration Interaction, Mol. Phys, vol.94, pp.3-17, 1998.

R. J. Buenker and S. D. Peyerimhoff, Individualized Configuration Selection in CI Calculations with Subsequent Energy Extrapolation, Theor. Chim. Acta, vol.35, pp.33-58, 1974.

R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Applicability of the Multi-Reference Double-Excitation CI (MRD-CI) Method to the Calculation of Electronic Wavefunctions and Comparison with Related Techniques, Mol. Phys, vol.35, pp.771-791, 1978.

P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Multiconfiguration SelfConsistent Field and Multireference Configuration Interaction Methods and Applications

, Chem. Rev, vol.112, pp.108-181, 2012.

I. Shavitt, The History and Evolution of Configuration Interaction, Mol. Phys, vol.94, pp.3-17, 1998.

W. Meyer, Configuration Expansion by Means of Pseudonatural Orbitals, Methods of Electronic Structure Theory

H. F. Schaefer and . Ed, Modern Theoretical Chemistry, pp.413-446, 1977.

P. E. Siegbahn, Direct Configuration Interaction with a Reference State Composed of Many Reference Configurations, Int. J. Quantum Chem, vol.18, issue.26, pp.3144-3156, 1980.

R. J. Buenker and S. D. Peyerimhoff, Ab Initio Calculations Close to the Full CI Level of Accuracy and Their Use for the Interpretation of Molecular Spectra, New Horizons of Quantum Chemistry, vol.15, 2004.

, Conical Intersections: Theory, Computation and Experiment

W. Domcke, D. R. Yarkony, and H. Köppel, Advanced Series in Physical Chemistry, vol.17, 2011.

L. Serrano-andrés and M. Merchán, Quantum Chemistry of the Excited State, Overview. J. Mol. Struct. THEOCHEM, vol.729, pp.99-108, 2005.

A. Dreuw and M. Head-gordon, Single-Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules, Chem. Rev, vol.105, pp.4009-4037, 2005.

A. I. Krylov, Spin-Flip Equation-of-Motion Coupled-Cluster Electronic Structure Method for a Description of Excited States, Bond Breaking, Diradicals, and Triradicals, Acc. Chem. Res, vol.39, pp.83-91, 2006.

D. Sherrill, C. Schaefer, H. F. Löwdin, P. Sabin, J. R. Zerner et al., The Configuration Interaction Method: Advances in Highly Correlated Approaches, Advances in Quantum Chemistry, vol.34, pp.143-269, 1999.

R. J. Bartlett and M. Musia?, Coupled-Cluster Theory in Quantum Chemistry, Rev. Mod. Phys, vol.79, pp.291-352, 2007.

T. Helgaker, P. Jørgensen, and J. Olsen, Configuration-Interaction Theory, Molecular Electronic-Structure Theory

, Ltd: Chichester, UK, pp.523-597, 2014.

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, A Complete Active Space SCF Method (CASSCF) Using a Density Matrix Formulated Super-CI Approach, Chem. Phys, vol.48, pp.157-173, 1980.
DOI : 10.1016/0301-0104(80)80045-0

K. R. Shamasundar, G. Knizia, and H. Werner, A New Internally Contracted MultiReference Configuration Interaction Method, J. Chem. Phys, p.54101, 2011.
DOI : 10.1063/1.3609809

I. Shavitt, The Graphical Unitary Group Approach and Its Application to Direct Configuration Interaction Calculations, The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
DOI : 10.1007/978-3-642-93163-5_2

J. Hinze and . Ed, Lecture Notes in Chemistry, vol.22

. Springer-verlag, , pp.51-99, 1981.

W. Duch and J. Karwowski, Symmetric Group Approach to Configuration Interaction Methods, Comput. Phys. Reports, vol.2, pp.93-170, 1985.
DOI : 10.1016/0167-7977(85)90001-2

H. Lischka, T. Müller, P. G. Szalay, I. Shavitt, R. M. Pitzer et al., Columbus-a Program System for Advanced Multireference Theory Calculations, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.1, pp.191-199, 2011.
DOI : 10.1002/wcms.25

E. R. Davidson, The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices, J. Comput. Phys, vol.17, pp.87-94, 1975.

J. Olsen, P. Jørgensen, and J. Simons, Passing the One-Billion Limit in Full ConfigurationInteraction (FCI) Calculations, Chem. Phys. Lett, vol.169, pp.463-472, 1990.
DOI : 10.1016/0009-2614(90)85633-n

B. Roos, P. E. Siegbahn, and H. F. Schaefer, The Direct Configuration Interaction Method from Molecular Integrals, Methods of Electronic Structure Theory, pp.277-318, 1977.
DOI : 10.1007/978-1-4757-0887-5_7

W. A. De-jong, E. Bylaska, N. Govind, C. L. Janssen, K. Kowalski et al., Utilizing High Performance Computing for Chemistry: Parallel Computational Chemistry, Phys. Chem. Chem. Phys, vol.12, issue.59, pp.6896-6920, 2010.

H. Dachsel, H. Lischka, R. Shepard, J. Nieplocha, and R. J. Harrison, A Massively Parallel Multireference Configuration Interaction Program: The Parallel COLUMBUS Program, J. Comput. Chem, vol.18, pp.430-448, 1997.
DOI : 10.1002/(sici)1096-987x(199702)18:3<430::aid-jcc12>3.0.co;2-m

R. J. Bartlett, Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules, Annu. Rev. Phys. Chem, vol.32, pp.359-401, 1981.
DOI : 10.1146/annurev.pc.32.100181.002043

S. R. Langhoff and E. R. Davidson, Configuration Interaction Calculations on the Nitrogen Molecule, Int. J. Quantum Chem, vol.8, pp.61-72, 1974.
DOI : 10.1002/qua.560080106

P. G. Szalay and R. J. Bartlett, Approximately Extensive Modifications of the Multireference Configuration Interaction Method: A Theoretical and Practical Analysis, J. Chem. Phys, vol.103, pp.3600-3612, 1995.

P. G. Szalay, T. Müller, and H. Lischka, Excitation Energies and Transition Moments by the Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Method. Phys. Chem
DOI : 10.1039/b000224k

, Chem. Phys, vol.2, pp.2067-2073, 2000.

K. Sivalingam, M. Krupicka, A. A. Auer, and F. Neese, Comparison of Fully Internally and Strongly Contracted Multireference Configuration Interaction Procedures, J. Chem. Phys, p.54104, 2016.
DOI : 10.1063/1.4959029

H. Werner and P. J. Knowles, An Efficient Internally Contracted Multiconfigurationreference Configuration Interaction Method, J. Chem. Phys, vol.89, pp.5803-5814, 1988.
DOI : 10.1063/1.455556

P. J. Knowles and H. Werner, An Efficient Method for the Evaluation of Coupling Coefficients in Configuration Interaction Calculations, Chem. Phys. Lett, vol.145, pp.514-522, 1988.

H. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Molpro: A GeneralPurpose Quantum Chemistry Program Package, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.2, pp.242-253, 2012.

M. Saitow, Y. Kurashige, and T. Yanai, Multireference Configuration Interaction Theory Using Cumulant Reconstruction with Internal Contraction of Density Matrix Renormalization Group Wave Function, J. Chem. Phys, p.44118, 2013.

M. Saitow, Y. Kurashige, and T. Yanai, Fully Internally Contracted Multireference Configuration Interaction Theory Using Density Matrix Renormalization Group: A Reduced-Scaling Implementation Derived by Computer-Aided Tensor Factorization

, Chem. Theory Comput, vol.11, pp.5120-5131, 2015.

C. Angeli, R. Cimiraglia, and J. Malrieu, N-Electron Valence State Perturbation Theory: A Fast Implementation of the Strongly Contracted Variant, Chem. Phys. Lett, vol.350, pp.297-305, 2001.

F. Neese, The ORCA Program System, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.2012, pp.73-78

C. W. Bauschlicher and S. R. Langhoff, Full Configuration-interaction Study of the Ionicneutral Curve Crossing in LiF, J. Chem. Phys, vol.89, pp.4246-4254, 1988.

P. J. Knowles and H. Werner, Internally Contracted Multiconfiguration-Reference Configuration Interaction Calculations for Excited States, Theor. Chim. Acta, vol.84, pp.95-103, 1992.

L. B. Harding, S. J. Klippenstein, H. Lischka, and R. Shepard, Comparison of Multireference Substituents on the Biradical Character of the Polycyclic Aromatic Hydrocarbon Heptazethrene, J. Chem. Theory Comput, vol.13, pp.2612-2622, 2017.

J. Escorihuela, A. Das, W. J. Looijen, F. L. Van-delft, A. J. Aquino et al., Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2Quinone Cycloaddition: Experimental and Theoretical Studies, J. Org. Chem, vol.83, pp.244-252, 2018.

T. S. Chwee, A. B. Szilva, R. Lindh, and E. A. Carter, Linear Scaling Multireference Singles and Doubles Configuration Interaction, J. Chem. Phys, vol.128, p.224106, 2008.

T. S. Chwee and E. A. Carter, Cholesky Decomposition within Local Multireference Singles and Doubles Configuration Interaction, J. Chem. Phys, p.74104, 2010.

T. S. Chwee and E. A. Carter, Density Fitting of Two-Electron Integrals in Local Multireference Single and Double Excitation Configuration Interaction Calculations, Mol. Phys, vol.108, pp.2519-2526, 2010.

T. S. Chwee and E. A. Carter, Valence Excited States in Large Molecules via Local Multireference Singles and Doubles Configuration Interaction, J. Chem. Theory Comput, vol.7, pp.103-111, 2011.

P. Löwdin, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, Phys. Rev, vol.97, pp.1474-1489, 1955.

Z. Lu and S. Matsika, High-Multiplicity Natural Orbitals in Multireference Configuration Interaction for Excited States, J. Chem. Theory Comput, vol.8, pp.509-517, 2012.

T. L. Barr and E. R. Davidson, Nature of the Configuration-Interaction Method In, Phys. Rev. A, vol.1, pp.644-658, 1970.

A. Landau, K. Khistyaev, S. Dolgikh, and A. I. Krylov, Frozen Natural Orbitals for Ionized States within Equation-of-Motion Coupled-Cluster Formalism, J. Chem. Phys, p.14109, 2010.

J. M. Bofill and P. Pulay, The Unrestricted Natural Orbital-complete Active Space (UNOCAS) Method: An Inexpensive Alternative to the Complete Active Space-self-consistentfield (CAS-SCF) Method, J. Chem. Phys, vol.90, pp.3637-3646, 1989.

M. L. Abrams and C. D. Sherrill, Natural Orbitals as Substitutes for Optimized Orbitals in Complete Active Space Wavefunctions, Chem. Phys. Lett, vol.395, pp.227-232, 2004.

F. Neese, A Spectroscopy Oriented Configuration Interaction Procedure, J. Chem. Phys, vol.119, pp.9428-9443, 2003.
DOI : 10.1063/1.1615956

F. Aquilante, T. K. Todorova, L. Gagliardi, T. B. Pedersen, and B. O. Roos, Systematic Truncation of the Virtual Space in Multiconfigurational Perturbation Theory, J. Chem. Phys, p.34113, 2009.

D. M. Potts, C. M. Taylor, R. K. Chaudhuri, and K. F. Freed, The Improved Virtual OrbitalComplete Active Space Configuration Interaction Method, a "Packageable" Efficient Ab Initio Many-Body Method for Describing Electronically Excited States, J. Chem. Phys, vol.114, pp.2592-2600, 2001.

Z. Lu and S. Matsika, High-Multiplicity Natural Orbitals in Multireference Configuration Interaction for Excited State Potential Energy Surfaces, J. Phys. Chem. A, vol.117, pp.7421-7430, 2013.

R. Shepard, The Multiconfiguration Self-Consistent Field Method, Ab Initio Methods in Quantum Chemistry

J. Wiley, . Sons, and . Ltd, , vol.69, pp.63-200, 1987.

H. Werner, Matrix-Formulated Direct Multiconfiguration Self-Consistent Field and Multiconfiguration Reference Configuration-Interaction Methods, Ab Initio Methods in Quantum Chemistry Part

J. Wiley, . Sons, and . Ltd, , pp.1-62, 1987.

B. O. Roos, The Complete Active Space Self-Consistent Field Method and Its Applications in Electronic Structure Calculations, Ab Initio Methods in Quantum Chemistry

K. P. Lawley and . Ed, Advances in Chemical Physics

J. Wiley, . Sons, and . Ltd, , pp.399-445, 1987.

H. Werner and W. Meyer, A Quadratically Convergent MCSCF Method for the Simultaneous Optimization of Several States, J. Chem. Phys, vol.74, pp.5794-5801, 1981.

H. Lischka, M. Dallos, and R. Shepard, Analytic MRCI Gradient for Excited States: Formalism and Application to the n-?* Valence-and n-(3s,3p) Rydberg States of Formaldehyde, Mol. Phys, vol.100, pp.1647-1658, 2002.

H. Weyl, The Classical Groups: Their Invariants and Representations, 1946.

P. A. Malmqvist, A. Rendell, and B. O. Roos, The Restricted Active Space Self-ConsistentField Method, Implemented with a Split Graph Unitary Group Approach, J. Phys. Chem, vol.94, pp.5477-5482, 1990.

J. Ivanic, Direct Configuration Interaction and Multiconfigurational Self-Consistent-Field Method for Multiple Active Spaces with Variable Occupations. I. Method, J. Chem. Phys, vol.119, pp.9364-9376, 2003.

D. Ma, G. Li-manni, L. Gagliardi, V. Veryazov, P. A. Malmqvist et al., The Generalized Active Space Concept in Multiconfigurational Self-Consistent Field Methods, Int. J. Quantum Chem, vol.135, issue.116, pp.3329-3338, 2011.

P. Pulay and T. P. Hamilton, UHF Natural Orbitals for Defining and Starting MC-SCF Calculations, J. Chem. Phys, vol.88, pp.4926-4933, 1988.

S. Keller, K. Boguslawski, T. Janowski, M. Reiher, and P. Pulay, Selection of Active Spaces for Multiconfigurational Wavefunctions, J. Chem. Phys, p.244104, 2015.

H. J. Jensen, P. Jørgensen, H. Ågren, J. Olsen, M. Boggio-pasqua et al., Second-order Møller-Plesset Perturbation Theory as a Configuration and Orbital Generator in Multiconfiguration Selfconsistent Field Calculations, Comput. Theor. Chem, vol.88, issue.120, pp.6-13, 1988.

F. Krausbeck, D. Mendive-tapia, A. J. Thom, and M. J. Bearpark, Choosing RASSCF Orbital Active Spaces for Multiple Electronic States, Comput. Theor. Chem, pp.14-19, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02142258

G. Das and A. Wahl, Extended Hartree-Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2 , Optimized Double Configurations for F2, J. Chem. Phys, vol.44, pp.87-96, 1966.

T. J. Lee, W. D. Allen, and H. F. Schaefer, The Analytic Evaluation of Energy First Derivatives for Two-configuration Self-consistent-field Configuration Interaction (TCSCF-CI) Wave Functions. Application to Ozone and Ethylene, J. Chem. Phys, vol.87, pp.7062-7075, 1987.

Q. Sun, J. Yang, G. K. Chan, and .. , A General Second Order Complete Active Space SelfConsistent-Field Solver for Large-Scale Systems, Chem. Phys. Lett, vol.683, pp.291-299, 2017.

N. Nakatani and S. Guo, Density Matrix Renormalization Group (DMRG) Method as a Common Tool for Large Active-Space CASSCF/CASPT2 Calculations, J. Chem. Phys, p.94102, 2017.

J. W. Snyder, B. F. Curchod, and T. J. Martínez, GPU-Accelerated State-Averaged Complete Active Space Self-Consistent Field Interfaced with Ab Initio Multiple Spawning Unravels the Photodynamics of Provitamin D3, J. Phys. Chem. Lett, vol.7, pp.2444-2449, 2016.

G. Granucci and A. Toniolo, Molecular Gradients for Semiempirical CI Wavefunctions with Floating Occupation Molecular Orbitals, Chem. Phys. Lett, vol.325, pp.79-85, 2000.

P. Slavicek and T. J. Martinez, Ab Initio Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction: An Efficient Approximation to CASSCF, J. Chem. Phys, p.234102, 2010.

R. Shepard, A Discussion of Some Aspects of the MCSCF Method, Relativistic and Electron Correlation Effects in Molecules and Solids, vol.318, 1992.

A. D. Mclean, B. H. Lengsfield, J. Pacansky, and Y. Ellinger, Symmetry Breaking in Molecular Calculations and the Reliable Prediction of Equilibrium Geometries. The Formyloxyl Radical as an Example, J. Chem. Phys, vol.83, pp.3567-3576, 1985.

P. Y. Ayala and H. B. Schlegel, A Nonorthogonal CI Treatment of Symmetry Breaking in Sigma Formyloxyl Radical, J. Chem. Phys, vol.108, pp.7560-7567, 1998.

A. Rauk, D. Yu, P. Borowski, and B. Roos, CASSCF, CASPT2, and MRCI Investigations of Formyloxyl Radical (HCOO·), Chem. Phys, vol.197, pp.73-80, 1995.

J. F. Stanton and N. S. Kadagathur, Pseudorotational Interconversion of the 2 A1 and 2 B2 States of HCOO, J. Mol. Struct, vol.376, pp.469-474, 1996.

C. P. Blahous, B. F. Yates, Y. Xie, and H. F. Schaefer, Symmetry Breaking in the NO2 ? Radical: Construction of the 2 A1 and 2 B2 States with Cs Symmetry Complete Active Space Self-consistent-field Wave Functions, J. Chem. Phys, vol.93, pp.8105-8109, 1990.

J. C. Saeh and J. F. Stanton, Application of an Equation-of-Motion Coupled Cluster Method Including Higher-Order Corrections to Potential Energy Surfaces of Radicals, J. Chem. Phys, vol.111, pp.8275-8285, 1999.

J. M. Martin, J. El-yazal, J. François, and R. Gijbels, The Structure and Energetics of B3N2, B2N3, and BN4, Mol. Phys, vol.85, pp.527-537, 1995.

K. R. Asmis, T. R. Taylor, and D. M. Neumark, Anion Photoelectron Spectroscopy of B2N, J. Chem. Phys, vol.111, pp.8838-8851, 1999.

S. R. Gwaltney and M. Head-gordon, Calculating the Equilibrium Structure of the BNB Molecule: Real vs. Artifactual Symmetry Breaking, Phys. Chem. Chem. Phys, vol.3, pp.4495-4500, 2001.

A. Kalemos, T. H. Dunning, and A. Mavridis, On Symmetry Breaking in BNB: Real or Artifactual?, J. Chem. Phys, vol.120, pp.1813-1819, 2004.

N. J. Russ, T. D. Crawford, and G. S. Tschumper, Real versus Artifactual Symmetry-Breaking Effects in Hartree-Fock, Density-Functional, and Coupled-Cluster Methods, J. Chem. Phys, vol.120, pp.7298-7306, 2004.

J. F. Stanton, An Unusually Large Nonadiabatic Error in the BNB Molecule, J. Chem. Phys, p.174309, 2010.

X. Li and J. Paldus, Analysis and Classification of Symmetry Breaking in Linear ABA-Type Triatomics, J. Chem. Phys, p.164116, 2009.

A. Kalemos, Symmetry Breaking in a Nutshell: The Odyssey of a Pseudo Problem in Molecular Physics. The X? 2 ?u + BNB Case Revisited, J. Chem. Phys, p.224302, 2013.

J. F. Stanton, J. F. Stanton, J. Gauss, and R. J. Bartlett, On the Choice of Orbitals for Symmetry Breaking Problems with Application to NO3, J. Chem. Phys, vol.139, issue.145, pp.5554-5559, 1992.

W. Eisfeld and K. Morokuma, A Detailed Study on the Symmetry Breaking and Its Effect on the Potential Surface of NO3, J. Chem. Phys, vol.113, pp.5587-5597, 2000.

P. G. Szalay, A. G. Császár, G. Fogarasi, A. Karpfen, and H. Lischka, An Ab Initio Study of the Structure and Vibrational Spectra of Allyl and 1,4-Pentadienyl Radicals, J. Chem. Phys, vol.93, pp.1246-1256, 1990.

P. Löwdin, Discussion on The Hartree-Fock Approximation, Rev. Mod. Phys, vol.35, pp.496-501, 1963.

E. R. Davidson and W. T. Borden, Symmetry Breaking in Polyatomic Molecules: Real and Artifactual, J. Phys. Chem, vol.87, pp.4783-4790, 1983.

Y. Shu and B. G. Levine, Reducing the Propensity for Unphysical Wavefunction Symmetry Breaking in Multireference Calculations of the Excited States of Semiconductor Clusters

, J. Chem. Phys, p.74102, 2013.

A. Kalemos, Revisiting the Symmetry Breaking in the X? 2 ?u + State of BNB, J. Chem. Phys, p.234315, 2016.

R. J. Bartlett, Coupled-Cluster Approach to Molecular Structure and Spectra: A Step toward Predictive Quantum Chemistry, J. Phys. Chem, vol.93, pp.1697-1708, 1989.

R. J. Bartlett and J. F. Stanton, Applications of Post-Hartree-Fock Methods: A Tutorial, In Reviews in Computational Chemistry

J. Gauss, Coupled-Cluster Theory, Encyclopedia of Computational Chemistry
URL : https://hal.archives-ouvertes.fr/hal-00513122

R. J. Bartlett, D. I. Lyakh, M. Musia?, V. F. Lotrich, and R. J. Bartlett, Multireference Nature of Chemistry: The Coupled-Cluster View, Mol. Phys, vol.108, issue.156, pp.182-243, 2010.

R. J. Bartlett, To Multireference or Not to Multireference: That Is the Question?, Int. J. Mol. Sci, vol.3, pp.579-603, 2002.

R. J. Bartlett and G. D. Purvis, Molecular Applications of Coupled Cluster and Many-Body Perturbation Methods, Phys. Scr, vol.21, pp.255-265, 1980.

G. D. Purvis and R. J. Bartlett, A Full Coupled-cluster Singles and Doubles Model: The Inclusion of Disconnected Triples, J. Chem. Phys, vol.76, pp.1910-1918, 1982.

J. Noga and R. J. Bartlett, The Full CCSDT Model for Molecular Electronic Structure, J. Chem. Phys, vol.86, pp.7041-7050, 1987.

O. Christiansen, H. Koch, and P. Jørgensen, The Second-Order Approximate Coupled Cluster Singles and Doubles Model CC2, Chem. Phys. Lett, vol.243, pp.409-418, 1995.

J. F. Stanton and J. Gauss, Perturbative Treatment of the Similarity Transformed Hamiltonian in Equation-of-motion Coupled-cluster Approximations, J. Chem. Phys, vol.103, pp.1064-1076, 1995.

K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-gordon, A Fifth-Order Perturbation Comparison of Electron Correlation Theories, Chem. Phys. Lett, vol.157, pp.479-483, 1989.

Y. S. Lee and R. J. Bartlett, A Study of Be2 with Many-body Perturbation Theory and a Coupled-cluster Method Including Triple Excitations, J. Chem. Phys, vol.80, pp.4371-4377, 1984.

M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, Towards a Full CCSDT Model for Electron Correlation, J. Chem. Phys, vol.83, pp.4041-4046, 1985.

J. Noga, R. J. Bartlett, and M. Urban, Towards a Full CCSDT Model for Electron Correlation. CCSDT-n Models, Chem. Phys. Lett, vol.134, issue.166, pp.126-132, 1987.

H. Koch, O. Christiansen, P. Jørgensen, A. M. Sanchez-de-merás, and T. Helgaker, The CC3 Model: An Iterative Coupled Cluster Approach Including Connected Triples, J. Chem. Phys, vol.106, issue.167, pp.1808-1818, 1997.

H. J. Monkhorst, Calculation of Properties with the Coupled-Cluster Method, Int. J. Quantum Chem, vol.12, pp.421-432, 1977.

H. Sekino and R. J. Bartlett, A Linear Response, Coupled-Cluster Theory for Excitation Energy, Int. J. Quantum Chem, vol.26, pp.255-265, 1984.

H. Koch and P. Jørgensen, Coupled Cluster Response Functions, J. Chem. Phys, vol.93, pp.3333-3344, 1990.

H. Koch, R. Kobayashi, A. Sanchez-de-mera?s, and P. Jørgensen, Calculation of Size-intensive Transition Moments from the Coupled Cluster Singles and Doubles Linear Response Function, J. Chem. Phys, vol.100, pp.4393-4400, 1994.

D. Kánnár and P. G. Szalay, Benchmarking Coupled Cluster Methods on Valence Singlet Excited States, J. Chem. Theory Comput, vol.10, pp.3757-3765, 2014.

D. C. Comeau and R. J. Bartlett, The Equation-of-Motion Coupled-Cluster Method. Applications to Open-and Closed-Shell Reference States, Chem. Phys. Lett, vol.207, pp.414-423, 1993.

H. Koch, H. J. Jensen, P. Jørgensen, and T. Helgaker, Excitation Energies from the Coupled Cluster Singles and Doubles Linear Response Function (CCSDLR). Applications to Be, CH + , CO, and H2O, J. Chem. Phys, vol.93, pp.3345-3350, 1990.

S. A. Kucharski, M. W?och, M. Musia?, and R. J. Bartlett, Coupled-Cluster Theory for Excited Electronic States: The Full Equation-of-Motion Coupled-Cluster Single, Double, and Triple Excitation Method, J. Chem. Phys, vol.115, pp.8263-8266, 2001.

K. Hald, P. Jørgensen, J. Olsen, and M. Jaszu?ski, An Analysis and Implementation of a General Coupled Cluster Approach to Excitation Energies with Application to the B2

. Molecule, J. Chem. Phys, vol.115, pp.671-679, 2001.

S. R. Gwaltney, M. Nooijen, and R. J. Bartlett, Simplified Methods for Equation-of-Motion Coupled-Cluster Excited State Calculations, Chem. Phys. Lett, vol.248, pp.189-198, 1996.

A. B. Trofimov and J. Schirmer, An Efficient Polarization Propagator Approach to Valence Electron Excitation Spectra, J. Phys. B At. Mol. Opt. Phys, vol.28, pp.2299-2324, 1995.

A. B. Trofimov, G. Stelter, and J. Schirmer, A Consistent Third-Order Propagator Method for Electronic Excitation, J. Chem. Phys, vol.111, pp.9982-9999, 1999.

P. H. Harbach, M. Wormit, and A. Dreuw, The Third-Order Algebraic Diagrammatic Construction Method (ADC(3)) for the Polarization Propagator for Closed-Shell Molecules: Efficient Implementation and Benchmarking, J. Chem. Phys, p.64113, 2014.

M. Head-gordon, R. J. Rico, M. Oumi, and T. J. Lee, A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions, Chem. Phys. Lett, vol.219, pp.21-29, 1994.

O. Christiansen, H. Koch, and P. Jørgensen, Response Functions in the CC3 Iterative Triple Excitation Model, J. Chem. Phys, vol.103, pp.7429-7441, 1995.

J. D. Watts and R. J. Bartlett, Iterative and Non-Iterative Triple Excitation Corrections in Coupled-Cluster Methods for Excited Electronic States: The EOM-CCSDT-3 and EOMCCSD(T? ) Methods, Chem. Phys. Lett, vol.258, pp.581-588, 1996.

O. Christiansen, H. Koch, and P. Jørgensen, Perturbative Triple Excitation Corrections to Coupled Cluster Singles and Doubles Excitation Energies, J. Chem. Phys, vol.105, pp.1451-1459, 1996.

D. A. Matthews and J. F. Stanton, A New Approach to Approximate Equation-of-Motion Coupled Cluster with Triple Excitations, J. Chem. Phys, p.124102, 2016.

J. D. Watts and R. J. Bartlett, Economical Triple Excitation Equation-of-Motion CoupledCluster Methods for Excitation Energies, Chem. Phys. Lett, vol.233, pp.81-87, 1995.

D. Kánnár, A. Tajti, and P. G. Szalay, Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets, J. Chem. Theory Comput, vol.13, pp.202-209, 2017.

P. G. Szalay, T. Watson, A. Perera, V. Lotrich, and R. J. Bartlett, Benchmark Studies on the Building Blocks of DNA. 3. Watson-Crick and Stacked Base Pairs, J. Phys. Chem. A, vol.117, pp.3149-3157, 2013.

M. Schreiber, M. R. Silva-junior, S. P. Sauer, and W. Thiel, Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD, and CC3, J. Chem. Phys, vol.128, p.134110, 2008.

S. P. Sauer, M. Schreiber, M. R. Silva-junior, and W. Thiel, Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3, J. Chem. Theory Comput, vol.5, pp.555-564, 2009.

M. R. Silva-junior, S. P. Sauer, M. Schreiber, and W. Thiel, Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2, Mol. Phys, vol.108, pp.453-465, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00580675

D. Kánnár and P. G. Szalay, Benchmarking Coupled Cluster Methods on Singlet Excited States of Nucleobases, J. Mol. Model, 2014.

A. Köhn and A. Tajti, Can Coupled-Cluster Theory Treat Conical Intersections?, J. Chem. Phys, p.44105, 2007.

E. F. Kjønstad, R. H. Myhre, T. J. Martínez, and H. Koch, Crossing Conditions in Coupled Cluster Theory, J. Chem. Phys, p.164105, 2017.

D. Tuna, D. Lefrancois, ?. Wola?ski, S. Gozem, I. Schapiro et al., Assessment of Approximate Coupled-Cluster and Algebraic-DiagrammaticConstruction Methods for Ground-and Excited-State Reaction Paths and the ConicalIntersection Seam of a Retinal-Chromophore Model, J. Chem. Theory Comput, vol.11, pp.5758-5781, 2015.

B. Jeziorski and H. J. Monkhorst, Coupled-Cluster Method for Multideterminantal Reference States, Phys. Rev. A, vol.24, pp.1668-1681, 1981.

D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Correlation Problem in Open-Shell Atoms and Molecules, Mol. Phys, vol.30, pp.1861-1888, 1975.

A. Banerjee and J. Simons, The Coupled-Cluster Method with a Multiconfiguration Reference State, Int. J. Quantum Chem, vol.19, pp.207-216, 1981.

A. Banerjee and J. Simons, Applications of Multiconfigurational Coupled-cluster Theory, J. Chem. Phys, vol.76, pp.4548-4559, 1982.

D. Mukherjee, W. Kutzelnigg, and D. Mukherjee, Normal Ordering and a Wick-like Reduction Theorem for Fermions with Respect to a Multi-Determinantal Reference State, Chem. Phys. Lett, vol.274, pp.432-449, 1997.

N. Oliphant and L. Adamowicz, Multireference Coupled-cluster Method Using a Singlereference Formalism, J. Chem. Phys, vol.94, pp.1229-1235, 1991.

A. I. Krylov, Spin-Flip Configuration Interaction: An Electronic Structure Model That Is Both Variational and Size-Consistent, Chem. Phys. Lett, vol.350, pp.522-530, 2001.

S. Levchenko and A. I. V;-krylov, Equation-of-Motion Spin-Flip Coupled-Cluster Model with Single and Double Substitutions: Theory and Application to Cyclobutadiene, J. Chem. Phys, vol.120, pp.175-185, 2003.

A. Köhn, M. Hanauer, L. A. Mück, T. Jagau, and J. Gauss, State-Specific Multireference Coupled-Cluster Theory, Rev. Comput. Mol. Sci, vol.3, pp.176-197, 2013.

B. Jeziorski and P. G. Szalay, On Our Efforts Constructing a Proper Multireference Coupled-Cluster Method, Mol. Phys, vol.108, issue.207, pp.3055-3065, 2010.

R. J. Bartlett, S. B. Trickey, and . Foreword, Mol. Phys, vol.108, pp.2815-2822, 2010.

S. A. Kucharski and R. J. Bartlett, Hilbert Space Multireference Coupled-cluster Methods. I. The Single and Double Excitation Model, J. Chem. Phys, vol.95, pp.8227-8238, 1991.

X. Li and J. Paldus, General-Model-Space State-Universal Coupled-Cluster Theory: Connectivity Conditions and Explicit Equations, J. Chem. Phys, vol.119, pp.5320-5333, 2003.

A. Balková, S. A. Kucharski, L. Meissner, and R. J. Bartlett, The Multireference Coupledcluster Method in Hilbert Space: An Incomplete Model Space Application to the LiH Molecule, J. Chem. Phys, vol.95, pp.4311-4316, 1991.

S. A. Kucharski, A. Balková, P. G. Szalay, and R. J. Bartlett, Hilbert Space Multireference Coupled-cluster Methods. II. A Model Study on H8, J. Orthogonally Spin-Adapted Multi-Reference Hilbert Space CoupledCluster Formalism: Diagrammatic Formulation. Theor. Chim. Acta, vol.97, issue.213, pp.69-103, 1992.

X. Li and J. Paldus, Automation of the Implementation of Spin-adapted Open-shell Coupledcluster Theories Relying on the Unitary Group Formalism, J. Chem. Phys, vol.101, pp.8812-8826, 1994.

X. Li and J. Paldus, Performance of the General-Model-Space State-Universal CoupledCluster Method, J. Chem. Phys, vol.120, pp.5890-5902, 2004.

F. A. Evangelista, W. D. Allen, and H. F. Schaefer, High-Order Excitations in State-Universal and State-Specific Multireference Coupled Cluster Theories: Model Systems, J. Chem. Phys, issue.216, p.154113, 2006.

A. Balkova? and R. J. Bartlett, The Two-determinant Coupled-cluster Method for Electric Properties of Excited Electronic States: The Lowest 1 B1 and 3 B1 States of the Water Molecule, J. Chem. Phys, vol.99, pp.7907-7915, 1993.

A. Balková and R. J. Bartlett, On the Singlet-triplet Separation in Methylene: A Critical Comparison of Single-versus Two-determinant (Generalized Valence Bond) Coupled Cluster Theory, J. Chem. Phys, vol.102, pp.7116-7123, 1995.

A. Balková and R. J. Bartlett, A Multireference Coupled-cluster Study of the Ground State and Lowest Excited States of Cyclobutadiene, J. Chem. Phys, vol.101, pp.8972-8987, 1994.

P. Neogrády, P. G. Szalay, W. P. Kraemer, and M. Urban, Coupled-Cluster Study of Spectroscopic Constants of the Alkali Metal Diatomics: Ground and the Singlet Excited States of Na2, NaLi, NaK, and NaRb, Collect. Czech. Chem. Commun, vol.70, pp.951-978, 2005.

X. Li and J. Paldus, Multireference General-Model-Space State-Universal and State-Specific Coupled-Cluster Approaches to Excited States, J. Chem. Phys, p.184106, 2010.

X. Li and J. Paldus, A Multireference Coupled-Cluster Study of Electronic Excitations in Furan and Pyrrole, J. Phys. Chem. A, vol.114, pp.8591-8600, 2010.

X. Li and J. Paldus, Multi-Reference State-Universal Coupled-Cluster Approaches to Electronically Excited States, J. Chem. Phys, 2011.

I. Huba? and P. Neogra?dy, Size-Consistent Brillouin-Wigner Perturbation Theory with an Exponentially Parametrized Wave Function: Brillouin-Wigner Coupled-Cluster Theory

, Phys. Rev. A, vol.50, pp.4558-4564, 1994.

J. Ma??ik, I. Huba?, and P. Mach, Single-Root Multireference Brillouin-Wigner CoupledCluster Theory: Applicability to the F2 Molecule, J. Chem. Phys, vol.108, pp.6571-6579, 1998.

U. S. Mahapatra, B. Datta, and D. Mukherjee, A State-Specific Multi-Reference Coupled Cluster Formalism with Molecular Applications, Mol. Phys, vol.94, pp.157-171, 1998.

U. S. Mahapatra, B. Datta, and D. Mukherjee, A Size-Consistent State-Specific Multireference Coupled Cluster Theory: Formal Developments and Molecular Applications, J. Chem. Phys, vol.110, pp.6171-6188, 1999.

U. S. Mahapatra and S. Chattopadhyay, Potential Energy Surface Studies via a Single Root Multireference Coupled Cluster Theory, J. Chem. Phys, p.74102, 2010.

U. S. Mahapatra and S. Chattopadhyay, Evaluation of the Performance of Single Root Multireference Coupled Cluster Method for Ground and Excited States, and Its Application to Geometry Optimization, J. Chem. Phys, vol.134, p.44113, 2011.

J. Pittner, Continuous Transition between Brillouin-Wigner and Rayleigh-Schrödinger Perturbation Theory, Generalized Bloch Equation, and Hilbert Space Multireference Coupled Cluster, J. Chem. Phys, vol.118, pp.10876-10889, 2003.

L. Kong, Connection between a Few Jeziorski-Monkhorst Ansatz-Based Methods, Int. J. Quantum Chem, vol.109, pp.441-447, 2009.

D. Datta and D. Mukherjee, The Spin-Free Analogue of Mukherjee's State-Specific Multireference Coupled Cluster Theory, J. Chem. Phys, p.54122, 2011.

S. Das, D. Mukherjee, and M. Kállay, Full Implementation and Benchmark Studies of

, Mukherjee's State-Specific Multireference Coupled-Cluster Ansatz, J. Chem. Phys, p.74103, 2010.

M. Hanrath, An Exponential Multireference Wave-Function Ansatz, J. Chem. Phys, p.84102, 2005.

M. Hanrath, Initial Applications of an Exponential Multi-Reference Wavefunction Ansatz, Chem. Phys. Lett, vol.420, pp.426-431, 2006.

A. Engels-putzka and M. Hanrath, Multi-Reference Coupled-Cluster Study of the Potential Energy Surface of the Hydrogen Fluoride Dissociation Including Excited States, J. Mol. Struct. THEOCHEM, vol.902, pp.59-65, 2009.

D. ?imsa, O. Demel, K. Bhaskaran-nair, I. Huba?, P. Mach et al., Multireference Coupled Cluster Study of the Oxyallyl Diradical, Chem. Phys, vol.401, pp.203-207, 2012.

T. Jagau and J. Gauss, Linear-Response Theory for Mukherjee's Multireference CoupledCluster Method: Excitation Energies, J. Chem. Phys, vol.137, p.44116, 2012.

P. K. Samanta, D. Mukherjee, M. Hanauer, and A. Köhn, Excited States with Internally Contracted Multireference Coupled-Cluster Linear Response Theory, J. Chem. Phys, p.134108, 2014.

S. Chattopadhyay, U. S. Mahapatra, and D. Mukherjee, Development of a Linear Response Theory Based on a State-Specific Multireference Coupled Cluster Formalism, J. Chem. Phys, vol.112, pp.7939-7952, 2000.

F. J. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, and . From,

A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, and D. E. Bernholdt, CoupledCluster Techniques for Computational Chemistry, a Quantum Chemical Program Package. (242) Evangelista, F. A.; Gauss, J. Insights into the Orbital Invariance Problem in State-Specific Multireference Coupled Cluster Theory, J. Chem. Phys, p.44101, 2010.

D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Applications of a Non-Perturbative Many-Body Formalism to General Open-Shell Atomic and Molecular Problems: Calculation of the Ground and the Lowest ?-?* Singlet and Triplet Energies and the First Ionization Potential of Trans-Butadiene, Mol. Phys, vol.33, pp.955-969, 1977.

F. A. Evangelista and J. Gauss, An Orbital-Invariant Internally Contracted Multireference Coupled Cluster Approach, J. Chem. Phys, 2011.

M. Hanauer and A. Köhn, Pilot Applications of Internally Contracted Multireference Coupled Cluster Theory, and How to Choose the Cluster Operator Properly, J. Chem. Phys, 2011.

D. Datta, L. Kong, and M. Nooijen, A State-Specific Partially Internally Contracted Multireference Coupled Cluster Approach, J. Chem. Phys, 2011.

M. Hanauer and A. Köhn, Communication: Restoring Full Size Extensivity in Internally Contracted Multireference Coupled Cluster Theory, J. Chem. Phys, vol.137, p.124, 2006.

T. Yanai, G. K. Chan, and .. , Canonical Transformation Theory from Extended Normal Ordering, J. Chem. Phys, p.104107, 2007.

Z. Chen and M. R. Hoffmann, Orbitally Invariant Internally Contracted Multireference Unitary Coupled Cluster Theory and Its Perturbative Approximation: Theory and Test Calculations of Second Order Approximation, J. Chem. Phys, vol.137, p.14108, 2012.

Y. A. Aoto and A. Köhn, Internally Contracted Multireference Coupled-Cluster Theory in a Multistate Framework, J. Chem. Phys, p.74103, 2016.

D. Datta and M. Nooijen, Multireference Equation-of-Motion Coupled Cluster Theory, J. Chem. Phys, p.204107, 2012.

O. Demel, D. Datta, M. Nooijen, M. Nooijen, O. Demel et al., Communication: Multireference Equation of Motion Coupled Cluster: A Transform and Diagonalize Approach to Electronic Structure, J. Chem. Phys, vol.138, issue.254, p.81102, 2013.

L. M. Huntington, M. Nooijen, Z. Liu, L. M. Huntington, and M. Nooijen, Application of Multireference Equation of Motion Coupled-Cluster Theory to Transition Metal Complexes and an Orbital Selection Scheme for the Efficient Calculation of Excitation Energies, J. Chem. Phys, vol.142, issue.256, pp.2999-3013, 2015.

L. M. Huntington, O. Demel, and M. Nooijen, Benchmark Applications of Variations of Multireference Equation of Motion Coupled-Cluster Theory, J. Chem. Theory Comput, vol.12, pp.114-132, 2016.

J. F. Stanton, J. Gauss, S. A. Perera, J. D. Watts, A. D. Yau et al., ACES II Is a Program Product of the Quantum Theory Project

M. Kállay, P. G. Szalay, and P. R. Surján, A General State-Selective Multireference CoupledCluster Algorithm, J. Chem. Phys, vol.117, pp.980-990, 2002.

K. Kowalski and P. Piecuch, The Active-Space Equation-of-Motion Coupled-Cluster Methods for Excited Electronic States: The EOMCCSDt Approach, J. Chem. Phys, vol.113, pp.8490-8502, 2000.

P. Piecuch, Active-Space Coupled-Cluster Methods, Mol. Phys, vol.108, pp.2987-3015, 2010.

T. Kinoshita, O. Hino, and R. J. Bartlett, Coupled-Cluster Method Tailored by Configuration Interaction, J. Chem. Phys, p.74106, 2005.

V. Ivanov and . V;,

L. Adamowicz and D. I. Lyakh, Excited States in the Multireference StateSpecific Coupled-Cluster Theory with the Complete Active Space Reference, J. Chem. Phys, vol.124, p.184302, 2006.

D. I. Lyakh, V. Ivanov, and . V;,

L. Adamowicz, A Generalization of the State-Specific Complete-Active-Space Coupled-Cluster Method for Calculating Electronic Excited States

, J. Chem. Phys, vol.128, p.74101, 2008.

M. Kállay and J. Gauss, Calculation of Excited-State Properties Using General CoupledCluster and Configuration-Interaction Models, J. Chem. Phys, vol.121, pp.9257-9269, 2004.

A. Köhn and J. Olsen, Coupled-Cluster with Active Space Selected Higher Amplitudes: Performance of Seminatural Orbitals for Ground and Excited State Calculations, J. Chem. Phys, p.174110, 2006.

M. Musia?, S. A. Kucharski, and R. J. Bartlett, Multireference Double Electron Attached Coupled Cluster Method with Full Inclusion of the Connected Triple Excitations: MR-DACCSDT, J. Chem. Theory Comput, vol.7, pp.3088-3096, 2011.

M. Musia?, K. Kowalska-szojda, D. I. Lyakh, and R. J. Bartlett, Potential Energy Curves via Double Electron-Attachment Calculations: Dissociation of Alkali Metal Dimers, J. Chem. Phys, p.138, 2013.

O. Demel and J. Pittner, Multireference Brillouin-Wigner Coupled Cluster Method with Singles, Doubles, and Triples: Efficient Implementation and Comparison with Approximate Approaches, J. Chem. Phys, vol.128, 2008.

M. Hanrath, Higher Excitations for an Exponential Multireference Wavefunction Ansatz and Single-Reference Based Multireference Coupled Cluster Ansatz: Application to Model Systems H4, P4, and BeH2, J. Chem. Phys, vol.128, p.154118, 2008.

F. A. Evangelista, A. C. Simmonett, W. D. Allen, H. F. Schaefer, and J. Gauss, Triple Excitations in State-Specific Multireference Coupled Cluster Theory: Application of MkMRCCSDT and Mk-MRCCSDT-n Methods to Model Systems, J. Chem. Phys, p.124104, 2008.

S. Das, M. Kállay, and D. Mukherjee, Inclusion of Selected Higher Excitations Involving Active Orbitals in the State-Specific Multireference Coupled-Cluster Theory, J. Chem. Phys, p.234110, 2010.

M. Hanauer and A. Köhn, Perturbative Treatment of Triple Excitations in Internally Contracted Multireference Coupled Cluster Theory, Int. J. Quantum Chem, vol.136, pp.3273-3279, 2011.

S. Sinha-ray, P. Ghosh, R. K. Chaudhuri, and S. Chattopadhyay, Improved Virtual Orbitals in State Specific Multireference Perturbation Theory for Prototypes of Quasidegenerate Electronic Structure, J. Chem. Phys, p.64111, 2017.

K. Hirao and . Method, ) Hirao, K. Multireference Møller-Plesset Perturbation Treatment of Potential Energy Curve M.; Molina, V. Applications of Level Shift Corrected Perturbation Theory in Electronic Spectroscopy, J. Mol. Struct. THEOCHEM, vol.190, issue.277, pp.257-276, 1992.

N. Forsberg and P. A. Malmqvist, Multiconfiguration Perturbation Theory with Imaginary Level Shift, Chem. Phys. Lett, vol.274, pp.196-204, 1997.

B. G. Levine, C. Ko, J. Quenneville, and T. J. Martínez, Conical Intersections and Double Excitations in Time-Dependent Density Functional Theory, Mol. Phys, vol.104, pp.1039-1051, 2006.

S. Gozem, F. Melaccio, A. Valentini, M. Filatov, M. Huix-rotllant et al., Shape of Multireference, Equationof-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection, J. Chem. Theory Comput, vol.10, issue.289, pp.3074-3084, 2014.

A. A. Granovsky, Extended Multi-Configuration Quasi-Degenerate Perturbation Theory: The New Approach to Multi-State Multi-Reference Perturbation Theory, J. Chem. Phys, 2011.

T. Shiozaki, W. Gy?rffy, P. Celani, H. Werner, and . Communication, Extended Multi-State Complete Active Space Second-Order Perturbation Theory: Energy and Nuclear Gradients

, J. Chem. Phys, p.81106, 2011.

I. Shavitt, Multi-State Multireference Rayleigh-Schrödinger Perturbation Theory for Mixed Electronic States: Second and Third Order, Int. J. Mol. Sci, vol.3, pp.639-655, 2002.
DOI : 10.3390/i3060639

URL : https://www.mdpi.com/1422-0067/3/6/639/pdf

S. R. Yost, T. Kowalczyk, and T. Van-voorhis, A Multireference Perturbation Method Using Non-Orthogonal Hartree-Fock Determinants for Ground and Excited States, J. Chem. Phys, p.174104, 2013.

P. A. Malmqvist, K. Pierloot, A. R. Shahi, C. J. Cramer, L. Gagliardi et al., The Restricted Active Space Followed by Second-Order Perturbation Theory Method: Theory and Application to the Study of CuO2 and Cu2O2 Systems, J. Chem. Theory Comput, vol.7, issue.295, pp.153-168, 2008.

H. Werner, Third-Order Multireference Perturbation Theory The CASPT3 Method, Mol. Phys, vol.89, pp.645-661, 1996.

D. Grabarek, E. Walczak, and T. Andruniów, Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results, J. Chem. Theory Comput, vol.12, pp.2346-2356, 2016.

P. Celani, H. Stoll, H. Werner, and P. J. Knowles, The CIPT2 Method: Coupling of MultiReference Configuration Interaction and Multi-Reference Perturbation Theory. Application to the Chromium Dimer, Mol. Phys, vol.102, pp.2369-2379, 2004.

P. Celani and H. Werner, Analytical Energy Gradients for Internally Contracted SecondOrder Multireference Perturbation Theory, J. Chem. Phys, vol.119, pp.5044-5057, 2003.
DOI : 10.1063/1.1597672

T. Shiozaki and H. Werner, Communication: Second-Order Multireference Perturbation Theory with Explicit Correlation: CASPT2-F12, J. Chem. Phys, p.141103, 2010.
DOI : 10.1063/1.3489000

J. M. Rintelman, I. Adamovic, S. Varganov, M. S. Gordon, and . Multireference, Second-Order Perturbation Theory: How Size Consistent Is "Almost Size Consistent, J. Chem. Phys, vol.122, p.44105, 2005.
DOI : 10.1063/1.1817891

URL : https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1450&context=chem_pubs

F. Chen and Z. Fan, A New Size Extensive Multireference Perturbation Theory, J. Comput. Chem, vol.35, pp.121-129, 2014.
DOI : 10.1002/jcc.23471

K. G. Dyall, The Choice of a Zeroth-order Hamiltonian for Second-order Perturbation Theory with a Complete Active Space Self-consistent-field Reference Function, J. Chem. Phys, vol.102, pp.4909-4918, 1995.

C. Angeli, S. Borini, and R. Cimiraglia, An Application of Second-Order n-Electron Valence State Perturbation Theory to the Calculation of Excited States, Theor. Chem. Acc, vol.111, pp.352-357, 2004.

C. Angeli, S. Borini, L. Ferrighi, and R. Cimiraglia, Ab Initio N-Electron Valence State Perturbation Theory Study of the Adiabatic Transitions in Carbonyl Molecules: Formaldehyde, Acetaldehyde, and Acetone, J. Chem. Phys, p.114304, 2005.

M. Pastore, C. Angeli, and R. Cimiraglia, The Vertical Electronic Spectrum of Pyrrole: A Second and Third Order n-Electron Valence State Perturbation Theory Study, Chem. Phys. Lett, vol.422, pp.522-528, 2006.

Y. Guo, K. Sivalingam, E. F. Valeev, and F. Neese, Explicitly Correlated N-Electron Valence State Perturbation Theory (NEVPT2-F12), J. Chem. Phys, p.64110, 2017.
DOI : 10.1063/1.4996560

C. Angeli, S. Borini, M. Cestari, and R. Cimiraglia, A Quasidegenerate Formulation of the Second Order N-Electron Valence State Perturbation Theory Approach, J. Chem. Phys, vol.121, pp.4043-4049, 2004.

A. Y. Sokolov, G. K. Chan, and .. , A Time-Dependent Formulation of Multi-Reference Perturbation Theory, J. Chem. Phys, p.64102, 2016.

A. Y. Sokolov, S. Guo, E. Ronca, G. K. Chan, and .. , Time-Dependent N-Electron Valence Perturbation Theory with Matrix Product State Reference Wavefunctions for Large Active Spaces and Basis Sets: Applications to the Chromium Dimer and All-Trans Polyenes, J. Chem. Phys, p.244102, 2017.

S. Grimme and M. Waletzke, Multi-Reference Moller-Plesset Theory: Computational Strategies for Large Molecules, Phys. Chem. Chem. Phys, vol.2, pp.2075-2081, 2000.

P. Celani and H. Werner, Multireference Perturbation Theory for Large Restricted and Selected Active Space Reference Wave Functions, J. Chem. Phys, vol.112, pp.5546-5557, 2000.
DOI : 10.1063/1.481132

H. Nakano and K. Hirao, A Quasi-Complete Active Space Self-Consistent Field Method, Chem. Phys. Lett, vol.317, pp.90-96, 2000.
DOI : 10.1016/s0009-2614(99)01364-0

H. Nakano, J. Nakatani, and K. Hirao, Second-Order Quasi-Degenerate Perturbation Theory with Quasi-Complete Active Space Self-Consistent Field Reference Functions, J. Chem. Phys, vol.114, pp.1133-1141, 2001.
DOI : 10.1063/1.1332992

Y. Choe, Y. Nakao, and K. Hirao, Multireference Møller-Plesset Method with a Complete Active Space Configuration Interaction Reference Function, J. Chem. Phys, vol.115, pp.621-629, 2001.
DOI : 10.1063/1.1379328

T. Hashimoto, H. Nakano, and K. Hirao, Theoretical Study of the Valence ???* Excited States of Polyacenes: Benzene and Naphthalene, J. Chem. Phys, vol.104, pp.6244-6258, 1996.

H. Nakano, Quasidegenerate Perturbation Theory with Multiconfigurational Selfconsistent-field Reference Functions, J. Chem. Phys, vol.99, pp.7983-7992, 1993.
DOI : 10.1063/1.465674

H. Nakano, MCSCF Reference Quasidegenerate Perturbation Theory with Epstein-Nesbet Partitioning, Chem. Phys. Lett, vol.207, pp.372-378, 1993.
DOI : 10.1016/0009-2614(93)89016-b

H. Nakano, R. Uchiyama, and K. Hirao, Quasi-Degenerate Perturbation Theory with General Multiconfiguration Self-Consistent Field Reference Functions, J. Comput. Chem, vol.23, pp.1166-1175, 2002.
DOI : 10.1002/jcc.10050

M. Miyajima, Y. Watanabe, and H. Nakano, Relativistic Quasidegenerate Perturbation Theory with Four-Component General Multiconfiguration Reference Functions, J. Chem. Phys, vol.124, p.44101, 2006.
DOI : 10.1063/1.2161182

R. Ebisuzaki, Y. Watanabe, and H. Nakano, Efficient Implementation of Relativistic and NonRelativistic Quasidegenerate Perturbation Theory with General Multiconfigurational Reference Functions, Chem. Phys. Lett, vol.442, pp.164-169, 2007.

H. A. Witek, Y. Choe, J. P. Finley, and K. Hirao, Intruder State Avoidance Multireference Møller-Plesset Perturbation Theory, J. Comput. Chem, vol.23, pp.957-965, 2002.
DOI : 10.1002/jcc.10098

Y. G. Khait, J. Song, and M. R. Hoffmann, Explication and Revision of Generalized Van Vleck Perturbation Theory for Molecular Electronic Structure, J. Chem. Phys, vol.117, pp.4133-4145, 2002.

P. Ghosh, S. Chattopadhyay, D. Jana, and D. Mukherjee, State-Specific Multi-Reference Perturbation Theories with Relaxed Coefficients: Molecular Applications, Int. J. Mol. Sci, vol.3, pp.733-754, 2002.
DOI : 10.3390/i3060733

URL : https://www.mdpi.com/1422-0067/3/6/733/pdf

Á. Szabados, Z. Rolik, G. Tóth, and P. R. Surján, Multiconfiguration Perturbation Theory: Size Consistency at Second Order, J. Chem. Phys, vol.122, p.114104, 2005.
DOI : 10.1063/1.1862235

M. R. Hoffmann, D. Datta, S. Das, D. Mukherjee, Á. Szabados et al., Comparative Study of Multireference Perturbative Theories for Ground and Excited States

, J. Chem. Phys, p.131, 2009.

A. Sen, S. Sen, and D. Mukherjee, Aspects of Size-Consistency of Orbitally Noninvariant Size-Extensive Multireference Perturbation Theories: A Case Study Using UGASSMRPT2 as a Prototype, J. Chem. Theory Comput, vol.11, pp.4129-4145, 2015.

C. Li and F. A. Evangelista, Multireference Driven Similarity Renormalization Group: A Second-Order Perturbative Analysis, J. Chem. Theory Comput, vol.11, pp.2097-2108, 2015.
DOI : 10.1021/acs.jctc.5b00134

K. P. Hannon, C. Li, and F. A. Evangelista, An Integral-Factorized Implementation of the Driven Similarity Renormalization Group Second-Order Multireference Perturbation Theory, J. Chem. Phys, 2016.

F. A. Evangelista, A Driven Similarity Renormalization Group Approach to Quantum Many-Body Problems, J. Chem. Phys, p.54109, 2014.

W. Thiel, Semiempirical Quantum-Chemical Methods. Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.4, pp.145-157, 2014.

E. Hückel, Quantentheoretische Beiträge zum Benzolproblem, Z. Phys, vol.72, pp.310-337, 1931.

R. Hoffmann, An Extended Hückel Theory. I. Hydrocarbons, J. Chem. Phys, vol.39, pp.1397-1412, 1963.

R. Pariser and R. G. Parr, A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I, J. Chem. Phys, vol.21, pp.466-471, 1953.

J. A. Pople, Electron Interaction in Unsaturated Hydrocarbons, Trans. Faraday Soc, p.1375, 1953.

J. J. Stewart, Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements, J. Mol. Model, vol.13, pp.1173-1213, 2007.

J. J. Stewart, Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters, J. Mol. Model, vol.19, pp.1-32, 2013.

W. Thiel and A. A. Voityuk, Extension of the MNDO Formalism Tod Orbitals: Integral Approximations and Preliminary Numerical Results, Theor. Chim. Acta, vol.81, pp.391-404, 1992.

W. Weber and W. Thiel, Orthogonalization Corrections for Semiempirical Methods. Theor. Chem. Acc, vol.103, pp.495-506, 2000.

P. O. Dral, O. A. Von-lilienfeld, and W. Thiel, Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations, J. Chem. Theory Comput, vol.11, pp.2120-2125, 2015.

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk et al., Self-Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Complex Materials Properties, Phys. Rev. B, vol.58, pp.7260-7268, 1998.

M. Elstner and G. Seifert, Density Functional Tight Binding, Philos. Trans. R. Soc. London, Ser. A Phys. Sci. Eng, p.372, 2014.

L. E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella et al., Challenges in Large Scale Quantum Mechanical Calculations, Wiley Interdiscip. Rev. Comput. Mol. Sci, 1290.
URL : https://hal.archives-ouvertes.fr/hal-02072588

J. A. Pople, D. P. Santry, and G. A. Segal, Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures, J. Chem. Phys, vol.43, pp.129-135, 1965.

W. Thiel, The MNDOC Method, a Correlated Version of the MNDO Model, J. Am. Chem. Soc, vol.103, pp.1413-1420, 1981.

H. Steuhl, M. Klessinger, and R. A. Mathies, Excited States of Cyclic-Conjugated Anions: A Theoretical Study of the Photodecarboxylation of Cycloheptatriene and Cyclopentadiene Carboxylate Anions, J. Chem. Soc. Perkin Trans, vol.2, pp.2035-2038, 1998.

Y. Yi, L. Zhu, and Z. Shuai, The Correction Vector Method for Three-Photon Absorption: The Effects of ? Conjugation in Extended Rylenebis(Dicarboximide)S, J. Chem. Phys, p.164505, 2006.

P. Strodel and P. Tavan, A Revised MRCI-Algorithm. I. Efficient Combination of Spin Adaptation with Individual Configuration Selection Coupled to an Effective Valence-Shell Hamiltonian, J. Chem. Phys, vol.117, pp.4667-4676, 2002.

P. Tavan and K. Schulten, An Efficient Approach to CI: General Matrix Element Formulas for Spin-coupled Particle-hole Excitations, J. Chem. Phys, vol.72, pp.3547-3576, 1980.

A. Koslowski, M. E. Beck, W. Thiel, Y. Lei, B. Suo et al., Implementation of a General Multireference Configuration Interaction Procedure with Analytic Gradients in a Semiempirical Context Using the Graphical Unitary Group Approach, J. Am. Chem. Soc, vol.24, issue.351, pp.4899-4907, 1977.

A. Toniolo, M. Persico, and D. Pitea, An Ab Initio Study of Spectroscopy and Predissociation of ClO, J. Chem. Phys, vol.112, p.2790, 2000.

M. Persico and G. Granucci, An Overview of Nonadiabatic Dynamics Simulations Methods, with Focus on the Direct Approach versus the Fitting of Potential Energy Surfaces, Theor. Chem. Acc, p.1526, 2014.

S. Grimme and M. Waletzke, A Combination of Kohn-Sham Density Functional Theory and Multi-Reference Configuration Interaction Methods, J. Chem. Phys, vol.111, pp.5645-5655, 1999.

M. R. Silva-junior, W. ;. Thiel, . Om1, . Om2, . Om3 et al., Benchmark of Electronically Excited States for Semiempirical Methods: MNDO, AM1, PM3

, J. Chem. Theory Comput, vol.6, pp.1546-1564, 2010.

M. R. Silva-junior, M. Schreiber, S. P. Sauer, W. Thiel, T. Keal et al., Benchmarks for Electronically Excited States: Time-Dependent Density Functional Theory and Density Functional Theory Based Multireference Configuration Interaction, Theor. Chem. Acc, vol.129, issue.358, pp.145-156, 2008.

R. Spezia, I. Burghardt, and J. T. Hynes, Conical Intersections in Solution: Non-Equilibrium versus Equilibrium Solvation, Mol. Phys, vol.104, pp.903-914, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00137632

R. Izzo and M. Klessinger, Optimization of Conical Intersections Using the Semiempirical MNDOC-CI Method with Analytic Gradients, J. Comput. Chem, vol.21, pp.52-62, 2000.

T. W. Keal, A. Koslowski, and W. Thiel, Comparison of Algorithms for Conical Intersection Optimisation Using Semiempirical Methods, Theor. Chem. Acc, vol.118, pp.837-844, 2007.

F. De-carvalho, M. Bouduban, B. Curchod, and I. Tavernelli, Nonadiabatic Molecular Dynamics Based on Trajectories, vol.16, pp.62-85, 2014.

B. R. Smith, M. J. Bearpark, M. A. Robb, F. Bernardi, and M. Olivucci,

. Photochemistry-of-benzene, Chem. Phys. Lett, vol.242, pp.27-32, 1995.

F. Bernardi, M. Olivucci, and M. A. Robb, Simulation of MC-SCF Results on Covalent Organic Multi-Bond Reactions: Molecular Mechanics with Valence Bond (MM-VB), J. Am. Chem. Soc, vol.114, pp.1606-1616, 1992.

G. Granucci, M. Persico, and A. Toniolo, Direct Semiclassical Simulation of Photochemical Processes with Semiempirical Wave Functions, J. Chem. Phys, vol.114, pp.10608-10615, 2001.

M. Barbatti, G. Granucci, M. Persico, H. Lischka, E. Fabiano et al., Semiempirical Molecular Dynamics Investigation of the Excited State Lifetime of Ethylene, Chem. Phys. Lett, vol.349, pp.334-347, 2005.

J. Morelli and S. Hammes-schiffer, Surface Hopping and Fully Quantum Dynamical Wavepacket Propagation on Multiple Coupled Adiabatic Potential Surfaces for Proton Transfer Reactions, Chem. Phys. Lett, vol.269, pp.161-170, 1997.

P. Goyal, C. A. Schwerdtfeger, A. Soudackov, and S. V;-hammes-schiffer, Nonadiabatic Dynamics of Photoinduced Proton-Coupled Electron Transfer in a Solvated Phenol-Amine Complex, J. Phys. Chem. B, vol.119, pp.2758-2768, 2015.

A. Toniolo, S. Olsen, L. Manohar, and T. J. Martínez, Conical Intersection Dynamics in Solution: The Chromophore of Green Fluorescent Protein, Faraday Discuss, vol.127, pp.149-163, 2004.

Z. Lan, Y. Lu, E. Fabiano, and W. Thiel, QM/MM Nonadiabatic Decay Dynamics of 9HAdenine in Aqueous Solution, Chemphyschem, vol.12, 1989.

D. Hollas, L. ?i?tík, E. G. Hohenstein, T. J. Martínez, and P. Slaví?ek, Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method, J. Chem. Theory Comput, vol.14, pp.339-350, 2018.

O. Weingart, Z. Lan, A. Koslowski, and W. Thiel, Chiral Pathways and Periodic Decay in Cis-Azobenzene Photodynamics, J. Phys. Chem. Lett, vol.2, pp.1506-1509, 2011.

G. Granucci, M. Persico, and G. Spighi, Surface Hopping Trajectory Simulations with SpinOrbit and Dynamical Couplings, J. Chem. Phys, pp.22-501, 2012.

M. Barbatti, Z. Lan, R. Crespo-otero, J. J. Szymczak, H. Lischka et al., Critical Appraisal of Excited State Nonadiabatic Dynamics Simulations of 9H-Adenine, J. Chem. Phys, vol.137, pp.22-503, 2012.

A. D. Becke, Perspective: Fifty Years of Density-Functional Theory in Chemical Physics, J. Chem. Phys, pp.18-301, 2014.

D. Cremer, Density Functional Theory: Coverage of Dynamic and Non-Dynamic Electron Correlation Effects, Mol. Phys, vol.99, pp.1899-1940, 2001.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev, vol.136, pp.864-871, 1964.

E. K. Gross, L. N. Oliveira, and W. Kohn, Density-Functional Theory for Ensembles of Fractionally Occupied States. I. Basic Formalism, Phys. Rev. A, vol.37, pp.2809-2820, 1988.

J. Katriel, F. Zahariev, and K. Burke, Symmetry and Degeneracy in Density Functional Theory, Int. J. Quantum Chem, vol.85, pp.432-435, 2001.

Y. Shao, M. Head-gordon, and A. I. Krylov, The Spin-flip Approach within Time-Dependent Density Functional Theory: Theory and Applications to Diradicals, J. Chem. Phys, vol.118, pp.4807-4818, 2003.

F. Wang and T. Ziegler, The Performance of Time-Dependent Density Functional Theory Based on a Noncollinear Exchange-Correlation Potential in the Calculations of Excitation Energies, J. Chem. Phys, vol.122, p.74109, 2005.

J. Gräfenstein, E. Kraka, M. Filatov, and D. Cremer, Can Unrestricted Density-Functional Theory Describe Open Shell Singlet Biradicals?, Int. J. Mol. Sci, vol.3, pp.360-394, 2002.

J. Gräfenstein, D. Cremer, J. Nichols, P. Nachtigall, M. Whangbo et al., Can Density Functional Theory Describe Multi-Reference Systems? Investigation of Carbenes and Organic Biradicals, Phys. Chem. Chem. Phys, vol.2, pp.2091-2103, 2000.

W. Jiang, C. C. Jeffrey, and A. K. Wilson, Empirical Correction of Nondynamical Correlation Energy for Density Functionals, J. Phys. Chem. A, vol.116, pp.9969-9978, 2012.

E. Beck and . V;,

E. A. Stahlberg, L. W. Burggraf, and J. Blaudeau, A Graphical Unitary Group Approach-Based Hybrid Density Functional Theory Multireference Configuration Interaction Method, Chem. Phys, vol.349, pp.158-169, 2008.

I. Lyskov, M. Kleinschmidt, and C. M. Marian, Redesign of the DFT/MRCI Hamiltonian, J. Chem. Phys, p.34104, 2016.

K. Sharkas, A. Savin, H. J. Jensen, and J. Toulouse, A Multiconfigurational Hybrid Density-Functional Theory, J. Chem. Phys, vol.137, p.44104, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724033

E. Fromager, S. Knecht, and H. J. Jensen, Multi-Configuration Time-Dependent DensityFunctional Theory Based on Range Separation, J. Chem. Phys, p.84101, 2013.

Y. Kurzweil, K. Lawler, and M. V;-head-gordon, Analysis of Multi-Configuration Density Functional Theory Methods: Theory and Model Application to Bond-Breaking, Mol. Phys, vol.107, pp.2103-2110, 2009.

K. Nakata, T. Ukai, S. Yamanaka, T. Takada, and K. Yamaguchi, CASSCF Version of Density Functional Theory, Int. J. Quantum Chem, vol.106, pp.3325-3333, 2006.

L. Manni, G. Carlson, R. K. Luo, S. Ma, D. Olsen et al., Multiconfiguration Pair-Density Functional Theory, J. Chem. Theory Comput, vol.10, pp.3669-3680, 2014.

E. Fromager, J. Toulouse, and H. J. Jensen, On the Universality of the Long-/Short-Range Separation in Multiconfigurational Density-Functional Theory, J. Chem. Phys, p.74111, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01373289

M. Filatov and S. Shaik, A Spin-Restricted Ensemble-Referenced Kohn-Sham Method and Its Application to Diradicaloid Situations, Chem. Phys. Lett, vol.304, pp.429-437, 1999.

M. Filatov, Spin-Restricted Ensemble-Referenced Kohn-Sham Method: Basic Principles and Application to Strongly Correlated Ground and Excited States of Molecules, Willey Interdiscip. Rev. Comput. Mol. Sci, vol.5, pp.146-167, 2014.

E. Pastorczak, N. I. Gidopoulos, and K. Pernal, Calculation of Electronic Excited States of Molecules Using the Helmholtz Free-Energy Minimum Principle, Phys. Rev. A, vol.87, p.62501, 2013.

J. Gräfenstein and D. Cremer, Development of a CAS-DFT Method Covering Non-Dynamical and Dynamical Electron Correlation in a Balanced Way, Mol. Phys, vol.103, pp.279-308, 2005.

E. Fromager, On the Exact Formulation of Multi-Configuration Density-Functional Theory: Electron Density versus Orbitals Occupation, Mol. Phys, vol.113, pp.419-434, 2015.

L. Stojanovi?, A. O. Alyoubi, S. G. Aziz, R. H. Hilal, and M. Barbatti, UV Excitations of Halons, J. Chem. Phys, p.184306, 2016.

R. Crespo-otero and M. Barbatti, Cr(CO)6 Photochemistry: Semi-Classical Study of UV Absorption Spectral Intensities and Dynamics of Photodissociation, J. Chem. Phys, vol.134, p.164305, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01415212

M. Barbatti and R. Crespo-otero, Surface Hopping Dynamics with DFT Excited States. In Density-Functional Methods for Excited States, Topics in Current Chemistry, vol.368, pp.415-444, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415144

B. Senjean, S. Knecht, H. J. Jensen, and E. Fromager, Linear Interpolation Method in Ensemble Kohn-Sham and Range-Separated Density-Functional Approximations for Excited States, Phys. Rev. A, p.12518, 2015.

M. M. Alam, S. Knecht, and E. Fromager, Ghost-Interaction Correction in Ensemble DensityFunctional Theory for Excited States with and without Range Separation, Phys. Rev. A, p.12511, 2016.

A. Stoyanova, A. M. Teale, J. Toulouse, T. Helgaker, and E. Fromager, Alternative Separation of Exchange and Correlation Energies in Multi-Configuration Range-Separated Density-Functional Theory, J. Chem. Phys, p.134113, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00967719

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev, vol.140, pp.1133-1138, 1965.

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey et al., Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, J. Comput. Chem, p.37, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409053

S. Gusarov, P. A. Malmqvist, R. Lindh, and B. O. Roos, Correlation Potentials for a Solid State Phys, vol.12, pp.5419-5430, 1979.

A. Kazaryan, J. Heuver, and M. Filatov, Excitation Energies from Spin-Restricted EnsembleReferenced Kohn?Sham Method: A State-Average Approach, J. Phys. Chem. A, vol.112, pp.12980-12988, 2008.

M. Filatov, T. J. Martínez, K. S. Kim, E. Matito, M. Olivucci et al., Using the GVB Ansatz to Develop Ensemble DFT Method for Describing Multiple Strongly Correlated Electron Pairs, Phys. Chem. Chem. Phys, vol.18, pp.21040-21050, 2016.

M. Filatov, T. J. Martínez, and K. S. Kim, Description of Ground and Excited Electronic States by Ensemble Density Functional Method with Extended Active Space, J. Chem. Phys, p.64104, 2017.

M. Filatov, F. Liu, K. S. Kim, and T. J. Martínez, Self-Consistent Implementation of Ensemble Density Functional Theory Method for Multiple Strongly Correlated Electron Pairs, J. Chem. Phys, p.244104, 2016.

M. Huix-rotllant, A. Nikiforov, W. Thiel, and M. Filatov, Description of Conical Intersections with Density Functional Methods. In Density-Functional Methods for Excited States, Topics in Current Chemistry
URL : https://hal.archives-ouvertes.fr/hal-01415148

M. Filatov, F. Liu, and T. J. Martínez, Analytical Derivatives of the Individual State Energies in Ensemble Density Functional Theory Method. I. General Formalism, J. Chem. Phys, p.34113, 2017.

K. Deur, L. Mazouin, and E. Fromager, Exact Ensemble Density Functional Theory for (433) Pirvu, B.; Murg, V.; Cirac, J. I.; Verstraete, F. Matrix Product Operator Representations, New J. Phys, p.25012, 2010.

S. Keller, M. Dolfi, M. Troyer, M. Reiher, S. Sharma et al., An Efficient Matrix Product Operator Representation of the Quantum Chemical Hamiltonian, J. Chem. Phys, vol.143, issue.435, p.124121, 2012.

S. Wouters, P. A. Limacher, D. Van-neck, and P. W. Ayers, Longitudinal Static Optical Properties of Hydrogen Chains: Finite Field Extrapolations of Matrix Product State Calculations, J. Chem. Phys, p.134110, 2012.

R. Shepard, G. Gidofalvi, and S. R. Brozell, The Multifacet Graphically Contracted Function Method. I. Formulation and Implementation, J. Chem. Phys, p.64105, 2014.

R. Shepard, G. Gidofalvi, and S. R. Brozell, The Multifacet Graphically Contracted Function Method. II. A General Procedure for the Parameterization of Orthogonal Matrices and Its Application to Arc Factors, J. Chem. Phys, p.64106, 2014.

S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete et al., Tensor Product Methods and Entanglement Optimization for Ab Initio Quantum Chemistry

, Int. J. Quantum Chem, vol.115, pp.1342-1391, 2015.

T. Yanai, Y. Kurashige, W. Mizukami, J. Chalupský, T. N. Lan et al., Density Matrix Renormalization Group for Ab Initio Calculations and Associated Dynamic Correlation Methods: A Review of Theory and Applications, Int. J. Quantum Chem, vol.115, pp.283-299, 2015.

R. Olivares-amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang et al., The AbInitio Density Matrix Renormalization Group in Practice, J. Chem. Phys, p.34102, 2015.

S. Knecht, E. D. Hedegård, S. Keller, A. Kovyrshin, Y. Ma et al., Reiher, M. New Approaches for Ab Initio Calculations of Molecules with Strong Electron Correlation, vol.70, pp.244-251, 2016.

Ö. Legeza, R. M. Noack, J. Sólyom, and L. Tincani, Applications of Quantum Information in the Density-Matrix Renormalization Group, In Computational Many-Particle Physics

H. Fehske, R. Schneider, and A. Weiße, Lecture Notes in Physics, vol.739, pp.653-664, 2008.

J. Rissler, R. M. Noack, and S. R. White, Measuring Orbital Interaction Using Quantum Information Theory, Chem. Phys, vol.323, pp.519-531, 2006.

K. Boguslawski, P. Tecmer, Ö. Legeza, and M. Reiher, Entanglement Measures for Singleand Multireference Correlation Effects, J. Phys. Chem. Lett, vol.3, pp.3129-3135, 2012.

D. Ghosh, J. Hachmann, T. Yanai, G. K. Chan, and .. , Orbital Optimization in the Density Matrix Renormalization Group, with Applications to Polyenes and ?-Carotene, J. Chem. Phys, p.144117, 2008.

Q. Sun, J. Yang, G. K. Chan, and .. , A General Second Order Complete Active Space SelfConsistent-Field Solver for Large-Scale Systems, Chem. Phys. Lett, vol.683, pp.291-299, 2017.

Y. Ma, S. Knecht, S. Keller, and M. Reiher, Second-Order Self-Consistent-Field DensityMatrix Renormalization Group, J. Chem. Theory Comput, vol.13, pp.2533-2549, 2017.

J. J. Dorando, J. Hachmann, G. K. Chan, and .. , Analytic Response Theory for the Density Matrix Renormalization Group, J. Chem. Phys, p.184111, 2009.

S. Wouters, N. Nakatani, D. Van-neck, G. K. Chan, and .. , Thouless Theorem for Matrix Product States and Subsequent Post Density Matrix Renormalization Group Methods, Phys. Rev. B, p.75122, 2013.
DOI : 10.1103/physrevb.88.075122

URL : https://authors.library.caltech.edu/73751/1/PhysRevB.88.075122.pdf

N. Nakatani, S. Wouters, D. Van-neck, G. K. Chan, and .. , Linear Response Theory for the Density Matrix Renormalization Group: Efficient Algorithms for Strongly Correlated Excited States, J. Chem. Phys, p.24108, 2014.

J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pi?orn, H. Verschelde et al., Extended Implementation of Canonical Transformation Theory: Parallelization and a New Level-Shifted Condition, Phys. Chem. Chem. Phys, vol.107, issue.453, pp.7809-7820, 2011.

Y. Kurashige, T. Yanai, D. Zgid, D. Ghosh, E. Neuscamman et al., Second-Order Perturbation Theory with a Density Matrix Renormalization Group Self-Consistent Field Reference Function: Theory and Application to the Study of Chromium Dimer, J. Chem. Phys, vol.135, issue.455, p.130, 2009.

S. Sharma, G. K. Chan, and .. , Communication: A Flexible Multi-Reference Perturbation Theory by Minimizing the Hylleraas Functional with Matrix Product States, J. Chem. Phys, p.111101, 2014.

S. Sharma, G. Jeanmairet, and A. Alavi, Quasi-Degenerate Perturbation Theory Using Matrix Product States, J. Chem. Phys, p.34103, 2016.
DOI : 10.1063/1.4939752

L. Veis, A. Antalík, J. Brabec, F. Neese, Ö. Legeza et al., Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions, J. Phys. Chem. Lett, vol.7, pp.4072-4078, 2016.
DOI : 10.1021/acs.jpclett.6b01908

URL : http://arxiv.org/pdf/1606.06002

Y. Kurashige, J. Chalupský, T. N. Lan, and T. Yanai, Complete Active Space Second-Order Perturbation Theory with Cumulant Approximation for Extended Active-Space Wavefunction from Density Matrix Renormalization Group, J. Chem. Phys, p.174111, 2014.

Y. Kurashige, Multireference Electron Correlation Methods with Density Matrix Renormalisation Group Reference Functions, Mol. Phys, vol.112, pp.1485-1494, 2014.
DOI : 10.1080/00268976.2013.843730

T. Yanai, M. Saitow, X. Xiong, J. Chalupský, Y. Kurashige et al., Multistate Complete-Active-Space Second-Order Perturbation Theory Based on Density Matrix Renormalization Group Reference States, J. Chem. Theory Comput, vol.13, pp.4829-4840, 2017.
DOI : 10.1021/acs.jctc.7b00735

URL : https://doi.org/10.1021/acs.jctc.7b00735

O. Legeza, J. Roder, and B. A. Hess, QC-DMRG Study of the Ionic-Neutral Curve Crossing of LiF, Mol. Phys, vol.101, pp.2019-2028, 2003.

Ö. Legeza, J. Röder, and B. A. Hess, Controlling the Accuracy of the Density-Matrix Renormalization-Group Method: The Dynamical Block State Selection Approach, Phys. Rev. B, p.125114, 2003.

D. Zgid and M. Nooijen, On the Spin and Symmetry Adaptation of the Density Matrix Renormalization Group Method, J. Chem. Phys, p.14107, 2008.

S. Wouters, W. Poelmans, P. W. Ayers, and D. Van-neck, CheMPS2: A Free Open-Source Spin-Adapted Implementation of the Density Matrix Renormalization Group for Ab Initio Quantum Chemistry, Comput. Phys. Commun, vol.185, pp.1501-1514, 2014.

Y. Ma, J. Wen, and H. Ma, Density-Matrix Renormalization Group Algorithm with MultiLevel Active Space, J. Chem. Phys, p.34105, 2015.
DOI : 10.1063/1.4926833

URL : http://arxiv.org/pdf/1507.05264

M. Timár, G. Barcza, F. Gebhard, L. Veis, and Ö. Legeza, Hückel-Hubbard-Ohno Modeling of ?-Bonds in Ethene and Ethyne with Application to Trans-Polyacetylene, Phys. Chem. Chem. Phys, vol.18, pp.18835-18845, 2016.

G. Moritz, A. Wolf, and M. Reiher, Relativistic DMRG Calculations on the Curve Crossing of Cesium Hydride, J. Chem. Phys, p.184105, 2005.
DOI : 10.1063/1.2104447

K. H. Marti and M. Reiher, DMRG Control Using an Automated Richardson-Type Error Protocol, Mol. Phys, vol.108, pp.501-512, 2010.
DOI : 10.1080/00268971003657078

K. H. Marti, I. M. Ondík, G. Moritz, and M. Reiher, Density Matrix Renormalization Group Calculations on Relative Energies of Transition Metal Complexes and Clusters, J. Chem. Phys, vol.128, p.14104, 2008.
DOI : 10.1063/1.2805383

Y. Ma, S. Knecht, and M. Reiher, Multiconfigurational Effects in Theoretical Resonance Raman Spectra, vol.18, pp.384-393, 2017.
DOI : 10.1002/cphc.201601072

URL : https://doi.org/10.1002/cphc.201601072

T. Yanai, Y. Kurashige, D. Ghosh, G. K. Chan, and .. , Accelerating Convergence in Iterative Solution for Large-Scale Complete Active Space Self-Consistent-Field Calculations, Int. J. Quantum Chem, vol.109, pp.2178-2190, 2009.

W. Mizukami, Y. Kurashige, and T. Yanai, Communication: Novel Quantum States of Electron Spins in Polycarbenes from Ab Initio Density Matrix Renormalization Group Calculations, J. Chem. Phys, p.91101, 2010.

I. Hagymási, Ö. Legeza, and . Entanglement, Excitations, and Correlation Effects in Narrow Zigzag Graphene Nanoribbons, Phys. Rev. B, p.165147, 2016.

Y. Kurashige and T. Yanai, Theoretical Study of the ? ??* Excited States of Oligoacenes: A Full ?-Valence DMRG-CASPT2 Study, Bull. Chem. Soc. Jpn, vol.87, pp.1071-1073, 2014.

S. Guo, M. A. Watson, W. Hu, Q. Sun, G. K. Chan et al., N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(pPhenylenevinylene), J. Chem. Theory Comput, vol.12, pp.1583-1591, 2016.

F. Liu, Y. Kurashige, T. Yanai, and K. Morokuma, Multireference Ab Initio Density Matrix Renormalization Group (DMRG)-CASSCF and DMRG-CASPT2 Study on the

, Photochromic Ring Opening of Spiropyran, 478) Das, M. Computational Investigation on Tunable Optical Band Gap in Armchair Polyacenes, vol.9, p.64704, 2013.

S. Shirai, Y. Kurashige, and T. Yanai, Computational Evidence of Inversion of 1 La and 1 LbDerived Excited States in Naphthalene Excimer Formation from Ab Initio Multireference Theory with Large Active Space: DMRG-CASPT2 Study, J. Chem. Theory Comput, vol.12, pp.2366-2372, 2016.

G. Barcza, F. Gebhard, and Ö. Legeza, Rigorous Treatment of Strong Electronic Correlations in Polydiacetylene Chains, Mol. Phys, vol.111, pp.2506-2515, 2013.

G. Barcza, Ö. Legeza, F. Gebhard, and R. M. Noack, Density Matrix Renormalization Group Study of Excitons in Polydiacetylene Chains, Phys. Rev. B, p.45103, 2010.

Ö. Legeza, K. Buchta, and J. Sólyom, Unified Phase Diagram of Models Exhibiting a NeutralIonic Transition, Phys. Rev. B, p.165124, 2006.

W. Hu, G. K. Chan, and .. , Excited-State Geometry Optimization with the Density Matrix Renormalization Group, as Applied to Polyenes, J. Chem. Theory Comput, vol.11, pp.3000-3009, 2015.

S. Wouters, T. Bogaerts, . Van-der, P. Voort, V. Van-speybroeck et al., Communication: DMRG-SCF Study of the Singlet, Triplet, and Quintet States of OxoMn(Salen), J. Chem. Phys, p.241103, 2014.

E. R. Sayfutyarova, G. K. Chan, and .. , A State Interaction Spin-Orbit Coupling Density Matrix Renormalization Group Method, J. Chem. Phys, p.234301, 2016.

S. Sharma, K. Sivalingam, F. Neese, G. K. Chan, and .. , Low-Energy Spectrum of Iron-sulfur Clusters Directly from Many-Particle Quantum Mechanics, Nat. Chem, vol.6, pp.927-933, 2014.

Y. Kurashige, G. K. Chan, and T. Yanai, Entangled Quantum Electronic Wavefunctions of the Mn4CaO5 Cluster in Photosystem II, Nat. Chem, vol.5, pp.660-666, 2013.

E. D. Hedegård and M. Reiher, Polarizable Embedding Density Matrix Renormalization Group, J. Chem. Theory Comput, vol.12, pp.4242-4253, 2016.

G. H. Booth, A. J. Thom, and A. Alavi, Fermion Monte Carlo without Fixed Nodes: A Game of Life, Death, and Annihilation in Slater Determinant Space, J. Chem. Phys, p.54106, 2009.

G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Towards an Exact Description of Electronic Wavefunctions in Real Solids, Nature, vol.493, pp.365-370, 2012.

W. M. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Quantum Monte Carlo Simulations of Solids, Rev. Mod. Phys, vol.73, pp.33-83, 2001.

D. Cleland, G. H. Booth, and A. Alavi, Communications: Survival of the Fittest: Accelerating Convergence in Full Configuration-Interaction Quantum Monte Carlo, J. Chem. Phys, p.41103, 2010.

F. R. Petruzielo, A. A. Holmes, H. J. Changlani, M. P. Nightingale, and C. J. Umrigar, Semistochastic Projector Monte Carlo Method, Phys. Rev. Lett, vol.109, p.230201, 2012.
DOI : 10.1103/physrevlett.109.230201

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.109.230201

N. S. Blunt, S. D. Smart, J. A. Kersten, J. S. Spencer, G. H. Booth et al., SemiStochastic Full Configuration Interaction Quantum Monte Carlo: Developments and Application, J. Chem. Phys, p.184107, 2015.
DOI : 10.1063/1.4920975

URL : http://arxiv.org/pdf/1502.04847

G. H. Booth, G. K. Chan, and .. , Communication: Excited States, Dynamic Correlation Functions and Spectral Properties from Full Configuration Interaction Quantum Monte Carlo, J. Chem. Phys, vol.137, 2012.
DOI : 10.1063/1.4766327

URL : https://doi.org/10.1063/1.4766327

S. Ten-no, Stochastic Determination of Effective Hamiltonian for the Full Configuration Interaction Solution of Quasi-Degenerate Electronic States, J. Chem. Phys, p.164126, 2013.

A. Humeniuk and R. Mitri?, Excited States from Quantum Monte Carlo in the Basis of Slater Determinants, J. Chem. Phys, p.141, 2014.

N. S. Blunt, S. D. Smart, G. H. Booth, and A. Alavi, An Excited-State Approach within Full Configuration Interaction Quantum Monte Carlo, J. Chem. Phys, p.134117, 2015.
DOI : 10.1063/1.4932595

URL : http://arxiv.org/pdf/1508.04680

N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-gordon, and K. B. Whaley, A Deterministic Alternative to the Full Configuration Interaction Quantum Monte Carlo Method, J. Chem. Phys, p.44112, 2016.

R. E. Thomas, Q. Sun, A. Alavi, and G. H. Booth, Stochastic Multiconfigurational SelfConsistent Field Theory, J. Chem. Theory Comput, vol.11, pp.5316-5325, 2015.
DOI : 10.1021/acs.jctc.5b00917

URL : http://arxiv.org/pdf/1510.03635

L. Manni, G. Smart, S. D. Alavi, and A. , Combining the Complete Active Space SelfConsistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins, J. Chem. Theory Comput, vol.12, pp.1245-1258, 2016.

L. Kong and E. F. Valeev, SF-[2]R12: A Spin-Adapted Explicitly Correlated Method Applicable to Arbitrary Electronic States, J. Chem. Phys, 2011.
DOI : 10.1063/1.3664729

T. Yanai and T. Shiozaki, Canonical Transcorrelated Theory with Projected Slater-Type Geminals, J. Chem. Phys, p.84107, 2012.
DOI : 10.1063/1.3688225

G. H. Booth, D. Cleland, A. Alavi, and D. P. Tew, An Explicitly Correlated Approach to Basis Set Incompleteness in Full Configuration Interaction Quantum Monte Carlo, J. Chem. Phys, vol.137, p.164112, 2012.
DOI : 10.1063/1.4762445

URL : http://arxiv.org/pdf/1208.0980

J. A. Kersten, G. H. Booth, and A. Alavi, Assessment of Multireference Approaches to Explicitly Correlated Full Configuration Interaction Quantum Monte Carlo, J. Chem. Phys, p.54117, 2016.
DOI : 10.1063/1.4959245

URL : https://www.repository.cam.ac.uk/bitstream/1810/257421/2/Kersten_et_al-2016-Journal_of_Chemical_Physics-VoR.pdf

S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, G. K. Chan et al., Spectroscopic Accuracy Directly from Quantum Chemistry: Application to Ground and Excited States of Beryllium Dimer, J. Chem. Phys, p.104112, 2014.
DOI : 10.1063/1.4867383

URL : https://authors.library.caltech.edu/73490/1/1%252E4867383.pdf

S. Sharma and A. Alavi, Multireference Linearized Coupled Cluster Theory for Strongly Correlated Systems Using Matrix Product States, J. Chem. Phys, p.102815, 2015.
DOI : 10.1063/1.4928643

URL : http://arxiv.org/pdf/1509.00216

G. Jeanmairet, S. Sharma, A. Alavi, N. S. Blunt, G. H. Booth et al., Density Matrices in Full Configuration Interaction Quantum Monte Carlo: Excited States, Transition Dipole Moments, and Parallel Distribution, J. Chem. Phys, vol.146, issue.509, p.244105, 2017.

C. Overy, G. H. Booth, N. S. Blunt, J. J. Shepherd, D. Cleland et al., Unbiased Reduced Density Matrices and Electronic Properties from Full Configuration Interaction Quantum Monte Carlo, J. Chem. Phys, p.244117, 2014.
DOI : 10.1063/1.4904313

URL : http://arxiv.org/pdf/1410.6047

Y. Ohtsuka and S. Nagase, Projector Monte Carlo Method Based on Slater Determinants: Test Application to Singlet Excited States of H2O and LiF, Chem. Phys. Lett, vol.485, pp.367-370, 2010.
DOI : 10.1016/j.cplett.2009.12.047

J. P. Coe and M. J. Paterson, State-Averaged Monte Carlo Configuration Interaction Applied to Electronically Excited States, J. Chem. Phys, p.154103, 2013.
DOI : 10.1063/1.4824888

URL : http://arxiv.org/pdf/1402.7281

A. A. Holmes, C. J. Umrigar, and S. Sharma, Excited States Using Semistochastic Heat-Bath Configuration Interaction, J. Chem. Phys, p.164111, 2017.

A. A. Holmes, N. M. Tubman, and C. J. Umrigar, Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling, J. Chem. Theory Comput, vol.12, pp.3674-3680, 2016.

S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar, Semistochastic HeatBath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory, J. Chem. Theory Comput, vol.13, pp.1595-1604, 2017.

R. Shepard, D. R. Yarkony, and E. , The Analytic Gradient Method for Configuration Interaction Wave Functions, Advanced Series in Physical Chemistry, vol.2, pp.345-458, 1995.

N. C. Handy and H. F. Schaefer, On the Evaluation of Analytic Energy Derivatives for Correlated Wave Functions, J. Chem. Phys, p.5031, 1984.

M. Page, P. Saxe, G. F. Adams, and B. H. Lengsfield, Multireference CI Gradients and MCSCF Second Derivatives, J. Chem. Phys, vol.81, pp.434-439, 1984.

R. Shepard, Geometrical Energy Derivative Evaluation With MRCI Wave Functions, Int. J. Quantum Chem, vol.31, pp.33-44, 1987.

T. Busch, A. D. Esposti, and H. Werner, Analytical Energy Gradients for Multiconfiguration Self-consistent Field Wave Functions with Frozen Core Orbitals, J. Chem. Phys, vol.94, issue.520, pp.6708-6715, 1991.

R. Shepard, H. Lischka, P. G. Szalay, T. Kovar, and M. Ernzerhof, A General Multireference Configuration Interaction Gradient Program, J. Chem. Phys, vol.96, pp.2085-2098, 1992.

M. G. Delcey, T. B. Pedersen, F. Aquilante, and R. Lindh, Analytical Gradients of the StateAverage Complete Active Space Self-Consistent Field Method with Density Fitting, J. Chem. Phys, p.44110, 2015.

J. W. Snyder, E. G. Hohenstein, N. Luehr, and T. J. Martínez, An Atomic Orbital-Based Formulation of Analytical Gradients and Nonadiabatic Coupling Vector Elements for the State-Averaged Complete Active Space Self-Consistent Field Method on Graphical Processing Units, J. Chem. Phys, p.154107, 2015.

A. A. Granovsky, Communication: An Efficient Approach to Compute State-Specific Nuclear Gradients for a Generic State-Averaged Multi-Configuration Self Consistent Field Wavefunction, J. Chem. Phys, p.231101, 2015.

M. K. Macleod and T. Shiozaki, Communication: Automatic Code Generation Enables Nuclear Gradient Computations for Fully Internally Contracted Multireference Theory, J. Chem. Phys, p.51103, 2015.

B. H. Lengsfield, P. Saxe, and D. R. Yarkony, On the Evaluation of Nonadiabatic Coupling Matrix Elements Using SA-MCSCF/CI Wave Functions and Analytic Gradient Methods. I

, J. Chem. Phys, p.4549, 1984.

H. Lischka, M. Dallos, P. G. Szalay, D. R. Yarkony, and R. Shepard, Analytic Evaluation of Nonadiabatic Coupling Terms at the MR-CI Level. I. Formalism, J. Chem. Phys, vol.120, pp.7322-7329, 2004.

I. F. Galván, M. G. Delcey, T. B. Pedersen, F. Aquilante, and R. Lindh, Analytical StateAverage Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections, J. Chem. Theory Comput, vol.12, pp.3636-3653, 2016.

J. W. Park and T. Shiozaki, Analytical Derivative Coupling for Multistate CASPT2 Theory, J. Chem. Theory Comput, vol.13, pp.2561-2570, 2017.

A. Tajti and P. G. Szalay, Analytic Evaluation of the Nonadiabatic Coupling Vector between Excited States Using Equation-of-Motion Coupled-Cluster Theory, J. Chem. Phys, p.124104, 2009.

F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand et al., Efficient and Flexible Computation of Many-Electron Wave Function Overlaps, J. Chem. Theory Comput, vol.12, pp.1207-1219, 2016.

J. Pittner, H. Lischka, and M. Barbatti, Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings, Chem. Phys, vol.356, pp.147-152, 2009.

R. L. Martin, Natural Transition Orbitals, J. Chem. Phys, vol.118, pp.4775-4777, 2003.
DOI : 10.1063/1.1558471

F. Plasser, H. Lischka, F. Plasser, M. Wormit, and A. Dreuw, New Tools for the Systematic Analysis and Visualization of Electronic Excitations. I. Formalism, J. Chem. Theory Comput, vol.8, issue.535, p.24106, 2012.

S. A. Mewes, J. Mewes, A. Dreuw, and F. Plasser, Excitons in Poly(para Phenylene Vinylene): A Quantum-Chemical Perspective Based on High-Level Ab Initio Calculations, Phys. Chem. Chem. Phys, vol.18, pp.2548-2563, 2016.

F. Plasser and A. Dreuw, High-Level Ab Initio Computations of the Absorption Spectra of Organic Iridium Complexes, J. Phys. Chem. A, vol.119, pp.1023-1036, 2015.

S. A. Bäppler, F. Plasser, M. Wormit, and A. Dreuw, Exciton Analysis of Many-Body Wave Functions: Bridging the Gap between the Quasiparticle and Molecular Orbital Pictures, Phys. Rev. A, p.52521, 2014.

F. Plasser, B. Thomitzni, S. A. Bäppler, J. Wenzel, D. R. Rehn et al., Statistical Analysis of Electronic Excitation Processes: Spatial Location, Compactness, Charge Transfer, and Electron-Hole Correlation, J. Comput. Chem, vol.36, pp.1609-1620, 2015.

F. Plasser, S. A. Mewes, A. Dreuw, and L. González, Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene, J. Chem. Theory Comput, vol.13, pp.5343-5353, 2017.

F. Plasser and L. González, Communication: Unambiguous Comparison of Many-Electron Wavefunctions through Their Overlaps, J. Chem. Phys, p.21103, 2016.

K. Takatsuka, T. Fueno, and K. Yamaguchi, Distribution of Odd Electrons in Ground-State Molecules, Theor. Chim. Acta, vol.183, pp.175-183, 1978.

V. N. Staroverov and E. R. Davidson, Distribution of Effectively Unpaired Electrons, Chem. Phys. Lett, vol.330, pp.161-168, 2000.
DOI : 10.1016/s0009-2614(00)01088-5

M. Head-gordon, Characterizing Unpaired Electrons from the One-Particle Density Matrix, Chem. Phys. Lett, vol.372, pp.508-511, 2003.

S. Grimme and A. Hansen, A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects, Angew. Chem., Int. Ed, vol.54, pp.12308-12313, 2015.

T. Juhász and D. A. Mazziotti, The Cumulant Two-Particle Reduced Density Matrix as a Measure of Electron Correlation and Entanglement, J. Chem. Phys, p.174105, 2006.

E. Ramos-cordoba, P. Salvador, and E. Matito, Separation of Dynamic and Nondynamic Correlation, Phys. Chem. Chem. Phys, vol.18, pp.24015-24023, 2016.

C. J. Stein and M. Reiher, Measuring Multi-Configurational Character by Orbital Entanglement, Mol. Phys, vol.115, pp.2110-2119, 2017.
DOI : 10.1080/00268976.2017.1288934

URL : http://arxiv.org/pdf/1609.02617

F. Plasser, Entanglement Entropy of Electronic Excitations, J. Chem. Phys, p.144, 2016.

T. J. Lee and P. R. Taylor, A Diagnostic for Determining the Quality of Single-reference Electron Correlation Methods, Int. J. Quantum Chem, vol.36, pp.199-207, 1989.

C. L. Janssen and I. M. Nielsen, New Diagnostics for Coupled-Cluster and Møller-Plesset Perturbation Theory, Chem. Phys. Lett, vol.290, pp.423-430, 1998.
DOI : 10.1016/s0009-2614(98)00504-1

J. D. Watts, M. Urban, and R. J. Bartlett, Accurate Electrical and Spectroscopic Properties of X 1 ? + BeO from Coupled-Cluster Methods, Theor. Chim. Acta, vol.90, pp.341-355, 1995.

I. M. Nielsen and C. L. Janssen, Double-Substitution-Based Diagnostics for CoupledCluster and Møller-Plesset Perturbation Theory, Chem. Phys. Lett, vol.310, pp.568-576, 1999.

C. W. Bauschlicher and S. R. Langhoff, The Study of Molecular Spectroscopy by Ab Initio Methods, Chem. Rev, vol.91, pp.701-718, 1991.

M. L. Abrams and C. D. Sherrill, A Comparison of Polarized Double-Zeta Basis Sets and Natural Orbitals for Full Configuration Interaction Benchmarks, J. Chem. Phys, vol.118, pp.1604-1609, 2003.

Z. Gan, D. J. Grant, R. J. Harrison, and D. A. Dixon, The Lowest Energy States of the GroupIIIA-group-VA Heteronuclear Diatomics: BN, BP, AlN, and AlP from Full Configuration Interaction Calculations, J. Chem. Phys, p.124311, 2006.

L. Bytautas, T. Nagata, M. S. Gordon, and K. Ruedenberg, Accurate Ab Initio Potential Energy Curve of F2. I. Nonrelativistic Full Valence Configuration Interaction Energies Using the Correlation Energy Extrapolation by Intrinsic Scaling Method, J. Chem. Phys, p.164317, 2007.

L. Bytautas and K. Ruedenberg, Accurate Ab Initio Potential Energy Curve of O2. I. Nonrelativistic Full Configuration Interaction Valence Correlation by the Correlation Energy Extrapolation by Intrinsic Scaling Method, J. Chem. Phys, p.74109, 2010.

D. Cleland, G. H. Booth, C. Overy, and A. Alavi, Taming the First-Row Diatomics: A Full Configuration Interaction Quantum Monte Carlo Study, J. Chem. Theory Comput, vol.8, pp.4138-4152, 2012.

C. Ghanmi, M. Farjallah, and H. Berriche, Theoretical Study of the Alkaline-Earth (LiBe) + Ion: Structure, Spectroscopy and Dipole Moments, J. Phys. B At. Mol. Opt. Phys, p.55101, 2017.

A. P. De-lima-batista, J. C. De-lima, K. Franzreb, and F. R. Ornellas, A Theoretical Study of SnF 2+ , SnCl 2+ , and SnO 2+ and Their Experimental Search, J. Chem. Phys, p.154302, 2012.

A. P. De-lima-batista and F. R. Ornellas, Ab Initio Study of the Lowest-Lying Electronic States of the LiAs Molecule, Comput. Theor. Chem, vol.1009, pp.17-23, 2013.

X. Wang, D. Shi, and J. Sun, Accurate Calculations on 20 ?-S States of the BP Radical: Potential Energy Curves, Spectroscopic Parameters, and Electronic Transition Properties, Can. J. Chem, vol.93, pp.1088-1095, 2015.

C. W. Bauschlicher, The Low-Lying Electronic States of SiO, Chem. Phys. Lett, vol.658, pp.76-79, 2016.

H. Liu, D. Shi, J. Sun, and Z. Zhu, Accurate Multireference Configuration Interaction Calculations of the 24 ?-S States and 60 ? States of the BO + Cation, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.168, pp.148-158, 2016.

A. R. Belinassi, T. V. Alves, and F. R. Ornellas, Electronic States and Spectroscopic Parameters of Selenium Monoiodide, SeI: A Theoretical Contribution, Chem. Phys. Lett, vol.671, pp.78-83, 2017.

G. F. Fernandes, M. A. Pontes, M. H. Oliveira, L. F. Ferrão, and F. B. Machado, The Low-Lying States of AlC and GaC: Molecular Constants, Transition Probabilities and Radiative Lifetime, Chem. Phys. Lett, vol.687, pp.171-177, 2017.

C. W. Bauschlicher and D. W. Schwenke, The Low-Lying Electronic States of MgO, Chem. Phys. Lett, vol.683, pp.62-67, 2017.

Z. Song, D. Shi, J. Sun, and Z. Zhu, Accurate MRCI Calculations of the Low-Lying Electronic States of the NCl Molecule, Eur. Phys. J. D, p.55, 2017.

L. Prajapat, P. Jagoda, L. Lodi, M. N. Gorman, S. N. Yurchenko et al., ExoMol Molecular Line Lists-XXIII. Spectra of PO and PS, Mon. Not. R. Astron. Soc, vol.472, pp.3648-3658, 2017.

K. Chakrabarti, A. Dora, R. Ghosh, B. S. Choudhury, and J. Tennyson, R-Matrix Study of Electron Impact Excitation and Dissociation of CH + Ions, J. Phys. B At. Mol. Opt. Phys, p.175202, 2017.

K. A. Mourad, S. N. Abdulal, and M. Korek, Electronic Structure with Rovibrational and Dipole Moment Calculation of the Diatomic Molecules AsBr and AsI

. Chem, , vol.1103, pp.63-70, 2017.

A. Kalemos and A. Mavridis, All Electron Ab Initio Calculations on the ScTi Molecule: A Really Hard Nut to Crack, Theor. Chem. Acc, vol.132, 1408.

S. Srivastava and N. Sathyamurthy, Ab Initio Potential Energy Curves for the Ground and Low Lying Excited States of NH-and the Effect of 2 ? ± States on ?-Doubling of the Ground State X 2 ?, J. Phys. Chem. A, vol.117, pp.8623-8631, 2013.

T. V. Alves and F. R. Ornellas, Exploring the Electronic States of Iodocarbyne: A Theoretical Contribution, Phys. Chem. Chem. Phys, vol.16, pp.9530-9537, 2014.

A. A. Vassilakis, A. Kalemos, and A. Mavridis, Accurate First Principles Calculations on Chlorine Fluoride ClF and Its Ions ClF ±, Theor. Chem. Acc, p.1436, 2014.

S. Srivastava and N. Sathyamurthy, Ab Initio Potential Energy Curves for the Ground and Low-Lying Excited States of OH and OH-and a Study of Rotational Fine Structure in Photodetachment, J. Phys. Chem. A, vol.118, pp.6343-6350, 2014.

H. Liu, D. Shi, J. Sun, Z. Zhu, and Z. Shulin, Accurate Calculations on the 22 Electronic States and 54 Spin-Orbit States of the O2 Molecule: Potential Energy Curves, Spectroscopic Parameters and Spin-Orbit Coupling, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.124, pp.216-229, 2014.

A. P. De-lima-batista, A. G. De-oliveira-filho, and F. R. Ornellas, Ab Initio Characterization of the Lowest-Lying Electronic States of the NaAs Molecule, Comput. Theor. Chem, pp.56-61, 1064.

I. Magoulas, A. Papakondylis, and A. Mavridis, Structural Parameters of the Ground States of the Quasi-Stable Diatomic Anions CO-, BF-, and BCl-as Obtained by Conventional Ab Initio Methods, Int. J. Quantum Chem, vol.115, pp.771-778, 2015.

T. Müller, M. Dallos, H. Lischka, Z. Dubrovay, and P. G. Szalay, Systematic Theoretical Investigation of the Valence Excited States of the Diatomic Molecules B2, C2, N2 and O2

. Theor, Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta), vol.105, pp.227-243, 2001.

C. South, G. Schoendorff, A. K. Wilson, and . Mr-ccca, A Route for Accurate Ground and Excited State Potential Energy Curves and Spectroscopic Properties for Third-Row Diatomic Molecules, Comput. Theor. Chem, pp.72-83, 2014.

V. Jovanovi?, I. Lyskov, M. Kleinschmidt, and C. M. Marian, On the Performance of DFT/MRCI-R and MR-MP2 in Spin-orbit Coupling Calculations on Diatomics and Polyatomic Organic Molecules, Mol. Phys, vol.115, pp.109-137, 2017.

J. F. Harrison, Electronic Structure of Diatomic Molecules Composed of a First-Row Transition Metal and Main-Group Element (H?F), Chem. Rev, vol.100, pp.679-716, 2000.

J. Tennyson, L. Lodi, L. K. Mckemmish, and S. N. Yurchenko, The Ab Initio Calculation of Spectra of Open Shell Diatomic Molecules, J. Phys. B At. Mol. Opt. Phys, vol.49, p.102001, 2016.

, J. Chem. Theory Comput, vol.13, pp.1057-1066, 2017.

L. Cheng, J. Gauss, B. Ruscic, P. B. Armentrout, J. F. Stanton et al., Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark ScalarRelativistic Coupled-Cluster Calculations for 20 Molecules, J. Chem. Theory Comput, vol.13, pp.1044-1056, 2017.

X. Xu, W. Zhang, M. Tang, and D. G. Truhlar, Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?, J. Chem. Theory Comput, vol.11, pp.2036-2052, 2015.

J. L. Bao, X. Zhang, X. Xu, and D. G. Truhlar, Predicting Bond Dissociation Energy and Bond Length for Bimetallic Diatomic Molecules: A Challenge for Electronic Structure Theory, Phys. Chem. Chem. Phys, vol.19, pp.5839-5854, 2017.

Y. A. Aoto, . De-lima, A. P. Batista, A. Köhn, and A. G. De-oliveira-filho, How To Arrive at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment?, J. Chem. Theory Comput, vol.13, pp.5291-5316, 2017.

J. Tennyson, Perspective: Accurate Ro-Vibrational Calculations on Small Molecules, J. Chem. Phys, p.120901, 2016.
DOI : 10.1063/1.4962907

URL : https://aip.scitation.org/doi/pdf/10.1063/1.4962907

A. A. Azzam, L. Lodi, S. N. Yurchenko, and J. Tennyson, The Dipole Moment Surface for Hydrogen Sulfide H2S, J. Quant. Spectrosc. Radiat. Transf, vol.161, pp.41-49, 2015.
DOI : 10.1016/j.jqsrt.2015.03.029

M. A. Gharaibeh, R. Nagarajan, D. J. Clouthier, and R. Tarroni, An Experimental and Theoretical Study of the Electronic Spectrum of the HBCl Free Radical, J. Chem. Phys, p.14305, 2015.

T. Hirano and U. Nagashima, Ro-Vibrational Properties of FeCO in the X 3 ?-and a 5 ?Electronic States: A Computational Molecular Spectroscopy Study, J. Mol. Spectrosc, vol.314, pp.35-47, 2015.

D. Khiri, M. Hochlaf, and G. Chambaud, Energetic Diagrams and Structural Properties of Monohaloacetylenes HC?CX (X = F, Cl, Br), J. Phys. Chem. A, vol.120, pp.5985-5992, 2016.
DOI : 10.1021/acs.jpca.6b04504

A. Teplukhin and D. Babikov, Efficient Method for Calculations of Ro-Vibrational States in Triatomic Molecules near Dissociation Threshold: Application to Ozone, J. Chem. Phys, p.114106, 2016.

J. K?os, M. H. Alexander, P. Kumar, B. Poirier, B. Jiang et al., New Ab Initio Adiabatic Potential Energy Surfaces and Bound State Calculations for the Singlet Ground X? 1 A1 and Excited C? 1 B2(2 1 A´) States of SO2, J. Chem. Phys, p.174301, 2016.

J. Koput, Ab Initio Potential Energy Surface and Vibration-Rotation Energy Levels of Sulfur Dioxide, J. Comput. Chem, vol.38, pp.892-900, 2017.
DOI : 10.1002/jcc.24765

G. Hou, B. Chen, W. J. Transue, Z. Yang, H. Grützmacher et al., Spectroscopic Characterization, Computational Investigation

X. and O. Anions, J. Am. Chem. Soc, vol.139, pp.8922-8930, 2017.

M. Tchatchouang, M. Nsangou, O. Motapon, and . Stability, Metastability and Spectroscopic Properties of Some Low-Lying Electronic States of C2H-and N2H, Comput. Theor. Chem, vol.1117, pp.241-250, 2017.

A. D. Powell, N. S. Dattani, R. F. Spada, F. B. Machado, H. Lischka et al., Investigation of the Ozone Formation Reaction Pathway: Comparisons of Full Configuration Interaction Quantum Monte Carlo and Fixed-Node Diffusion Monte Carlo with Contracted and Uncontracted MRCI, J. Chem. Phys, p.94306, 2017.

J. Leiding, D. E. Woon, and T. H. Dunning, Theoretical Studies of the Excited Doublet States of SF and SCl and Singlet States of SF2, SFCl, and SCl2, J. Phys. Chem. A, vol.116, pp.1655-1662, 2012.

A. G. De-oliveira-filho, F. R. Ornellas, and K. A. Peterson, Accurate Ab Initio Potential Energy Surfaces for the 3 A?? and 3 A? Electronic States of the O( 3 P)+HBr System, J. Chem. Phys, issue.603, p.174316, 2012.

X. Huang, D. W. Schwenke, S. A. Tashkun, and T. J. Lee, An Isotopic-Independent Highly Accurate Potential Energy Surface for CO2 Isotopologues and an Initial 12 C 16 O2 Infrared Line List, J. Chem. Phys, p.124311, 2012.

E. Miliordos, K. Ruedenberg, and S. S. Xantheas, Unusual Inorganic Biradicals: A Theoretical Analysis. Angew. Chemie-Int, vol.52, pp.5736-5739, 2013.
DOI : 10.1002/ange.201300654

R. Dawes, P. Lolur, A. Li, B. Jiang, and H. Guo, Communication: An Accurate Global Potential Energy Surface for the Ground Electronic State of Ozone, J. Chem. Phys, p.139, 2013.

M. A. Gannouni, N. E. Jaidane, P. Halvick, T. Stoecklin, and M. Hochlaf, Accurate Global Potential Energy Surface for the H + OH + Collision, J. Chem. Phys, p.184306, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078351

E. Miliordos and S. S. Xantheas, On the Bonding Nature of Ozone (O3) and Its SulfurSubstituted Analogues SO2, OS2, and S3: Correlation between Their Biradical Character and Molecular Properties, J. Am. Chem. Soc, vol.136, pp.2808-2817, 2014.

C. M. Rocha and A. J. Varandas, Accurate Ab Initio-Based Double Many-Body Expansion Potential Energy Surface for the Adiabatic Ground-State of the C3 Radical Including Combined Jahn-Teller plus Pseudo-Jahn-Teller Interactions, J. Chem. Phys, p.74302, 2015.

R. Hernández-lamoneda, M. R. Salazar, and R. T. Pack, Does Ozone Have a Barrier to Dissociation and Recombination?, Chem. Phys. Lett, vol.355, pp.478-482, 2002.

R. Schinke and P. Fleurat-lessard, The Transition-State Region of the O( 3 P)+O2( 3 ?g-) Potential Energy Surface, J. Chem. Phys, vol.121, pp.5789-5793, 2004.

F. Holka, P. G. Szalay, T. Mu?ller, and V. G. Tyuterev, Toward an Improved Ground State Potential Energy Surface of Ozone, J. Phys. Chem. A, vol.114, pp.9927-9935, 2010.
DOI : 10.1021/jp104182q

C. Xie, C. L. Malbon, D. R. Yarkony, D. Xie, and H. Guo, Signatures of a Conical Intersection in Adiabatic Dissociation on the Ground Electronic State, J. Am. Chem. Soc, vol.140, 1986.

C. Xie, C. Malbon, D. R. Yarkony, and H. Guo, Nonadiabatic Photodissociation Dynamics of the Hydroxymethyl Radical via the 2 2 A(3s) Rydberg State: A Four-Dimensional Quantum Study, J. Chem. Phys, p.224306, 2017.

C. L. Malbon, D. R. Yarkony, and . Multistate, Multichannel Coupled Diabatic State Representations of Adiabatic States Coupled by Conical Intersections, p.2

. , J. Chem. Phys, p.134302, 2017.

C. L. Malbon and D. R. Yarkony, Nonadiabatic Photodissociation of the Hydroxymethyl Radical from the 2 2 A State. Surface Hopping Simulations Based on a Full NineDimensional Representation of the 1,2,3 2 A Potential Energy Surfaces Coupled by Conical Intersections, J. Phys. Chem. A, vol.119, pp.7498-7509, 2015.

J. A. Devine, M. L. Weichman, B. Laws, J. Chang, M. C. Babin et al., Encoding of Vinylidene Isomerization in Its Anion Photoelectron Spectrum, vol.358, pp.336-339, 2017.

L. Guo, H. Han, J. Ma, and H. Guo, Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface, J. Phys. Chem. A, vol.119, pp.8488-8496, 2015.

J. Li and H. Guo, Permutationally Invariant Fitting of Intermolecular Potential Energy Surfaces: A Case Study of the Ne-C2H2 System, J. Chem. Phys, p.214304, 2015.

P. R. Ogilby, Singlet Oxygen: There Is Indeed Something New under the Sun, Chem. Soc. Rev, vol.39, pp.3181-3209, 2010.

C. Schweitzer and R. Schmidt, Physical Mechanisms of Generation and Deactivation of Singlet Oxygen, Chem. Rev, vol.103, pp.1685-1758, 2003.

C. Schweitzer, Z. Mehrdad, A. Noll, E. W. Grabner, and R. Schmidt, Mechanism of Photosensitized Generation of Singlet Oxygen during Oxygen Quenching of Triplet States and the General Dependence of the Rate Constants and Efficiencies, J. Phys. Chem. A, vol.107, pp.2192-2198, 2003.

M. Boggio-pasqua, M. Vidal, and M. Garavelli, Theoretical Mechanistic Study of SelfSensitized Photo-Oxygenation and Singlet Oxygen Thermal Release in a Dimethyldihydropyrene Derivative, J. Photochem. Photobiol. A Chem, vol.333, pp.156-164, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01396539

F. Shafii and R. Schmidt, Determination of Rate Constants of Formation of O2 ( 1 ?g + ), O2 ( 1 ?g), and O2 ( 3 ?g-) in the Quenching of Triplet States by O2 for Compounds with Incomplete Intersystem Crossing, J. Phys. Chem. A, vol.105, pp.1805-1810, 2001.

S. Bai and M. Barbatti, Spatial Factors for Triplet Fusion Reaction of Singlet Oxygen Photosensitization, J. Phys. Chem. Lett, vol.8, pp.5456-5460, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01774174

Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen et al., Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action, Angew. Chemie Int. Ed, vol.50, pp.11937-11941, 2011.
DOI : 10.1002/ange.201105736

URL : http://repository.bilkent.edu.tr/bitstream/11693/21660/1/Designing%20excited%20states%20Theory-guided%20access%20to%20efficient%20photosensitizers%20for%20photodynamic%20action.pdf

J. J. Nogueira, M. Oppel, and L. González, Enhancing Intersystem Crossing in Phenotiazinium Dyes by Intercalation into DNA. Angew. Chemie Int, vol.54, pp.4375-4378, 2015.

N. Harvey, J. Aschi, and M. , Spin-Forbidden Dehydrogenation of Methoxy Cation: A Statistical View, Phys. Chem. Chem. Phys, vol.1, pp.5555-5563, 1999.

S. Bai and M. Barbatti, Divide-to-Conquer: A Kinetic Model for Singlet Oxygen Photosensitization, J. Chem. Theory Comput, vol.13, pp.5528-5538, 2017.

J. J. Serrano-pérez, G. Olaso-gonzález, M. Merchán, and L. Serrano-andrés, Singlet Oxygen Generation in PUVA Therapy Studied Using Electronic Structure Calculations, Chem. Phys, vol.360, pp.85-96, 2009.

M. Sumita and K. Morihashi, Theoretical Study of Singlet Oxygen Molecule Generation via an Exciplex with Valence-Excited Thiophene, J. Phys. Chem. A, vol.119, pp.876-883, 2015.

W. Freyer, H. Stiel, K. Teuchner, and D. Leupold, Photophysics and Photochemistry of Tetraanthraporphyrazines; Attempts to Obtain a New Generation of Photosensitizers, J. Photochem. Photobiol. A Chem, vol.80, pp.161-167, 1994.

L. Martínez-fernández, J. González-vázquez, L. González, and I. Corral, Time-Resolved Insight into the Photosensitized Generation of Singlet Oxygen in Endoperoxides, J. Chem. Theory Comput, vol.11, pp.406-414, 2015.

M. Richter, P. Marquetand, J. González-vázquez, I. Sola, L. González et al., Ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings, J. Chem. Theory Comput, vol.7, pp.1253-1258, 2011.

B. S. Hudson, B. E. Kohler, and K. Schulten, Excited States, vol.6, 1982.

K. Schulten, I. Ohmine, and M. Karplus, Correlation Effects in the Spectra of Polyenes, J. Chem. Phys, vol.64, pp.4422-4441, 1976.

P. Tavan and K. Schulten, The Low-lying Electronic Excitations in Long Polyenes: A PPPMRD-CI Study, J. Chem. Phys, vol.85, pp.6602-6609, 1986.

P. Tavan and K. Schulten, Electronic Excitations in Finite and Infinite Polyenes, Phys. Rev. B, vol.36, pp.4337-4358, 1987.

W. Wu, D. Danovich, A. Shurki, and S. Shaik, Using Valence Bond Theory to Understand Electronic Excited States: Application to the Hidden Excited State (2 1 Ag) of C2nH2n+2 (n = 2?14) Polyenes, J. Phys. Chem. A, vol.104, pp.8744-8758, 2000.

D. Zhang and C. Liu, Electronic Structures of Low-Lying Bu Excited States in TransOligoenes: Pariser-Parr-Pople and Ab Initio Calculations, J. Chem. Phys, p.135, 2011.

L. E. Mcmurchie and E. R. Davidson, Configuration Interaction Calculations on the Planar 1 (?,?*) State of Ethylene, J. Chem. Phys, vol.66, pp.2959-2971, 1977.

R. J. Buenker, S. D. Peyerimhoff, and S. Shih, AB Initio Study of the Spatial Extension of the Ethylene v State, Chem. Phys. Lett, vol.69, pp.7-13, 1980.

R. Lindh and B. O. Roos, A Theoretical Study of the Diffuseness of the V( 1 B1u) State of Planar Ethylene, Int. J. Quantum Chem, vol.35, issue.643, pp.813-825, 1989.

E. R. Davidson, The Spatial Extent of the V State of Ethylene and Its Relation to Dynamic Correlation in the Cope Rearrangement, J. Phys. Chem, vol.100, pp.6161-6166, 1996.

W. T. Borden and E. R. Davidson, The Importance of Including Dynamic Electron Correlation in Ab Initio Calculations, Acc. Chem. Res, vol.29, pp.67-75, 1996.

T. Müller, M. Dallos, and H. Lischka, The Ethylene 1 1 B1u V State Revisited, J. Chem. Phys, vol.110, pp.7176-7184, 1999.

C. Angeli, On the Nature of the ? ??* Ionic Excited States: The V State of Ethene as a Prototype, J. Comput. Chem, vol.30, pp.1319-1333, 2009.

W. Wu, H. Zhang, B. Braïda, S. Shaik, and P. C. Hiberty, The V State of Ethylene: Valence Bond Theory Takes up the Challenge, Theor. Chem. Acc, p.1441, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01627701

M. Schmidt and P. Tavan, Electronic Excitations in Long Polyenes Revisited, J. Chem. Phys, p.124309, 2012.

F. Plasser, S. A. Bäppler, M. Wormit, and A. Dreuw, New Tools for the Systematic Analysis and Visualization of Electronic Excitations. II. Applications, J. Chem. Phys, p.24107, 2014.

S. A. Mewes, F. Plasser, A. Krylov, and A. Dreuw, Benchmarking Excited-State Calculations Using Exciton Properties, J. Chem. Theory Comput, vol.14, pp.710-725, 2018.

C. Hsu, S. Hirata, and M. Head-gordon, Excitation Energies from Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Butadiene to Decapentaene, J. Phys. Chem. A, vol.105, pp.451-458, 2001.

J. H. Starcke, M. Wormit, J. Schirmer, and A. Dreuw, How Much Double Excitation Character Do the Lowest Excited States of Linear Polyenes Have?, Chem. Phys, vol.329, pp.39-49, 2006.

Y. Shu and D. G. Truhlar, Doubly Excited Character or Static Correlation of the Reference State in the Controversial 2 1 Ag State of Trans-Butadiene?, J. Am. Chem. Soc, vol.139, pp.13770-13778, 2017.

R. J. Cave, Size-inconsistency Effects in Molecular Properties for States with ValenceRydberg Mixing: The Low-lying ? ??* States of Ethylene and Butadiene, J. Chem. Phys, vol.92, pp.2450-2456, 1990.

J. Lappe and R. J. Cave, On the Vertical and Adiabatic Excitation Energies of the 2 1 Ag State of Trans-1,3-Butadiene, J. Phys. Chem. A, vol.104, pp.2294-2300, 2000.

L. Serrano-andre?s, M. Mercha?n, I. Nebot-gil, R. Lindh, B. O. Roos et al., Towards an Accurate Molecular Orbital Theory for Excited States

, J. Chem. Phys, vol.98, pp.3151-3162, 1993.

K. Nakayama, H. Nakano, and K. Hirao, Theoretical Study of the ? ??* Excited States of Linear Polyenes: The Energy Gap between 1 1 Bu + and 2 1 Ag-States and Their Character

J. Q. Chem, , vol.66, pp.157-175, 1998.

M. Dallos and H. Lischka, A Systematic Theoretical Investigation of the Lowest Valence-and Rydberg-Excited Singlet States of Trans-Butadiene

. Revisited and . Theor, Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta), vol.112, pp.16-26, 2004.

C. M. Marian and N. Gilka, Performance of the Density Functional Theory/Multireference Configuration Interaction Method on Electronic Excitation of Extended ?-Systems, J. Chem. Theory Comput, vol.4, pp.1501-1515, 2008.

L. Serrano-andres, R. Lindh, B. O. Roos, and M. Merchan, Theoretical Study of the Electronic Spectrum of All-Trans-1,3,5,7-Octatetraene, J. Phys. Chem, vol.97, pp.9360-9368, 1993.

C. Angeli and M. Pastore, The Lowest Singlet States of Octatetraene Revisited, J. Chem. Phys, 2011.

E. R. Davidson and A. A. Jarz?cki, Zero Point Corrections to Vertical Excitation Energies, Chem. Phys. Lett, vol.285, pp.155-159, 1998.

T. Fujii, A. Kamata, M. Shimizu, Y. Adachi, and S. Maeda, Two-Photon Absorption Study of 1,3,5-Hexatriene by Cars and CSRS, Chem. Phys. Lett, vol.115, pp.369-372, 1985.

W. J. Buma, B. E. Kohler, and K. Song, Lowest Energy Excited Singlet State of Isolated Cishexatriene, J. Chem. Phys, vol.94, pp.6367-6376, 1991.

H. Petek, A. J. Bell, R. L. Christensen, and K. Yoshihara, Fluorescence Excitation Spectra of the S1 States of Isolated Trienes, J. Chem. Phys, vol.96, pp.2412-2415, 1992.

D. G. Leopold, R. D. Pendley, J. L. Roebber, R. J. Hemley, and V. Vaida, Direct Absorption Spectroscopy of Jet-cooled Polyenes

. Hexatrienes, J. Chem. Phys, vol.81, pp.4218-4229, 1984.

R. R. Chadwick, M. Z. Zgierski, and B. S. Hudson, Resonance Raman Scattering of Butadiene: Vibronic Activity of a bu Mode Demonstrates the Presence of a 1 Ag Symmetry Excited Electronic State at Low Energy, J. Chem. Phys, vol.95, pp.7204-7211, 1991.

R. M. Gavin, S. Risemberg, and S. A. Rice, Spectroscopic Properties of Polyenes. I. The Lowest Energy Allowed Singlet-singlet Transition for Cis-and Trans-1,3,5-hexatriene, J. Chem. Phys, vol.58, pp.3160-3165, 1973.

R. M. Gavin, C. Weisman, J. K. Mcvey, and S. A. Rice, Spectroscopic Properties of Polyenes, J. Chem. Phys, vol.68, pp.522-529, 1978.

R. L. Christensen, M. G. Galinato, E. F. Chu, J. N. Howard, R. D. Broene et al., Energies of Low-Lying Excited States of Linear Polyenes, J. Phys. Chem. A, vol.112, pp.12629-12636, 2008.

R. Snyder, E. Arvidson, C. Foote, L. Harrigan, and R. L. Christensen, Electronic Energy Levels in Long Polyenes: S2 ? S0 Emission in All-Trans, vol.11, pp.4117-4122, 1985.

P. Wang, R. Nakamura, Y. Kanematsu, Y. Koyama, H. Nagae et al., Low-Lying Singlet States of Carotenoids Having 8-13 Conjugated Double Bonds as Determined by Electronic Absorption Spectroscopy, Chem. Phys. Lett, vol.410, pp.108-114, 2005.

Y. Kurashige, H. Nakano, Y. Nakao, and K. Hirao, The ? ??* Excited States of Long Linear Polyenes Studied by the CASCI-MRMP Method, Chem. Phys. Lett, vol.400, pp.425-429, 2004.

A. M. Sand and D. A. Mazziotti, Enhanced Computational Efficiency in the Direct Determination of the Two-Electron Reduced Density Matrix from the Anti-Hermitian Contracted Schrödinger Equation with Application to Ground and Excited States of Conjugated ?-Systems, J. Chem. Phys, p.134110, 2015.

S. Gozem, H. L. Luk, I. Schapiro, and M. Olivucci, Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores, Chem. Rev, vol.117, pp.13502-13565, 2017.

V. Bona?i?-koutecký, K. Schöffel, and J. Michl, Critically Heterosymmetric Biradicaloid Geometries of of Protonated Schiff Bases, Theor. Chim. Acta, vol.72, pp.459-474, 1987.

O. Weingart, I. Schapiro, and V. Buss, Photochemistry of Visual Pigment Chromophore Models by Ab Initio Molecular Dynamics, J. Phys. Chem. B, vol.111, pp.3782-3788, 2007.

E. Walczak, B. Szefczyk, and T. Andruniów, Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods, J. Chem. Theory Comput, vol.9, pp.4915-4927, 2013.

C. H. Martin and R. R. Birge, Reparametrizing MNDO for Excited-State Calculations by Using Ab Initio Effective Hamiltonian Theory: Application to the 2,4-Pentadien-1-Iminium Cation, J. Phys. Chem. A, vol.102, pp.852-860, 1998.

R. R. Zaari, S. Y. Wong, S. C. Van-keulen, A. Solano, and U. Rothlisberger, How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore, J. Chem. Theory Comput, vol.469, issue.682, pp.4524-4534, 2009.

M. Malis, J. Novak, G. Zgrablic, F. Parmigiani, and N. Doslic, Mechanism of Ultrafast NonReactive Deactivation of the Retinal Chromophore in Non-Polar Solvents, Phys. Chem. Chem. Phys, vol.19, pp.25970-25978, 2017.

A. J. Aquino, M. Barbatti, and H. Lischka, Excited-State Properties and Environmental Effects for Protonated Schiff Bases: A Theoretical Study, ChemPhysChem, vol.7, pp.2089-2096, 2006.

O. Valsson and C. Filippi, Photoisomerization of Model Retinal Chromophores: Insight from Quantum Monte Carlo and Multiconfigurational Perturbation Theory, J. Chem. Theory Comput, vol.6, pp.1275-1292, 2010.

A. Warshel, Bicycle-Pedal Model for the First Step in the Vision Process, Nature, vol.260, pp.679-683, 1976.

A. Zen, E. Coccia, S. Gozem, M. Olivucci, and L. Guidoni, Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model, J. Chem. Theory Comput, vol.11, pp.992-1005, 2015.

L. Liu, J. Liu, and T. J. Martinez, Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model Trans-Protonated Schiff Base, J. Phys. Chem. B, vol.120, pp.1940-1949, 2016.

O. Valsson, C. Filippi, and M. E. Casida, Regarding the Use and Misuse of Retinal Protonated Schiff Base Photochemistry as a Test Case for Time-Dependent Density-Functional Theory
URL : https://hal.archives-ouvertes.fr/hal-01651410

, J. Chem. Phys, p.144104, 2015.

M. Garavelli, P. Celani, F. Bernardi, M. A. Robb, and M. Olivucci, The C5H6NH2 + Protonated Shiff Base: An Ab Initio Minimal Model for Retinal Photoisomerization, J. Am. Chem. Soc, vol.119, pp.6891-6901, 1997.

J. J. Szymczak, M. Barbatti, and H. Lischka, Mechanism of Ultrafast Photodecay in Restricted Motions in Protonated Schiff Bases: The Pentadieniminium Cation, J. Chem. Theory Comput, vol.4, pp.1189-1199, 2008.

R. Send and D. Sundholm, Stairway to the Conical Intersection: A Computational Study of the Retinal Isomerization, J. Phys. Chem. A, vol.111, issue.692, pp.8766-8773, 2007.

S. Sekharan, O. Weingart, and V. Buss, Ground and Excited States of Retinal Schiff Base Chromophores by Multiconfigurational Perturbation Theory, Biophys. J, vol.91, pp.7-09, 2006.

S. Gozem, A. I. Krylov, and M. Olivucci, Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods, J. Chem. Theory Comput, vol.9, issue.694, pp.284-292, 2013.

M. Huix-rotllant, M. Filatov, S. Gozem, I. Schapiro, M. Olivucci et al., Assessment of Density Functional Theory for Describing the Correlation Effects on the Ground and Excited State Potential Energy Surfaces of a Retinal Chromophore Model, J. Chem. Theory Comput, vol.9, pp.3917-3932, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01415177

R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, The First Step in Vision: Femtosecond Isomerization of Rhodopsin, Science, vol.254, pp.412-415, 1991.

R. A. Mathies, Photochemistry: A Coherent Picture of Vision, Nat. Chem, vol.7, pp.945-947, 2015.

J. J. Szymczak, M. Barbatti, and H. Lischka, Is the Photoinduced Isomerization in Retinal Protonated Schiff Bases a Single-or Double-Torsional Process, J. Phys. Chem. A, vol.113, pp.11907-11918, 2009.

N. Klaffki, O. Weingart, M. Garavelli, and E. Spohr, Sampling Excited State Dynamics: Influence of HOOP Mode Excitations in a Retinal Model, Phys. Chem. Chem. Phys, vol.14, p.14299, 2012.

O. Weingart, A. Migani, M. Olivucci, M. A. Robb, V. Buss et al., Probing the Photochemical Funnel of a Retinal Chromophore Model via Zero-Point Energy Sampling Semiclassical Dynamics, J. Phys. Chem. A, vol.108, pp.4685-4693, 2004.

L. M. Frutos, T. Andruniów, F. Santoro, N. Ferré, and M. Olivucci, Tracking the ExcitedState Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry

, Proc. Natl. Acad. Sci, vol.104, pp.7764-7769, 2007.

M. Ruckenbauer, M. Barbatti, T. Müller, and H. Lischka, Nonadiabatic Photodynamics of a Retinal Model in Polar and Nonpolar Environment, J. Phys. Chem. A, vol.117, pp.2790-2799, 2013.

I. Dokukina and O. Weingart, Spectral Properties and Isomerisation Path of Retinal in C1C2 Channelrhodopsin, Phys. Chem. Chem. Phys, vol.17, pp.25142-25150, 2015.

I. Dokukina, C. M. Marian, and O. Weingart, New Perspectives on an Old Issue: A Comparative MS-CASPT2 and OM2-MRCI Study of Polyenes and Protonated Schiff Bases, Photochem. Photobiol, vol.93, pp.1345-1355, 2017.

M. M. Huntress, S. Gozem, K. R. Malley, A. E. Jailaubekov, C. Vasileiou et al., Toward an Understanding of the Retinal Chromophore in Rhodopsin Mimics, J. Phys. Chem. B, vol.117, pp.10053-10070, 2013.

P. B. Coto, A. Strambi, N. Ferré, M. Olivucci, A. Cembran et al., Counterion Controlled Photoisomerization of Retinal Chromophore Models: A Computational Investigation, Proc. Natl. Acad. Sci, vol.103, pp.16018-16037, 2004.

M. Manathunga, X. Yang, H. L. Luk, S. Gozem, L. M. Frutos et al., Probing the Photodynamics of Rhodopsins with Reduced Retinal Chromophores, J. Chem. Theory Comput, vol.12, pp.839-850, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409056

D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni et al., Conical Intersection Dynamics of the Primary Photoisomerization Event in Vision, Nature, vol.467, pp.440-443, 2010.

D. Polli, O. Weingart, D. Brida, E. Poli, M. Maiuri et al., Wavepacket Splitting and Two-Pathway Deactivation in the Photoexcited Visual Pigment Isorhodopsin. Angew. Chemie Int, vol.53, pp.2504-2507, 2014.

S. Hayashi, E. Tajkhorshid, and K. Schulten, Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation, ) Weingart, O. Combined Quantum and Molecular Mechanics (QM/MM) Approaches to, vol.96, pp.403-416, 2009.

, Simulate Ultrafast Photodynamics in Biological Systems, Curr. Org. Chem, vol.21, pp.586-601, 2017.

L. Serrano-andrés and M. Merchán, Are the Five Natural DNA/RNA Base Monomers a Good Choice from Natural Selection? A Photochemical Perspective, J. Photochem. Photobiol. CPhotochemistry Rev, vol.10, pp.21-32, 2009.

C. Sagan, Ultraviolet Selection Pressure on the Earliest Organisms, J. Theor. Biol, vol.39, pp.195-200, 1973.

S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet et al., Cyclobutane Pyrimidine Dimers Are Predominant DNA Lesions in Whole Human Skin Exposed to UVA Radiation, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.13765-13770, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01966814

A. J. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, DNA as an Optical Material, Opt. Photon. News, vol.22, pp.34-39, 2011.
DOI : 10.1364/opn.22.7.000034

A. Giussani, J. Segarra-martí, D. Roca-sanjuán, and M. Merchán, Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. In Photoinduced Phenomena in Nucleic Acids I, Topics in Current Chemistry, vol.355, pp.57-97, 2013.

S. Mai, M. Richter, P. Marquetand, and L. González, Excitation of Nucleobases from a Computational Perspective II: Dynamics. In Photoinduced Phenomena in Nucleic Acids I

M. Barbatti, A. C. Borin, and S. Ullrich, Topics in Current Chemistry, vol.355

. Springer, , pp.99-153, 2014.

M. Barbatti, A. C. Borin, and S. Ullrich, Photoinduced Processes in Nucleic Acids, In Photoinduced Phenomena in Nucleic Acids I, vol.355, pp.1-32, 2014.
DOI : 10.1007/128_2014_569

URL : https://hal.archives-ouvertes.fr/hal-01415161

R. Improta, F. Santoro, and L. Blancafort, Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases, Chem. Rev, vol.116, pp.3540-3593, 2016.

V. G. Stavros and J. R. Verlet, Gas-Phase Femtosecond Particle Spectroscopy: A BottomUp Approach to Nucleotide Dynamics, Annu. Rev. Phys. Chem, vol.67, pp.211-232, 2016.
DOI : 10.1146/annurev-physchem-040215-112428

S. Matsika, Modified Nucleobases. In Photoinduced Phenomena in Nucleic Acids I
DOI : 10.1007/128_2014_532

M. Barbatti, A. C. Borin, and S. Ullrich, Topics in Current Chemistry, vol.355, pp.209-243, 2014.

R. Improta, V. Barone, M. Barbatti, C. A. Borin, S. Ullrich et al., Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights, Photoinduced Phenomena in Nucleic Acids I, vol.355, pp.249-275, 2014.

A. C. Rios and Y. Tor, On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution, Isr. J. Chem, vol.53, pp.469-483, 2013.

E. Carota, G. Botta, L. Rotelli, E. Mauro, and R. Saladino, Current Advances in Prebiotic Chemistry Under Space Conditions, Curr. Org. Chem, vol.19, pp.1963-1979, 2015.

K. Kawai and T. Majima, Photoinduced Charge-Separation in DNA, In Photoinduced Phenomena in Nucleic Acids II, vol.356, pp.165-182, 2015.

M. Daniels and W. Hauswirth, Fluorescence of the Purine and Pyrimidine Bases of the Nucleic Acids in Neutral Aqueous Solution at 300 K, Science, vol.171, pp.675-677, 1971.

P. R. Callis, Electronic States and Luminescence of Nucleic Acid Systems, Annu. Rev. Phys. Chem, vol.34, pp.329-357, 1983.

C. E. Crespo-hernández, B. Cohen, P. M. Hare, and B. Kohler, Ultrafast Excited-State Dynamics in Nucleic Acids, Chem. Rev, vol.104, pp.1977-2019, 2004.

M. P. Fülscher and B. O. Roos, Theoretical-Study of the Electronic-Spectrum of Cytosine, J. Am. Chem. Soc, vol.117, pp.2089-2095, 1995.

M. P. Fülscher, L. Serrano-andrés, and B. O. Roos, A Theoretical Study of the Electronic Spectra of Adenine and Guanine, J. Am. Chem. Soc, vol.119, pp.6168-6176, 1997.

L. Blancafort, Excited-State Potential Energy Surface for the Photophysics of Adenine, J. Am. Chem. Soc, vol.128, pp.210-219, 2006.

H. Chen and S. H. Li, Theoretical Study toward Understanding Ultrafast Internal Conversion of Excited 9H-Adenine, J. Phys. Chem. A, vol.109, pp.8443-8446, 2005.

S. Perun, A. L. Sobolewski, and W. Domcke, Ab Initio Studies on the Radiationless Decay Mechanisms of the Lowest Excited Singlet States of 9H-Adenine, J. Am. Chem. Soc, vol.127, pp.6257-6265, 2005.

L. Serrano-andrés, M. Merchán, and A. C. Borin, Adenine and 2-Aminopurine: Paradigms of Modern Theoretical Photochemistry, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.8691-8696, 2006.

L. Serrano-andrés, M. Merchán, and A. C. Borin, A Three-State Model for the Photophysics of Adenine, Chem. Eur. J, vol.12, pp.6559-6571, 2006.

S. Perun, A. L. Sobolewski, and W. Domcke, Photostability of 9H-Adenine: Mechanisms of the Radiationless Deactivation of the Lowest Excited Singlet States, Chem. Phys, vol.313, pp.107-112, 2005.

L. Serrano-andrés, M. Merchán, and A. C. Borin, A Three-State Model for the Photophysics of Guanine, J. Am. Chem. Soc, vol.130, pp.2473-2484, 2008.

S. Yamazaki, W. Domcke, and A. L. Sobolewski, Nonradiative Decay Mechanisms of the Biologically Relevant Tautomer of Guanine, J. Phys. Chem. A, vol.112, pp.11965-11968, 2008.

H. Chen and S. H. Li, Ab Initio Study on Deactivation Pathways of Excited 9H-Guanine, J. Chem. Phys, vol.124, p.154315, 2006.

L. Blancafort, B. Cohen, P. M. Hare, B. Kohler, and M. A. Robb, Singlet Excited-State Dynamics of 5-Fluorocytosine and Cytosine: An Experimental and Computational Study

, J. Phys. Chem. A, vol.109, pp.4431-4436, 2005.

M. Merchán and L. Serrano-andrés, Ultrafast Internal Conversion of Excited Cytosine via the Lowest ??* Electronic Singlet State, J. Am. Chem. Soc, vol.125, pp.8108-8109, 2003.

L. Blancafort, Energetics of Cytosine Singlet Excited-State Decay Paths-A Difficult Case for CASSCF and CASPT2, Photochem. Photobiol, vol.83, pp.603-610, 2007.

M. Merchán, R. González-luque, T. Climent, L. Serrano-andrés, E. Rodriuguez et al., Unified Model for the Ultrafast Decay of Pyrimidine Nucleobases

, J. Phys. Chem. B, vol.110, pp.26471-26476, 2006.

S. Perun, A. L. Sobolewski, and W. Domcke, Conical Intersections in Thymine, J. Phys. Chem. A, vol.110, pp.13238-13244, 2006.
DOI : 10.1021/jp0633897

D. Asturiol, B. Lasorne, M. A. Robb, and L. Blancafort, Photophysics of the ?,?* and n,?* States of Thymine: MS-CASPT2 Minimum-Energy Paths and CASSCF on-the-Fly Dynamics, J. Phys. Chem. A, vol.113, pp.10211-10218, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00441941

S. Yamazaki and T. Taketsugu, Nonradiative Deactivation Mechanisms of Uracil, Thymine, and 5-Fluorouracil: A Comparative Ab Initio Study, J. Phys. Chem. A, vol.116, pp.491-503, 2012.

G. Zechmann and M. Barbatti, Photophysics and Deactivation Pathways of Thymine, J. Phys. Chem. A, vol.112, pp.8273-8279, 2008.
DOI : 10.1021/jp804309x

W. M. Hassan, W. C. Chung, N. Shimakura, S. Koseki, H. Kono et al., Ultrafast Radiationless Transition Pathways through Conical Intersections in Photo-Excited 9H-Adenine, Phys. Chem. Chem. Phys, vol.12, pp.5317-5328, 2010.

S. Matsika, Three-State Conical Intersections in Nucleic Acid Bases, J. Phys. Chem. A, vol.109, pp.7538-7545, 2005.
DOI : 10.1021/jp0513622

URL : http://homepage.univie.ac.at/mario.barbatti/papers/DNA/ade-ura_matsika_jpca_109_7538_2005.pdf

M. Barbatti, A. J. Aquino, J. J. Szymczak, D. Nachtigallová, and H. Lischka, Photodynamical Simulations of Cytosine: Characterization of the Ultrafast Bi-Exponential UV Deactivation, Phys. Chem. Chem. Phys, vol.13, pp.6145-6155, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01415213

K. A. Kistler and S. Matsika, Three-State Conical Intersections in Cytosine and Pyrimidinone Bases, J. Chem. Phys, p.215102, 2008.
DOI : 10.1063/1.2932102

K. A. Kistler and S. Matsika, Radiationless Decay Mechanism of Cytosine: An Ab Initio Study with Comparisons to the Fluorescent Analogue 5-Methyl-2-Pyrimidinone, J. Phys. Chem. A, vol.111, pp.2650-2661, 2007.

R. Szabla, H. Kruse, J. ?poner, and R. W. Góra, Water-chromophore Electron Transfer Determines the Photochemistry of Cytosine and Cytidine, Phys. Chem. Chem. Phys, vol.19, pp.17531-17537, 2017.

S. Matsika, Radiationless Decay of Excited States of Uracil through Conical Intersections, J. Phys. Chem. A, vol.108, pp.7584-7590, 2004.

C. M. Marian, A New Pathway for the Rapid Decay of Electronically Excited Adenine, J. Chem. Phys, p.122, 2005.

G. Engler, K. Seefeld, M. Schmitt, J. Tatchen, O. Grotkopp et al., Kleinermanns, K. Acetylation Makes the Difference: A Joint Experimental and Theoretical Study on Low-Lying Electronically Excited States of 9H-Adenine and 9

, Phys. Chem. Chem. Phys, vol.15, pp.1025-1031, 2013.

C. M. Marian, The Guanine Tautomer Puzzle: Quantum Chemical Investigation of Ground and Excited States, J. Phys. Chem. A, vol.111, pp.1545-1553, 2007.

K. Tomic, J. Tatchen, and C. M. Marian, Quantum Chemical Investigation of the Electronic Spectra of the Keto, Enol, and Keto-Imine Tautomers of Cytosine, J. Phys. Chem. A, vol.109, pp.8410-8418, 2005.

D. Roca-sanjuan, M. Rubio, M. Merchán, L. Serrano-andrés, M. Ruckenbauer et al., Ab Initio Determination of the Ionization Potentials of DNA and RNA Nucleobases, J. Chem. Phys, vol.125, p.74303, 2006.

M. Ruckenbauer, S. Mai, P. Marquetand, L. González, D. Nachtigallova et al., Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra, Phys. Chem. Chem. Phys, vol.6, issue.764, pp.4924-4933, 2010.

M. Barbatti and S. Ullrich, Ionization Potentials of Adenine along the Internal Conversion Pathways, Phys. Chem. Chem. Phys, vol.13, pp.15492-15500, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01415204

A. Nenov, A. Giussani, J. Segarra-martí, V. K. Jaiswal, I. Rivalta et al., Modeling the High-Energy Electronic State Manifold of Adenine: Calibration for Nonlinear Electronic Spectroscopy, J. Chem. Phys, p.212443, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234570

H. R. Hudock, B. G. Levine, A. L. Thompson, H. Satzger, D. Townsend et al., Ab Initio Molecular Dynamics and Time-Resolved Photoelectron Spectroscopy of Electronically Excited Uracil and Thymine, J. Phys. Chem. A, vol.111, pp.8500-8508, 2007.

M. Barbatti, A. J. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza et al., Relaxation Mechanisms of UV-Photoexcited DNA and RNA Nucleobases, Proc. Natl

. Acad and . U. Sci, , vol.107, pp.21453-21458, 2010.

J. González-vázquez and L. González, A Time-Dependent Picture of the Ultrafast Deactivation of Keto-Cytosine Including Three-State Conical Intersections, Chemphyschem, vol.11, issue.769, pp.3617-3624, 2010.

H. R. Hudock and T. J. Martínez, Excited-State Dynamics of Cytosine Reveal Multiple Intrinsic Subpicosecond Pathways, ChemPhysChem, vol.9, pp.2486-2490, 2008.

J. J. Szymczak, M. Barbatti, J. T. Soo-hoo, J. A. Adkins, T. L. Windus et al., Photodynamics Simulations of Thymine: Relaxation into the First Excited Singlet State, J. Phys. Chem. A, vol.113, pp.12686-12693, 2009.

B. P. Fingerhut, K. E. Dorfman, and S. Mukamel, Monitoring Nonadiabatic Dynamics of the RNA Base Uracil by UV Pump-IR Probe Spectroscopy, J. Phys. Chem. Lett, vol.4, pp.1933-1942, 2013.

M. Richter, S. Mai, P. Marquetand, and L. Gonzalez, Ultrafast Intersystem Crossing Dynamics in Uracil Unravelled by Ab Initio Molecular Dynamics, Phys. Chem. Chem. Phys, vol.16, pp.24423-24436, 2014.

D. Nachtigallova?, A. J. Aquino, J. J. Szymczak, M. Barbatti, P. Hobza et al., Nonadiabatic Dynamics of Uracil: Population Split among Different Decay Mechanisms, J. Phys. Chem. A, vol.115, pp.5247-5255, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01415211

M. Barbatti and H. Lischka, Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum-Classical Dynamics, J. Am. Chem. Soc, vol.130, pp.6831-6839, 2008.

M. Barbatti, J. J. Szymczak, A. J. Aquino, D. Nachtigallová, and H. Lischka, The Decay Mechanism of Photoexcited Guanine ? A Nonadiabatic Dynamics Study, J. Chem. Phys, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01415206

E. Fabiano and W. Thiel, Nonradiative Deexcitation Dynamics of 9H-Adenine: An OM2 Surface Hopping Study, J. Phys. Chem. A, vol.112, pp.6859-6863, 2008.

Z. Lan, E. Fabiano, and W. Thiel, Photoinduced Nonadiabatic Dynamics of 9 H-Guanine, ChemPhysChem, vol.10, pp.1225-1229, 2009.

Z. Lan, E. Fabiano, and W. Thiel, Photoinduced Nonadiabatic Dynamics of Pyrimidine Nucleobases: On-the-Fly Surface-Hopping Study with Semiempirical Methods, J. Phys

. Chem, , vol.113, pp.3548-3555, 2009.

A. N. Alexandrova, J. C. Tully, and G. Granucci, Photochemistry of DNA Fragments via Semiclassical Nonadiabatic Dynamics, J. Phys. Chem. B, vol.114, pp.12116-12128, 2010.

B. Marchetti, T. N. Karsili, M. N. Ashfold, and W. Domcke, A 'Bottom up', Ab Initio Computational Approach to Understanding Fundamental Photophysical Processes in Nitrogen Containing Heterocycles, DNA Bases and Base Pairs, Phys. Chem. Chem. Phys, vol.18, 2016.

D. Tuna, A. L. Sobolewski, and W. Domcke, Mechanisms of Ultrafast Excited-State Deactivation in Adenosine, J. Phys. Chem. A, vol.118, pp.122-127, 2013.

R. Improta and V. Barone, The Excited States of Adenine and Thymine Nucleoside and Nucleotide in Aqueous Solution: A Comparative Study by Time-Dependent DFT Calculations, Theor. Chem. Acc, vol.120, pp.491-497, 2008.

A. Tajti, G. Fogarasi, and P. G. Szalay, Reinterpretation of the UV Spectrum of Cytosine: Only Two Electronic Transitions? ChemPhysChem, vol.10, pp.1603-1606, 2009.

M. Barbatti, A. J. Aquino, and H. Lischka, The UV Absorption of Nucleobases: SemiClassical Ab Initio Spectra Simulations, Phys. Chem. Chem. Phys, vol.12, pp.4959-4967, 2010.

F. Plasser, R. Crespo-otero, M. Pederzoli, J. Pittner, H. Lischka et al., Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study, J. Chem. Theory Comput, vol.10, pp.1395-1405, 2014.

L. Stojanovi?, S. Bai, J. Nagesh, A. Izmaylov, R. Crespo-otero et al., New Insights into the State Trapping of UV-Excited Thymine, Molecules, vol.21, p.1603, 2016.

M. Barbatti, Photorelaxation Induced by Water-Chromophore Electron Transfer, J. Am. Chem. Soc, vol.136, pp.10246-10249, 2014.

N. L. Doltsinis, P. R. Markwick, H. Nieber, and H. Langer, Ultrafast Radiationless Decay in Nucleic Acids: Insights from Nonadiabatic Ab Initio Molecular Dynamics. In Radiation Induced Molecular Phenomena in Nucleic Acids, vol.5, pp.265-299, 2008.

R. Mitri?, U. Werner, M. Wohlgemuth, G. Seifert, and V. Bona?i?-koutecký, Nonadiabatic Dynamics within Time-Dependent Density Functional Tight Binding Method, J. Phys

. Chem, , vol.113, pp.12700-12705, 2009.

R. R. Szabla, R. W. Góra, and J. ?poner, Ultrafast Excited-State Dynamics of Isocytosine, Phys. Chem. Chem. Phys, vol.18, pp.20208-20218, 2016.

H. R. Hudock, H. G. Levine, A. L. Thompson, and T. J. Martinez, First Principles Dynamics of Photoexcited DNA and RNA Bases, Comput. Mod. Sci. Eng, vol.2, pp.219-222, 2007.

D. Roca-sanjuán, G. Olaso-gonzález, I. González-ramírez, L. Serrano-andrés, and M. Merchán, Molecular Basis of DNA Photodimerization: Intrinsic Production of

D. Cyclobutane-cytosine, J. Am. Chem. Soc, vol.130, pp.10768-10779, 2008.

B. K. Mcfarland, J. P. Farrell, S. Miyabe, F. Tarantelli, A. Aguilar et al., Ultrafast X-Ray Auger Probing of Photoexcited Molecular Dynamics, Nat Commun, vol.5, p.4235, 2014.

J. W. Park and T. Shiozaki, On-the-Fly CASPT2 Surface-Hopping Dynamics, J. Chem. Theory Comput, vol.13, pp.3676-3683, 2017.

J. Segarra-martí, A. Francés-monerris, D. Roca-sanjuán, and M. Merchán, Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules, vol.21, p.1666, 2016.

D. Hu, Y. F. Liu, A. L. Sobolewski, and Z. Lan, Nonadiabatic Dynamics Simulation of Keto Isocytosine: A Comparison of Dynamical Performance of Different Electronic-Structure Methods, Phys. Chem. Chem. Phys, vol.19, pp.19168-19177, 2017.

Q. Li, B. Mennucci, M. A. Robb, L. Blancafort, and C. Curutchet, Polarizable QM/MM Multiconfiguration Self-Consistent Field Approach with State-Specific Corrections: Environment Effects on Cytosine Absorption Spectrum, J. Chem. Theory Comput, vol.11, pp.1674-1682, 2015.
DOI : 10.1021/ct5010388

M. A. Kochman, M. Pola, and R. J. Miller, Theoretical Study of the Photophysics of 8-Vinylguanine, an Isomorphic Fluorescent Analogue of Guanine, J. Phys. Chem. A, vol.120, pp.6200-6215, 2016.

S. F. Altavilla, -. Segarra-martã, J. Nenov, A. Conti, I. Rivalta et al., Deciphering the Photochemical Mechanisms Describing the UV-Induced Processes Occurring in Solvated Guanine Monophosphate, Front. Chem, p.29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234575

S. Yamazaki, A. L. Sobolewski, W. Domcke, A. J. Pepino, J. Segarra-martí et al., Resolving Ultrafast Photoinduced Deactivations in Water-Solvated Pyrimidine Nucleosides, Phys. Chem. Chem. Phys, vol.11, issue.802, pp.1777-1783, 2009.

M. A. Trachsel, T. Wiedmer, S. Blaser, H. Frey, Q. Li et al., The Excited-State Structure, Vibrations, Lifetimes, and Nonradiative Dynamics of Jet-Cooled 1-Methylcytosine, J. Chem. Phys, p.134307, 2016.
DOI : 10.1063/1.4964091

URL : https://boris.unibe.ch/90043/3/Trachsel_JCP_145_2016.pdf

L. Martínez-fernández, A. J. Pepino, J. Segarra-martí, J. Jovai?ait?, I. Vaya et al., Photophysics of Deoxycytidine and 5-Methyldeoxycytidine in Solution: A Comprehensive Picture by Quantum Mechanical Calculations and Femtosecond Fluorescence Spectroscopy, J. Am

, Chem. Soc, vol.139, pp.7780-7791, 2017.

J. J. Serrano-pérez, R. González-luque, M. Merchán, and L. Serrano-andrés, On the Intrinsic Population of the Lowest Triplet State of Thymine, J. Phys. Chem. B, vol.111, pp.11880-11883, 2007.

J. P. Gobbo, A. C. Borin, and L. Serrano-andre?s, On the Relaxation Mechanisms of 6Azauracil, J. Phys. Chem. B, vol.115, pp.6243-6251, 2011.

R. González-luque, T. Climent, I. González-ramírez, M. Merchán, and L. Serrano-andrés, Singlet?Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces, J. Chem. Theory Comput, vol.6, issue.807, pp.2103-2114, 2010.

Z. Lu, A. A. Beckstead, B. Kohler, and S. Matsika, Excited State Relaxation of Neutral and Basic 8-Oxoguanine, J. Phys. Chem. B, vol.119, pp.8293-8301, 2015.

C. M. Marian, M. Kleinschmidt, and J. Tatchen, The Photophysics of 7H-Adenine: A Quantum Chemical Investigation Including Spin-orbit Effects, Chem. Phys, vol.347, pp.346-359, 2008.

M. Richter, P. Marquetand, J. González-vázquez, I. Sola, and L. González, Femtosecond Intersystem Crossing in the DNA Nucleobase Cytosine, J. Phys. Chem. Lett, vol.3, pp.3090-3095, 2012.

S. Mai, P. Marquetand, M. Richter, J. González-vázquez, and L. González, Singlet and Triplet Excited-State Dynamics Study of the Keto and Enol Tautomers of Cytosine, ChemPhysChem, vol.14, pp.2920-2931, 2013.

C. Borin, A. Mai, S. Marquetand, P. Gonzalez, and L. , Ab Initio Molecular Dynamics Relaxation and Intersystem Crossing Mechanisms of 5-Azacytosine, Phys. Chem. Chem. Phys, vol.19, pp.5888-5894, 2017.

J. Petersen, M. Wohlgemuth, B. Sellner, V. Bonacic-koutecky, H. Lischka et al., Laser Pulse Trains for Controlling Excited State Dynamics of Adenine in Water, Phys. Chem. Chem. Phys, vol.14, pp.4687-4694, 2012.

Y. Harada, C. Okabe, T. Kobayashi, T. Suzuki, T. Ichimura et al.,

, Ultrafast Intersystem Crossing of 4-Thiothymidine in Aqueous Solution, J. Phys. Chem. Lett, vol.1, pp.480-484, 2010.

M. Pollum, S. Jockusch, and C. E. Crespo-hernández, 4-Dithiothymine as a Potent UVA Chemotherapeutic Agent, J. Am. Chem. Soc, vol.2, pp.17930-17933, 2014.

H. Kuramochi, T. Kobayashi, T. Suzuki, and T. Ichimura, Excited-State Dynamics of 6-Aza2-Thiothymine and 2-Thiothymine: Highly Efficient Intersystem Crossing and Singlet Oxygen Photosensitization, J. Phys. Chem. B, vol.114, pp.8782-8789, 2010.

G. L. Cui, W. Fang, G. Cui, and W. Thiel, State-Specific Heavy-Atom Effect on Intersystem Crossing Processes in 2-Thiothymine: A Potential Photodynamic Therapy Photosensitizer, J. Chem. Phys, vol.138, issue.818, p.44315, 2013.

. Lett, , vol.5, pp.2682-2687, 2014.

S. Bai and M. Barbatti, Why Replacing Different Oxygens of Thymine with Sulfur Causes Distinct Absorption and Intersystem Crossing, J. Phys. Chem. A, vol.120, pp.6342-6350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415147

S. Bai and M. Barbatti, On the Decay of the Triplet State of Thionucleobases, Phys. Chem. Chem. Phys, vol.19, pp.12674-12682, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01774208

J. P. Gobbo and A. C. Borin, On The Population of Triplet Excited States of 6-Aza-2Thiothymine, J. Phys. Chem. A, vol.117, pp.5589-5596, 2013.

J. A. Sánchez-rodríguez, A. Mohamadzade, S. Mai, B. Ashwood, M. Pollum et al., Thiouracil Intersystem Crossing Photodynamics Studied by Wavelength-Dependent Photoelectron and Transient Absorption Spectroscopies, Phys. Chem. Chem. Phys, vol.822, pp.19756-19766, 2017.

S. Mai, P. Marquetand, and L. González, A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil, J. Phys. Chem. A, vol.119, pp.9524-9533, 2015.

H. Yu, J. A. Sanchez-rodriguez, M. Pollum, C. E. Crespo-hernandez, S. Mai et al., Internal Conversion and Intersystem Crossing Pathways in UV Excited, Isolated Uracils and Their Implications in Prebiotic Chemistry, Phys. Chem. Chem. Phys, vol.18, pp.20168-20176, 2016.

J. P. Gobbo and A. C. Borin, 2-Thiouracil Deactivation Pathways and Triplet States Population, Comput. Theor. Chem, pp.195-201, 2014.

S. Mai, M. Pollum, L. Martinez-fernandez, N. Dunn, P. Marquetand et al., The Origin of Efficient Triplet State Population in SulfurSubstituted Nucleobases, Nat. Commun, 2016.

S. Mai, P. Marquetand, and L. González, Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture, J. Phys. Chem. Lett, vol.7, pp.1978-1983, 2016.

S. Mai, F. Plasser, M. Pabst, F. Neese, A. Köhn et al., Surface Hopping Dynamics Including Intersystem Crossing Using the Algebraic Diagrammatic Construction Method, J. Chem. Phys, p.184109, 2017.

F. Plasser, A. J. Aquino, H. Lischka, and D. Nachtigallová, Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach, Top. Curr. Chem, vol.356, pp.1-38, 2015.

P. Marquetand, J. Nogueira, S. Mai, F. Plasser, and L. González, Challenges in Simulating Light-Induced Processes in DNA, vol.22, p.49, 2017.

S. Tonzani and G. C. Schatz, Electronic Excitations and Spectra in Single-Stranded DNA, J. Am. Chem. Soc, vol.130, pp.7607-7612, 2008.

A. W. Lange and J. M. Herbert, Both Intra-and Interstrand Charge-Transfer Excited States in Aqueous B-DNA Are Present at Energies Comparable To, or Just Above, the 1 ??* Excitonic Bright States, J. Am. Chem. Soc, vol.131, pp.3913-3922, 2009.

J. J. Nogueira, F. Plasser, and L. González, Electronic Delocalization, Charge Transfer and Hypochromism in the UV Absorption Spectrum of Polyadenine Unravelled by Multiscale Computations and Quantitative Wavefunction Analysis, Chem. Sci, vol.8, issue.833, pp.5682-5691, 2017.

V. A. Spata and S. Matsika, Excimer Formation in ?-Stacked 9-Methyladenine Dimers, J. Phys. Chem. A, vol.117, pp.8718-8728, 2013.

F. Plasser, H. Pa?ali?, M. H. Gerzabek, F. Libisch, R. Reiter et al., The Multiradical Character of One-and Two-Dimensional

, Graphene Nanoribbons. Angew. Chemie Int. Ed, vol.52, pp.2581-2584, 2013.

I. Conti, P. Altoe, M. Stenta, M. Garavelli, and G. Orlandi, Adenine Deactivation in DNA Resolved at the CASPT2//CASSCF/AMBER Level, Phys. Chem. Chem. Phys, vol.12, pp.5016-5023, 2010.

Y. Lu, Z. G. Lan, and W. Thiel, Hydrogen Bonding Regulates the Monomeric Nonradiative Decay of Adenine in DNA Strands, Angew. Chemie-International Ed, vol.50, pp.6864-6867, 2011.

T. Zeleny, M. Ruckenbauer, A. J. Aquino, T. Muller, F. Lankas et al., Strikingly Different Effects of Hydrogen Bonding on the Photodynamics of Individual Nucleobases in DNA: Comparison of Guanine and Cytosine

, J. Am. Chem. Soc, vol.134, pp.13662-13669, 2012.

D. Nachtigallova, T. Zeleny, M. Ruckenbauer, T. Muller, M. Barbatti et al., Does Stacking Restrain the Photodynamics of Individual Nucleobases?, J. Am. Chem. Soc, vol.132, issue.839, pp.8261-8263, 2010.

A. L. Sobolewski and W. Domcke, Ab Initio Studies on the Photophysics of the Guaninecytosine Base Pair, Phys. Chem. Chem. Phys, vol.6, pp.2763-2771, 2004.

G. Groenhof, L. Schafer, M. V;-boggio-pasqua, M. Goette, H. Grubmuller et al., Ultrafast Deactivation of an Excited Cytosine-Guanine Base Pair in DNA, J. Am. Chem. Soc, vol.129, pp.6812-6819, 2007.

C. R. Kozak, K. A. Kistler, Z. Lu, and S. Matsika, Excited-State Energies and Electronic Couplings of DNA Base Dimers, J. Phys. Chem. B, vol.114, pp.1674-1683, 2010.

L. Blancafort and . Voityuk, Exciton Delocalization, Charge Transfer, and Electronic Coupling for Singlet Excitation Energy Transfer between Stacked Nucleobases in DNA: An MS-CASPT2 Study, J. Chem. Phys, p.95102, 2014.

G. Olaso-gonzález, D. Roca-sanjuán, L. Serrano-andrés, and M. Merchán, Toward the Understanding of DNA Fluorescence: The Singlet Excimer of Cytosine, J. Chem. Phys, p.231102, 2006.

G. Olaso-gonzález, M. Merchán, and L. Serrano-andrés, The Role of Adenine Excimers in the Photophysics of Oligonucleotides, J. Am. Chem. Soc, vol.131, pp.4368-4377, 2009.

F. Plasser and H. Lischka, Electronic Excitation and Structural Relaxation of the Adenine Dinucleotide in Gas Phase and Solution, Photochem. Photobiol. Sci, vol.12, p.1440, 2013.

I. Conti, A. Nenov, S. Höfinger, S. Flavio-altavilla, I. Rivalta et al., Excited State Evolution of DNA
URL : https://hal.archives-ouvertes.fr/hal-01234547

, Chem. Chem. Phys, vol.17, pp.7291-7302, 2015.

I. Conti, L. Martínez-fernández, L. Esposito, S. Hofinger, A. Nenov et al., Multiple Electronic and Structural Factors Control Cyclobutane Pyrimidine Dimer and 6-4 Thymine-Thymine Photodimerization in a DNA Duplex. Chem.-A Eur, vol.23, pp.15177-15188, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01668979

A. Giussani, I. Conti, A. Nenov, M. Garavelli, C. Rauer et al., Photoinduced Formation Mechanism of the Thymine-thymine (6-4) Adduct in DNA, MM(AMBER) Study. Faraday Discuss. 2018. (850)

, Chem. Soc, vol.138, pp.15911-15916, 2016.

A. Acharya, A. M. Bogdanov, B. L. Grigorenko, and K. B. Bravaya,

K. A. Lukyanov and A. I. Krylov, Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?, Chem. Rev, vol.117, pp.758-795, 2017.

C. A. Royer, Probing Protein Folding and Conformational Transitions with Fluorescence, Chem. Rev, vol.106, pp.1769-1784, 2006.

A. S. Mishin, V. Belousov, K. M. Solntsev, and K. A. Lukyanov, Novel Uses of Fluorescent Proteins, Curr. Opin. Chem. Biol, vol.27, pp.1-9, 2015.

T. Andruniów, N. Ferré, M. Olivucci, and . Structure, Initial Excited-State Relaxation, and Energy Storage of Rhodopsin Resolved at the Multiconfigurational Perturbation Theory Level, Proc. Natl. Acad. Sci, vol.101, pp.17908-17913, 2004.

S. R. Meech, Excited State Reactions in Fluorescent Proteins, Chem. Soc. Rev, vol.38, pp.2922-2934, 2009.

V. Sample, R. H. Newman, and J. Zhang, The Structure and Function of Fluorescent Proteins, Chem. Soc. Rev, vol.38, pp.2852-2864, 2009.

J. J. Van-thor, Photoreactions and Dynamics of the Green Fluorescent Protein, Chem. Soc. Rev, vol.38, pp.2935-2950, 2009.

K. B. Bravaya, B. L. Grigorenko, A. Nemukhin, and A. I. V;-krylov, Quantum Chemistry Behind Bioimaging: Insights from Ab Initio Studies of Fluorescent Proteins and Their Chromophores, Acc. Chem. Res, vol.45, pp.265-275, 2012.

K. A. Lukyanov, E. O. Serebrovskaya, S. Lukyanov, and D. M. Chudakov, Fluorescent Proteins as Light-Inducible Photochemical Partners, Photochem. Photobiol. Sci, vol.9, pp.1301-1306, 2010.

F. Subach and V. V. Verkhusha, Chromophore Transformations in Red Fluorescent Proteins, Chem. Rev, vol.112, pp.4308-4327, 2012.

D. M. Rogers and J. D. Hirst, Ab Initio Study of Aromatic Side Chains of Amino Acids in Gas Phase and Solution, J. Phys. Chem. A, vol.107, pp.11191-11200, 2003.

A. C. Borin and L. Serrano-andrés, A Theoretical Study of the Absorption Spectra of Indole and Its Analogs: Indene, Benzimidazole, and 7-Azaindole, Chem. Phys, vol.262, pp.253-265, 2000.

L. Serrano-andrés, M. P. Fülscher, B. O. Roos, and M. Merchán, Theoretical Study of the Electronic Spectrum of Imidazole, J. Phys. Chem, vol.100, pp.6484-6491, 1996.

M. Barbatti, H. Lischka, S. Salzmann, and C. M. Marian, UV Excitation and Radiationless Deactivation of Imidazole, J. Chem. Phys, p.34305, 2009.

C. Brand, J. Küpper, D. W. Pratt, W. Leo-meerts, D. Krügler et al., Vibronic Coupling in Indole: I. Theoretical Description of the 1 La-1 Lb Interaction and the Electronic Spectrum, Phys. Chem. Chem. Phys, p.4968, 2010.

F. B. Machado and E. R. Davidson, A Theoretical Investigation of Some Low-lying Electronic States of Imidazole, J. Chem. Phys, vol.97, pp.1881-1891, 1992.

A. C. Borin and L. Serrano-andrés, A Theoretical Study of the Absorption Spectra of Indole and Its Analogs: Indene, Benzimidazole, and 7-Azaindole, Chem. Phys, vol.262, pp.253-265, 2000.

L. Serrano-andrés, M. Merchán, A. C. Borin, J. Stålring, and S. Paulo, Theoretical Studies on the Spectroscopy of the 7-Azaindole Monomer and Dimer, vol.84, pp.181-191, 2001.

L. Serrano-andrés and A. C. Borin, A Theoretical Study of the Emission Spectra of Indole and Its Analogs: Indene, Benzimidazole, and 7-Azaindole, Chem. Phys, vol.262, pp.267-283, 2000.

S. Arulmozhiraja and M. L. Coote, 1 La and 1 Lb States of Indole and Azaindole: Is Density Functional Theory Inadequate?, J. Chem. Theory Comput, vol.8, pp.575-584, 2012.

E. Gindensperger, A. Haegy, C. Daniel, and R. Marquardt, Ab Initio Study of the Electronic Singlet Excited-State Properties of Tryptophan in the Gas Phase: The Role of Alanyl SideChain Conformations, Chem. Phys, vol.374, pp.104-110, 2010.

D. Nolting, C. Marian, and R. Weinkauf, Protonation Effect on the Electronic Spectrum of Tryptophan in the Gas Phase, Phys. Chem. Chem. Phys, vol.6, pp.2633-2640, 2004.

L. Serrano-andrés and M. P. Fülscher, Theoretical Study of the Electronic Spectroscopy of Peptides. 2. Glycine and N-Acetylglycine, J. Am. Chem. Soc, vol.118, pp.12200-12206, 1996.

L. Serrano-andrés and B. O. Roos, Theoretical Study of the Absorption and Emission Spectra of Indole in the Gas Phase and in a Solvent, J. Am. Chem. Soc, vol.118, pp.185-195, 1996.

L. Serrano-andrés, M. P. Fülscher, and G. Karlström, Solvent Effects on Electronic Spectra Studied by Multiconfigurational Perturbation Theory, Int. J. Quantum Chem, vol.65, pp.167-181, 1997.

R. Livingstone, O. Schalk, A. E. Boguslavskiy, G. Wu, L. Therese-bergendahl et al., Following the Excited State Relaxation Dynamics of Indole and 5-Hydroxyindole Using Time-Resolved Photoelectron Spectroscopy, J. Chem. Phys, p.135, 2011.

M. N. Ashfold, A. L. Devine, R. N. Dixon, G. A. King, M. G. Nix et al., Exploring Nuclear Motion through Conical Intersections in the UV Photodissociation of Phenols and Thiophenol, Proc. Natl. Acad. Sci, vol.105, pp.12701-12706, 2008.

M. L. Hause, Y. Heidi-yoon, A. S. Case, and F. F. Crim, Dynamics at Conical Intersections: The Influence of O-H Stretching Vibrations on the Photodissociation of Phenol, J. Chem. Phys, p.104307, 2008.

A. Iqbal, M. S. Cheung, M. G. Nix, and V. G. Stavros, Exploring the Time-Scales of HAtom Detachment from Photoexcited Phenol-H6 and Phenol-D5: Statistical vs Nonstatistical Decay, J. Phys. Chem. A, vol.113, pp.8157-8163, 2009.

M. G. Nix, A. L. Devine, R. N. Dixon, and M. N. Ashfold, Observation of Geometric Phase Effect Induced Photodissociation Dynamics in Phenol, Chem. Phys. Lett, vol.463, pp.305-308, 2008.

A. L. Sobolewski and W. Domcke, Photoinduced Electron and Proton Transfer in Phenol and Its Clusters with Water and Ammonia, J. Phys. Chem. A, vol.105, pp.9275-9283, 2001.

A. L. Sobolewski, W. Domcke, C. Dedonder-lardeux, and C. Jouvet, Excited-State Hydrogen Detachment and Hydrogen Transfer Driven by Repulsive 1 ??* States: A New Paradigm for Nonradiative Decay in Aromatic Biomolecules, Phys. Chem. Chem. Phys, vol.4, pp.1093-1100, 2002.

C. Xie and H. Guo, Photodissociation of Phenol via Nonadiabatic Tunneling: Comparison of Two Ab Initio Based Potential Energy Surfaces, Chem. Phys. Lett, vol.683, pp.222-227, 2017.

H. An and K. K. Baeck, Quantum Wave Packet Propagation Study of the Photochemistry of Phenol: Isotope Effects (Ph-OD) and the Direct Excitation to the 1 ??* State, J. Phys. Chem. A, vol.115, pp.13309-13315, 2011.

S. G. Ramesh and W. Domcke, A Multi-Sheeted Three-Dimensional Potential-Energy Surface for the H-Atom Photodissociation of Phenol, Faraday Discuss, vol.163, pp.73-94, 2013.

Z. Lan, W. Domcke, V. Vallet, A. L. Sobolewski, and S. Mahapatra, Time-Dependent Quantum Wave-Packet Description of the 1 ??* Photochemistry of Phenol, J. Chem. Phys, p.224315, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00105001

R. N. Dixon, T. A. Oliver, and M. N. Ashfold, Tunnelling under a Conical Intersection: Application to the Product Vibrational State Distributions in the UV Photodissociation of Phenols, J. Chem. Phys, p.134, 2011.

O. P. Vieuxmaire, Z. Lan, A. L. Sobolewski, and W. Domcke, Ab Initio Characterization of the Conical Intersections Involved in the Photochemistry of Phenol, J. Chem. Phys, p.224307, 2008.

A. L. Sobolewski and W. Domcke, Ab Initio Investigations on the Photophysics of Indole, Chem. Phys. Lett, vol.315, pp.293-298, 1999.

J. Wilke, M. Wilke, C. Brand, J. D. Spiegel, C. M. Marian et al., Modulation of the La/Lb Mixing in an Indole Derivative: A Position-Dependent Study Using 4-, 5-, and 6Fluoroindole, J. Phys. Chem. A, vol.121, pp.1597-1606, 2017.

T. A. Oliver, G. A. King, and M. N. Ashfold, Position Matters: Competing O-H and NH Photodissociation Pathways in Hydroxy-and Methoxy-Substituted Indoles, Phys. Chem. Chem. Phys, vol.13, pp.14646-14662, 2011.

L. Blancafort, D. González, M. Olivucci, and M. A. Robb, Quenching of Tryptophan 1 (?,?*) Fluorescence Induced by Intramolecular Hydrogen Abstraction via an Aborted Decarboxylation Mechanism, J. Am. Chem. Soc, vol.124, pp.6398-6406, 2002.

D. J. Hadden, K. L. Wells, G. M. Roberts, L. T. Bergendahl, M. J. Paterson et al., Time Resolved Velocity Map Imaging of H-Atom Elimination from Photoexcited Imidazole and Its Methyl Substituted Derivatives, Phys. Chem. Chem. Phys, vol.13, pp.10342-10349, 2011.

E. Muchova?, P. Slaví?ek, A. L. Sobolewski, and P. Hobza, Glycine in an Electronically Excited State: Ab Initio Electronic Structure and Dynamical Calculations, J. Phys. Chem. A, vol.111, pp.5259-5269, 2007.

M. Oncak, H. Lischka, and P. Slavicek, Photostability and Solvation: Photodynamics of Microsolvated Zwitterionic Glycine, Phys. Chem. Chem. Phys, vol.12, pp.4906-4914, 2010.

A. L. Sobolewski and W. Domcke, Computational Studies of the Photophysics of Neutral and Zwitterionic Glycine in an Aqueous Environment: The Glycine-(H2O)2 Cluster, Chem. Phys. Lett, vol.457, pp.404-407, 2008.

M. Wohlgemuth and R. Mitri?, Photochemical Chiral Symmetry Breaking in Alanine, J. Phys. Chem. A, vol.120, pp.8976-8982, 2016.

M. Mali? and N. Do?li?, Nonradiative Relaxation Mechanisms of UV Excited Phenylalanine Residues: A Comparative Computational Study, vol.22, p.493, 2017.

D. Shemesh, A. L. Sobolewski, and W. Domcke, Role of Excited-State Hydrogen Detachment and Hydrogen-Transfer Processes for the Excited-State Deactivation of an Aromatic Dipeptide: N-Acetyl Tryptophan Methyl Amide, Phys. Chem. Chem. Phys, vol.12, pp.4899-4905, 2010.

M. Marazzi, U. Sancho, O. Castaño, W. Domcke, and L. M. Frutos, Photoinduced Proton Transfer as a Possible Mechanism for Highly Efficient Excited-State Deactivation in Proteins, J. Phys. Chem. Lett, vol.1, pp.425-428, 2010.

N. Do?li?, G. Kova?evi?, I. Ljubi?, C. Clavaguéra, F. Piuzzi et al., Electronic Spectrum of TryptophanPhenylalanine. A Correlated Ab Initio and Time-Dependent Density Functional Theory Study, J. Phys. Chem. A, vol.111, pp.16443-16448, 2007.

M. A. Lill and V. Helms, Proton Shuttle in Green Fluorescent Protein Studied by Dynamic Simulations, Proc. Natl. Acad. Sci, vol.99, pp.2778-2781, 2002.

W. Weber, V. Helms, J. A. Mccammon, and P. W. Langhoff, Shedding Light on the Dark and Weakly Fluorescent States of Green Fluorescent Proteins, Proc. Natl. Acad. Sci, vol.96, pp.6177-6182, 1999.

V. Helms, C. Winstead, and P. W. Langhoff, Low-Lying Electronic Excitations of the Green Fluorescent Protein Chromophore, J. Mol. Struct. THEOCHEM, vol.506, pp.179-189, 2000.

L. H. Andersen, A. Lapierre, S. B. Nielsen, I. B. Nielsen, S. U. Pedersen et al.,

, Eur. Phys. J. D-At. Mol. Opt. Plasma Phys, vol.20, pp.597-600, 2002.

M. E. Martin, F. Negri, and M. Olivucci, Origin, Nature, and Fate of the Fluorescent State of the Green Fluorescent Protein Chromophore at the CASPT2//CASSCF Resolution, J. Am

, Chem. Soc, vol.126, pp.5452-5464, 2004.

M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer, Proc. Natl. Acad. Sci, vol.93, pp.8362-8367, 1996.

A. A. Voityuk, A. D. Kummer, M. Michel-beyerle, and N. Rösch, Absorption Spectra of the GFP Chromophore in Solution: Comparison of Theoretical and Experimental Results, Chem. Phys, vol.269, pp.83-91, 2001.

T. Laino, ?. Nifos?, R. Tozzini, and V. , Relationship between Structure and Optical Properties in Green Fluorescent Proteins: A Quantum Mechanical Study of the Chromophore Environment, Chem. Phys, vol.298, pp.17-28, 2004.

V. Tozzini and R. Nifosì, Ab Initio Molecular Dynamics of the Green Fluorescent Protein (GFP) Chromophore: An Insight into the Photoinduced Dynamics of Green Fluorescent Proteins, J. Phys. Chem. B, vol.105, pp.5797-5803, 2001.

A. Sinicropi, T. Andruniow, N. Ferré, R. Basosi, and M. Olivucci, Properties of the Emitting State of the Green Fluorescent Protein Resolved at the CASPT2//CASSCF/CHARMM Level, J. Am. Chem. Soc, vol.127, pp.11534-11535, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017168

&. Altoe, P. Bernardi, F. Garavelli, M. Orlandi, G. Negri et al., Solvent Effects on the Vibrational Activity and Photodynamics of the Green Fluorescent Protein Chromophore: A Quantum-Chemical Study, J. Am. Chem. Soc, vol.127, pp.3952-3963, 2005.

E. Epifanovsky, I. Polyakov, B. Grigorenko, A. Nemukhin, and A. I. Krylov, Quantum Chemical Benchmark Studies of the Electronic Properties of the Green Fluorescent Protein Chromophore. 1. Electronically Excited and Ionized States of the Anionic Chromophore in the Gas Phase, J. Chem. Theory Comput, vol.5, pp.1895-1906, 2009.

A. Toniolo, M. Ben-nun, and T. J. Martínez, Optimization of Conical Intersections with Floating Occupation Semiempirical Configuration Interaction Wave Functions, J. Phys. Chem. A, vol.106, pp.4679-4689, 2002.

I. Polyakov and . V;,

B. L. Grigorenko, E. M. Epifanovsky, A. I. Krylov, and A. V. Nemukhin, Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections, J. Chem. Theory Comput, vol.6, pp.2377-2387, 2010.

S. Olsen, K. Lamothe, and T. J. Martínez, Protonic Gating of Excited-State Twisting and Charge Localization in GFP Chromophores: A Mechanistic Hypothesis for Reversible Photoswitching, J. Am. Chem. Soc, vol.132, pp.1192-1193, 2010.

A. Toniolo, G. Granucci, and T. J. Martínez, Conical Intersections in Solution: A QM/MM Study Using Floating Occupation Semiempirical Configuration Interaction Wave Functions, J. Phys. Chem. A, vol.107, pp.3822-3830, 2003.

O. Vendrell, R. Gelabert, M. Moreno, and J. M. Lluch, Potential Energy Landscape of the Photoinduced Multiple Proton-Transfer Process in the Green Fluorescent Protein: Classical Molecular Dynamics and Multiconfigurational Electronic Structure Calculations, J. Am. Chem. Soc, vol.128, pp.3564-3574, 2006.

O. Vendrell, R. Gelabert, M. Moreno, and J. M. Lluch, Photoinduced Proton Transfer from the Green Fluorescent Protein Chromophore to a Water Molecule: Analysis of the Transfer Coordinate, Chem. Phys. Lett, vol.396, pp.202-207, 2004.

O. Vendrell, R. Gelabert, M. Moreno, and J. M. Lluch, Operation of the Proton Wire in Green Fluorescent Protein. A Quantum Dynamics Simulation, J. Phys. Chem. B, vol.112, pp.5500-5511, 2008.

O. Vendrell, R. Gelabert, M. Moreno, and J. M. Lluch, Exploring the Effects of Intramolecular Vibrational Energy Redistribution on the Operation of the Proton Wire in Green Fluorescent Protein, J. Phys. Chem. B, vol.112, pp.13443-13452, 2008.

X. Li, L. W. Chung, H. Mizuno, A. Miyawaki, and K. Morokuma, A Theoretical Study on the Nature of On-and Off-States of Reversibly Photoswitching Fluorescent Protein Dronpa: Absorption, Emission, Protonation, and Raman, J. Phys. Chem. B, vol.114, pp.1114-1126, 2010.

B. Grigorenko, A. Savitsky, I. Topol, S. Burt, and A. Nemukhin, Ground-State Structures and Vertical Excitations for the Kindling Fluorescent Protein AsFP595, J. Phys. Chem. B, vol.110, pp.18635-18640, 2006.
DOI : 10.1021/jp060124j

K. B. Bravaya and A. Bochenkova,

A. A. Granovsky, A. P. Savitsky, and A. V. Nemukhin, Modeling Photoabsorption of the AsFP595 Chromophore, J. Phys. Chem. A, vol.112, pp.8804-8810, 2008.

H. L. Luk, F. Melaccio, S. Rinaldi, S. Gozem, and M. Olivucci, Molecular Bases for the Selection of the Chromophore of Animal Rhodopsins, Proc. Natl. Acad. Sci, vol.112, pp.15297-15302, 2015.

H. Kandori, Y. Furutani, S. Nishimura, Y. Shichida, H. Chosrowjan et al., Excited-State Dynamics of Rhodopsin Probed by Femtosecond Fluorescence Spectroscopy, Chem. Phys. Lett, vol.334, pp.271-276, 2001.

E. N. Laricheva, S. Gozem, S. Rinaldi, F. Melaccio, A. Valentini et al., Origin of Fluorescence in 11-Cis Locked Bovine Rhodopsin, J. Chem. Theory Comput, vol.8, pp.2559-2563, 2012.

D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni et al., Conical Intersection Dynamics of the Primary Photoisomerization Event in Vision, Nature, vol.467, pp.440-443, 2010.

E. L. Devine, D. D. Oprian, and D. L. Theobald, Relocating the Active-Site Lysine in Rhodopsin and Implications for Evolution of Retinylidene Proteins, Proc. Natl. Acad. Sci, vol.110, pp.13351-13355, 2013.

J. T. Vivian and P. R. Callis, Mechanisms of Tryptophan Fluorescence Shifts in Proteins, Biophys. J, vol.80, pp.2093-2109, 2001.

D. Robinson, N. A. Besley, P. Shea, and J. D. Hirst, Calculating the Fluorescence of 5Hydroxytryptophan in Proteins, J. Phys. Chem. B, vol.113, pp.14521-14528, 2009.

Q. Wu, B. Huang, T. A. Niehaus, X. Yang, J. Fan et al., The Role of Tryptophans in the UV-B Absorption of a UVR8 Photoreceptor-a Computational Study

, Phys. Chem. Chem. Phys, vol.17, pp.10786-10794, 2015.

C. Bernini, T. Andruniów, M. Olivucci, R. Pogni, R. Basosi et al., Effects of the Protein Environment on the Spectral Properties of Tryptophan Radicals in Pseudomonas Aeruginosa Azurin, J. Am. Chem. Soc, vol.135, pp.4822-4833, 2013.

X. Li, L. W. Chung, K. Morokuma, and G. Li, Theoretical Study on the UVR8 Photoreceptor: Sensing Ultraviolet-B by Tryptophan and Dissociation of Homodimer, J. Chem. Theory Comput, vol.10, pp.3319-3330, 2014.

A. Candian and C. J. Mackie, Anharmonic Interstellar PAH Molecules, Int. J. Quantum Chem, vol.117, pp.146-150, 2017.
DOI : 10.1002/qua.25292

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.25292

J. E. Anthony, The Larger Acenes: Versatile Organic Semiconductors, Angew. Chem., Int. Ed, vol.47, pp.452-483, 2008.

M. B. Smith and J. Michl, Singlet Fission, Chem. Rev, vol.110, pp.6891-6936, 2010.
DOI : 10.1021/cr1002613

Y. Son, M. L. Cohen, and S. G. Louie, Half-Metallic Graphene Nanoribbons, Nature, vol.444, pp.347-349, 2006.

Y. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda et al., Organic Tailored Batteries Materials Using Stable Open-Shell Molecules with Degenerate Frontier Orbitals, Nat. Mater, vol.10, pp.947-951, 2011.

F. Hinkel, J. Freudenberg, and U. H. Bunz, A Stable ?-Conjugated Singlet Biradical. Angew. Chemie Int, vol.55, pp.9830-9832, 2016.

M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter et al., Oligoacenes: Theoretical Prediction of Open-Shell Singlet Diradical Ground States, J. Am. Chem. Soc, vol.126, pp.7416-7417, 2004.

J. Hachmann, J. J. Dorando, M. Avilés, G. K. Chan, and .. , The Radical Character of the Acenes: A Density Matrix Renormalization Group Study, J. Chem. Phys, p.134309, 2007.

B. Hajgató, D. Szieberth, P. Geerlings, F. De-proft, and M. S. Deleuze, A Benchmark Theoretical Study of the Electronic Ground State and of the Singlet-Triplet Split of Benzene and Linear Acenes, J. Chem. Phys, p.224321, 2009.

G. Gidofalvi and D. A. Mazziotti, Active-Space Two-Electron Reduced-Density-Matrix Method: Complete Active-Space Calculations without Diagonalization of the N-Electron Hamiltonian, J. Chem. Phys, p.134108, 2008.

H. Chakraborty and A. Shukla, Pariser-Parr-Pople Model Based Investigation of Ground and Low-Lying Excited States of Long Acenes, J. Phys. Chem. A, vol.117, pp.14220-14229, 2013.

S. Horn, F. Plasser, T. Müller, F. Libisch, J. Burgdörfer et al., A Comparison of Singlet and Triplet States for One-and Two-Dimensional Graphene Nanoribbons Using Multireference Theory, Theor. Chem. Acc, p.1511, 2014.

A. Luzanov,

F. Plasser, A. Das, and H. Lischka, Evaluation of the Quasi Correlated TightBinding (QCTB) Model for Describing Polyradical Character in Polycyclic Hydrocarbons

, J. Chem. Phys, p.64106, 2017.

Y. Yang, E. R. Davidson, and W. Yang, Nature of Ground and Electronic Excited States of Higher Acenes, vol.113, pp.5098-5107, 2016.

J. Lee, D. W. Small, E. Epifanovsky, and M. Head-gordon, Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes, J. Chem. Theory Comput, vol.13, pp.602-615, 2017.

H. F. Bettinger, C. Tönshoff, M. Doerr, and E. Sanchez-garcia, Electronically Excited States of Higher Acenes up to Nonacene: A Density Functional Theory/Multireference Configuration Interaction Study, J. Chem. Theory Comput, vol.12, pp.305-312, 2016.

F. Bettanin, L. F. Ferrão, M. Pinheiro, A. J. Aquino, H. Lischka et al., Singlet La and Lb Bands for N-Acenes (N = 2-7): A CASSCF/CASPT2 Study, J. Chem. Theory Comput, vol.13, pp.4297-4306, 2017.

R. Korytár, D. Xenioti, P. Schmitteckert, M. Alouani, and F. Evers, Signature of the Dirac Cone in the Properties of Linear Oligoacenes, Nat. Commun, vol.5, p.5000, 2014.

S. Horn and H. Lischka, A Comparison of Neutral and Charged Species of One-and TwoDimensional Models of Graphene Nanoribbons Using Multireference Theory, J. Chem. Phys, p.54302, 2015.

K. Pelzer, L. Greenman, G. Gidofalvi, and D. Mazziotti, Strong Correlation in Acene Sheets from the Active-Space Variational Two-Electron Reduced Density Matrix Method: Effects of Symmetry and Size, J. Phys. Chem. A, vol.115, pp.5632-5640, 2011.

A. Das, T. Müller, F. Plasser, and H. Lischka, Polyradical Character of Triangular NonKekulé Structures, Zethrenes, p-Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study, J. Phys. Chem. A, vol.120, pp.1625-1636, 2016.

M. Melle-franco, Uthrene, a Radically New Molecule?, Chem. Commun, vol.51, pp.5387-5390, 2015.
DOI : 10.1039/c5cc01276g

C. Yeh and J. Chai, Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study, Sci. Rep, vol.6, p.30562, 2016.

R. Flores, A. E. Torres, and S. Fomine, Substituent Effect on the Spin State of the Graphene Nanoflakes, RSC Adv, vol.6, pp.64285-64296, 2016.

A. E. Torres and S. Fomine, Electronic Structure of Graphene Nanoribbons Doped with Nitrogen Atoms: A Theoretical Insight, Phys. Chem. Chem. Phys, vol.17, pp.10608-10614, 2015.

F. B. Machado, A. J. Aquino, and H. Lischka, The Diverse Manifold of Electronic States Generated by a Single Carbon Defect in a Graphene Sheet: Multireference Calculations Using a Pyrene Defect Model, ChemPhysChem, vol.15, pp.3334-3341, 2014.

M. Pinheiro, L. F. Ferrão, F. Bettanin, A. J. Aquino, F. B. Machado et al., How to Efficiently Tune the Biradicaloid Nature of Acenes by Chemical Doping with Boron and Nitrogen, Phys. Chem. Chem. Phys, vol.19, pp.19225-19233, 2017.

S. C. Deshmukh, S. Rana, S. V. Shinde, B. Dhara, N. Ballav et al., Selective Sensing of Metal Ions and Nitro Explosives by Efficient Switching of Excimer-to-Monomer Emission of an Amphiphilic Pyrene Derivative, ACS Omega, vol.1, pp.371-377, 2016.

R. Häner, S. M. Biner, S. M. Langenegger, T. Meng, V. L. Malinovskii et al., Excimer-Controlled Molecular Beacon, Angew. Chemie Int. Ed, vol.49, pp.1227-1230, 2010.

S. Inagaki, O. Ohtani, Y. Goto, K. Okamoto, M. Ikai et al., Light Harvesting by a Periodic Mesoporous Organosilica Chromophore. Angew. Chemie Int, vol.48, pp.4042-4046, 2009.
DOI : 10.1002/ange.200900266

S. Shirai, S. Iwata, T. Tani, and S. Inagaki, Ab Initio Studies of Aromatic Excimers Using Multiconfiguration Quasi-Degenerate Perturbation Theory, J. Phys. Chem. A, vol.115, pp.7687-7699, 2011.

T. Förster and K. Kasper, Ein Konzentrationsumschlag der Fluoreszenz des Pyrens, Z. Elektrochem, vol.59, pp.976-980, 1955.

T. M. Figueira-duarte and K. Müllen, Pyrene-Based Materials for Organic Electronics, Chem. Rev, vol.111, pp.7260-7314, 2011.
DOI : 10.1021/cr100428a

T. Förster and . Elektronenspektren-gekoppelter-moleküle, Pure Appl. Chem, vol.4, pp.121-134, 1962.

B. Stevens, Evidence for the Photo-Association of Aromatic Hydrocarbons in Fluid Media, Nature, vol.192, pp.725-727, 1961.

G. D. Scholes and K. P. Ghiggino, Electronic Interactions and Interchromophore Excitation Transfer, J. Phys. Chem, vol.98, pp.4580-4590, 1994.
DOI : 10.1021/j100068a017

A. L. East, E. C. Lim, and . Naphthalene, Dimer: Electronic States, Excimers, and Triplet Decay, J. Chem. Phys, vol.113, pp.8981-8994, 2000.
DOI : 10.1063/1.1319345

A. L. Montero-alejo, M. E. Fuentes, L. A. Montero, and . Vega, Coulomb and Exchange Contributions to Electronic Excitations of Benzene Aggregates, Chem. Phys. Lett, vol.502, pp.271-276, 2011.

R. Huenerbein and S. Grimme, Time-Dependent Density Functional Study of Excimers and Exciplexes of Organic Molecules, Chem. Phys, vol.343, pp.362-371, 2008.

J. C. Amicangelo, Theoretical Study of the Benzene Excimer Using Time-Dependent Density Functional Theory, J. Phys. Chem. A, vol.109, pp.9174-9182, 2005.

P. García-ferna?ndez, L. Andjelkovi?, M. Zlatar, M. Gruden-pavlovi?, and A. Dreuw, A Simple Monomer-Based Model-Hamiltonian Approach to Combine Excitonic Coupling and Jahn-Teller Theory, J. Chem. Phys, p.174101, 2013.

N. O. Dubinets, A. A. Safonov, and A. A. Bagaturyants, Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States, J. Phys. Chem. A, vol.120, pp.2779-2782, 2016.

G. F. Velardez, H. T. Lemke, D. W. Breiby, M. M. Nielsen, K. B. Møller et al., Theoretical Investigation of Perylene Dimers and Excimers and Their Signatures in X-Ray Diffraction, J. Phys. Chem. A, vol.112, pp.8179-8187, 2008.

D. Casanova, Theoretical Investigations of the Perylene Electronic Structure: Monomer, Dimers, and Excimers, Int. J. Quantum Chem, vol.115, pp.442-452, 2015.

R. G. Sadygov and E. C. Lim, A Theoretical Study of the Structure and Energetics of Stacked Dimers of Polycyclic Aromatic Hydrocarbons. Application of INDO 1/S Method to Singlet Excimers of Naphthalene and Phenanthrene, Chem. Phys. Lett, vol.225, pp.441-447, 1994.

M. Ko?aski, C. R. Arunkumar, and K. S. Kim, Aromatic Excimers: Ab Initio and TD-DFT Study, J. Chem. Theory Comput, vol.9, pp.847-856, 2013.

T. S. Kuhlman, H. T. Lemke, T. I. Sølling, G. F. Velardez, N. E. Henriksen et al., Comment on "Theoretical Investigation of Perylene Dimers and Excimers and Their Signatures in X-Ray Diffraction, J. Phys. Chem. A, vol.113, pp.6849-6850, 2009.

J. Hoche, H. Schmitt, A. Humeniuk, I. Fischer, R. Mitric et al., The Mechanism of Excimer Formation: An Experimental and Theoretical Study on the Pyrene Dimer, Phys. Chem. Chem. Phys, vol.19, pp.25002-25015, 2017.

T. Rocha-rinza and O. Christiansen, Linear Response Coupled Cluster Study of the Benzene Excimer, Chem. Phys. Lett, vol.482, pp.44-49, 2009.

F. A. Balmer, M. A. Trachsel, A. Van-der-avoird, and S. Leutwyler, The Elusive S2 State, the S1/S2 Splitting, and the Excimer States of the Benzene Dimer, J. Chem. Phys, p.234306, 2015.

K. Diri and A. I. Krylov, Electronic States of the Benzene Dimer: A Simple Case of Complexity, J. Phys. Chem. A, vol.116, pp.653-662, 2012.

T. Rocha-rinza, L. De-vico, V. Veryazov, and B. O. Roos, A Theoretical Study of Singlet Low-Energy Excited States of the Benzene Dimer, Chem. Phys. Lett, vol.426, pp.268-272, 2006.

J. Jara-cortés, T. Rocha-rinza, and J. Hernández-trujillo, Electron Density Analysis of Aromatic Complexes in Excited Electronic States: The Benzene and Naphthalene Excimers

, Comput. Theor. Chem, vol.1053, pp.220-228, 2015.

P. Sainte-claire, Molecular Simulation of Excimer Fluorescence in Polystyrene and Poly(Vinylcarbazole), J. Phys. Chem. B, vol.110, pp.7334-7343, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00594588

F. Hirayama and S. Lipsky, Excimer Fluorescence of Benzene and Its Alkyl DerivativesConcentration and Temperature Dependence, J. Chem. Phys, vol.51, pp.1939-1951, 1969.

R. B. Cundall and D. A. Robinson, Primary Photophysical Processes in Benzene. Part 2.Monomer Studies, J. Chem. Soc, vol.68, pp.1145-1151, 21972.
DOI : 10.1016/0047-2670(72)80038-8

R. F. Fink, J. Pfister, H. M. Zhao, and B. Engels, Assessment of Quantum Chemical Methods and Basis Sets for Excitation Energy Transfer, Chem. Phys, vol.346, pp.275-285, 2008.

S. Shirai, S. Iwata, Y. Maegawa, T. Tani, and S. Inagaki, Ab Initio Molecular Orbital Study on the Excited States of, J. Phys. Chem. A, vol.116, pp.10194-10202, 2012.

R. F. Bader, Atoms in Molecules. A Quantum Theory, 1994.

P. M. Zimmerman, Z. Zhang, and C. B. Musgrave, Singlet Fission in Pentacene through MultiExciton Quantum States, Nat. Chem, vol.2, pp.648-652, 2010.

D. Casanova, L. Slipchenko, A. I. V;-krylov, and M. Head-gordon, Double Spin-Flip Approach within Equation-of-Motion Coupled Cluster and Configuration Interaction Formalisms: Theory, Implementation, and Examples, J. Chem. Phys, p.44103, 2009.

D. Casanova and M. Head-gordon, Restricted Active Space Spin-Flip Configuration Interaction Approach: Theory, Implementation and Examples, Phys. Chem. Chem. Phys, vol.11, pp.9779-9790, 2009.
DOI : 10.1039/b911513g

P. M. Zimmerman, F. Bell, D. Casanova, and M. Head-gordon, Mechanism for Singlet Fission in Pentacene and Tetracene: From Single Exciton to Two Triplets, J. Am. Chem. Soc, vol.133, 2011.

P. Petelenz and B. Pac, Is Dipole Moment a Valid Descriptor of Excited State's ChargeTransfer Character?, J. Am. Chem. Soc, vol.135, pp.17379-17386, 2013.

T. Zeng, R. Hoffmann, and N. Ananth, The Low-Lying Electronic States of Pentacene and Their Roles in Singlet Fission, J. Am. Chem. Soc, vol.136, pp.5755-5764, 2014.

M. B. Smith and J. Michl, Recent Advances in Singlet Fission, 1001, vol.64, pp.361-386, 2013.

W. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-avila et al., Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer, Science, vol.334, pp.1541-1545, 2011.

B. Meunier, S. P. Visser, and S. Shaik, Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes, Chem. Rev, vol.104, pp.3947-3980, 2004.

S. Shaik and H. Chen, Lessons on O2 and NO Bonding to Heme from Ab Initio Multireference/Multiconfiguration and DFT Calculations, JBIC J. Biol. Inorg. Chem, vol.16, pp.841-855, 2011.

S. De-visser and M. Stillman, Challenging Density Functional Theory Calculations with Hemes and Porphyrins, Int. J. Mol. Sci, vol.17, p.519, 2016.

M. E. Ali, B. Sanyal, and P. Oppeneer, Electronic Structure, Spin-States, and SpinCrossover Reaction of Heme-Related Fe-Porphyrins: A Theoretical Perspective, J. Phys. Chem. B, vol.116, pp.5849-5859, 2012.

M. Kepenekian, A. Calborean, V. Vetere, B. Le-guennic, V. Robert et al., Toward Reliable DFT Investigations of Mn-Porphyrins through CASPT2/DFT Comparison, J. Chem. Theory Comput, vol.7, pp.3532-3539, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01889605

K. Pierloot, H. Zhao, and S. Vancoillie, Copper Corroles: The Question of Noninnocence, Inorg. Chem, vol.49, pp.10316-10329, 2010.

S. Vancoillie, H. Zhao, M. Rado?, and K. Pierloot, Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models, J. Chem. Theory Comput, vol.6, pp.576-582, 2010.

B. O. Roos, V. Veryazov, J. Conradie, P. R. Taylor, and A. Ghosh, Not Innocent: Verdict from Ab Initio Multiconfigurational Second-Order Perturbation Theory on the Electronic Structure of Chloroiron Corrole, J. Phys. Chem. B, vol.112, pp.14099-14102, 2008.

N. Ben-amor, A. Soupart, and M. Heitz, Methodological CASPT2 Study of the Valence Excited States of an Iron-Porphyrin Complex, J. Mol. Model, vol.23, p.53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510461

A. A. Kerridge and . Rasscf, Study of Free Base, Magnesium and Zinc Porphyrins: Accuracy versus Efficiency, Phys. Chem. Chem. Phys, 2013.

Y. Kitagawa, Y. Chen, N. Nakatani, A. Nakayama, J. Hasegawa et al., Multiconfigurational Second-Order Perturbation Theory Restricted Active Space (RASPT2) Studies on Mononuclear First-Row Transition-Metal Systems, Phys. Chem. Chem. Phys, vol.18, pp.3961-3977, 1014.

B. Vlaisavljevich and T. Shiozaki, Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions, J. Chem. Theory Comput, vol.12, pp.3781-3787, 1015.

J. Chalupský, T. A. Rokob, Y. Kurashige, T. Yanai, E. I. Solomon et al., Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study, J. Chem. Theory Comput, vol.136, pp.4352-4361, 2014.

C. J. Stein and M. Reiher, Automated Selection of Active Orbital Spaces, J. Chem. Theory Comput, vol.12, pp.1760-1771, 2016.

, After finishing his habilitation in 1976 he became Professor of Theoretical Chemistry at the University of Vienna in 1980. In the same year, during his stay as Visiting Professor at the Ohio State University the development of the COLUMBUS program system was started in cooperation with Professor Shavitt and Dr Ron Shepard. After the retirement at the University of Vienna in 2008 he spent two years in the time from 2008-2010 as visiting professor at the Institute of Organic Chemistry of the Czech Academy of Sciences, Hans Lischka received his Ph.D. degree at the University of Vienna in 1969. In the years 1972-73 he worked as a postdoctoral researcher with Professor Kutzelnigg at the University of Karlsruhe

, United States working in the group of Kenneth D. Jordan on theoretical modelling of the excited states. From 1995 to 1997 she was a postdoc fellow at J. Heyrovský institute of Physical Chemistry of the CAS in Prague working under supervision of, Dana Nachtigallová was born and raised in the Czech Republic, 1995.

, she moved to the Institute of Chemistry and Biochemistry of the CAS in Prague, where she is working as a senior researcher in the group of Pavel Hobza. Her current research interests focus on simulations of nonadiabatic photodynamical processes, modeling of non-covalent interactions of the excited state associates and on multireference calculations of the excited states of polycyclic aromatic hydrocarbons, 1997.

G. Péter, He received his M.Sc. degree in 1986 at ELTE Eötvös Loránd University in Budapest under the supervision of Prof, p.1989

, At the same time, he joined the COLUMBUS community and worked on improvements of the MR-CI code, including the first analytic derivative code for this type of wavefunction. Between 1991 and 1993 he was postdoc at the University of Florida with Prof. Bartlett, where he worked on the development of coupled-cluster methods, including the MR-AQCC method. His research, besides method development, concentrates on excited states and corresponding spectroscopy. Prof. Szalay published more than 100 papers, and he is the co-author and co-editor of several books. These publications resulted in almost 5000 independent citations. Currently, he is a professor of chemistry at ELTE and Vice-Rector for Research, his Ph.D. at the University of Vienna under the supervision of Prof. Lischka. The latter work consisted of MR-CI calculations on the ground and excited states of conjugated molecules, 2017.

, Császár, he has been awarded the Széchenyi Prize, the most prestigious scholarly award in Hungary