Alaninyl variants of the marine natural product halocyamine A and their antibacterial properties
Hugo K.H. Fong, Melissa Cadelis, Jean Michel Brunel, Marie-Lise Bourguet-Kondracki, David Barker, Brent Copp

To cite this version:

HAL Id: hal-02056446
https://hal-amu.archives-ouvertes.fr/hal-02056446
Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Alaninyl variants of the marine natural product halocyamine A and their antibacterial properties

Hugo K. H. Fong\textsuperscript{a}, Melissa M. Cadelis\textsuperscript{a}, Jean Michel Brunel\textsuperscript{b}, Marie-Lise Bourguet-Kondracki\textsuperscript{c}, David Barker\textsuperscript{a}, Brent R. Copp\textsuperscript{a,*}

\textsuperscript{a}School of Chemical Sciences, The University of Auckland, Private Bay 92019, Auckland 1142, New Zealand
\textsuperscript{b}UMR \textsuperscript{MD1} “Membranes et Cibles Thérapeutiques”, U1261 INSERM, Aix-Marseille Université, Faculté de pharmacie, 27 Bd Jean Moulin, 13385, Marseille, cedex 5, France
\textsuperscript{c}Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France

Keywords: Antibacterial; Halocyamine; Enamide; Marine natural product

* Corresponding author. E-mail address: b.copp@auckland.ac.nz (B.R. Copp).
Abstract
In an effort to explore the antibacterial potential of the marine natural product halocyamine A, a series of analogues including desbromo and alanine-substituted variants were synthesised and evaluated for biological activity against a panel of Gram-positive and –negative bacteria. The analogues were synthesised by a combination of solid-phase peptide synthesis and ruthenium complex/ytterbium triflate catalysed hydroamidation chemistry. Single alanine substitutions ([Ala$^1$]-halocyamine A and [Ala$^2$]-halocyamine A) gave only modest increases in activity towards Gram-positive bacteria, while di-alaninyl variants exhibited more potent activity with MIC values of 12.5–50 μM towards the Gram-positive bacteria *S. aureus* and *E. faecalis*. A lipophilic trityl-protected intermediate of [Ala$^2$]-halocyamine was the most active against the Gram negative bacterium *Escherichia coli*. 
1. Introduction

The tunichromes are small, modified peptides isolated from the blood cells of marine organisms belonging to the Class Ascidiacea.[ref1, ref2, ref3] Structurally, these natural products are typified by the presence of a C-terminal decarboxy-$\Delta^{2,3}$-enamide fragment. While the C-terminus amino acid is usually tyrosine, 3,4-dihydroxyphenylalanine (DOPA) or 3,4,5-trihydroxyphenylalanine (TOPA)-derived, the halocyamines (e.g. A, 1) are unusual in that the C-terminus moiety is derived from 6-bromo-tryptophan. A number of ecological roles have been proposed for the tunichromes, varying from tunic formation (cross-linking)[ref4], acting as a primitive wound repair system, to metal ion sequestration[ref5] or that they act as antimicrobial agents.[ref4] Indeed there is growing body of biochemical evidence that many of these roles are at least feasible.

As part of our ongoing investigation of the chemistry and biology of tunichromes, we have recently reported the synthesis and structural confirmation of the tunichromes Sp-1 [ref6] and halocyamine A (1).[ref7] With only modest levels of antibacterial activity being observed for synthetic halocyamine A, we sought to use our robust synthetic methodology to prepare novel halocyamine A analogues that explored the influence of bromine substitution and of the His and DOPA amino acids on the biological activity. Herein we report the synthesis and antibacterial activities of these halocyamine A analogues.

![Fig 1. Structures of halocyamine A (1) and des-bromo analogue 2](image)

2. Results and discussion

In our previously reported synthesis of halocyamine A (1), the natural product was disconnected at the DOPA-Gly amide bond to give two fragments, Fmoc-His(Trt)-DOPA(TBS)$_2$-OH (3) and Z-enamide 4 (Fig. 2).[ref7] The two fragments were prepared separately using Fmoc solid phase peptide synthesis (SPPS) and ruthenium-catalysed hydroamidation of an indole-acetylene, respectively.
In the current project, we sought to explore the influence, if any, of bromine substitution and each of the amino acids L-His and L-DOPA on the observed antibacterial activity of halocyamine A. To this end, our first target was des-bromo halocyamine A 2, which required synthesis of indole-enamide 5. The known indolic alkyne 6 [Ref8 Unsworth] was subjected to hydroamidation with Fmoc-glycinamide using 5 mol% bis(2-methylallyl)(1,5-cyclooctadiene)ruthenium(II) heated at 70 °C for 32 h to give glycyl-Z-enamide 7 (69%) and by-product (E)-enyne 8[ref7] (18%) (Scheme 1). Enamide 7 was then deprotected (TFA/CH₂Cl₂) to give 5 in 89% yield.

Scheme 1. Reagents and conditions: (i) Fmoc-glycinamide (0.5 eq.), bis(2-methylallyl)(1,5-cyclooctadiene)ruthenium(II) (0.025 eq.), 1,4-bis(dicyclohexylphosphino)butane (0.03 eq.), ytterium triflate (0.02 eq.), DMF, H₂O, 70 °C, 32 h, 69% (7) and 18% (8); (ii) TFA (60 eq.), CH₂Cl₂, 0 °C, 8 h, 89%.

EDC-mediated coupling of enamide 5 and protected dipeptide Fmoc-His(Trt)-DOPA(TBDMS)₂-OH 3 [ref7] afforded the protected halocyamine analogue 9 in 39% yield (Scheme 2). Step-wise fmoc deprotection (piperidine, DMF, 20 min) to give 10 (68% yield), followed by desilylation (triethylamine trihydrofluoride, THF, 55 min) to give 11 (69% yield) and lastly, removal of the trityl
group (HCl/HFIP, H₂O, TIS, 1 h) afforded des-bromo halocyamine A 2 as the dihydrochloride salt in 73% yield.

We next explored the antibacterial influence of the L-histidine and/or L-DOPA residues of halocyamine A by preparing two L-alanine-substituted variants 12 and 13. The first of these analogues (12), where Ala replaced His, required the protected dipeptide Fmoc-Ala-DOPA(TBDMS)₂-OH (14) which was prepared using standard Fmoc-SPPS methodology in 85% yield (see experimental). Bromo-indole enamide 4[ref7] was then coupled (EDC, HOBt, DIPEA, 7.5 h) with 14 to give 15 in 42% yield (Scheme 3). Removal of the Fmoc protecting group (piperidine, DMF, 20 min) gave the chromatographically-separable (Z)-16 (36%) and (E)-16 (31%). Desilylation of (Z)-16 (triethylamine trihydrofluoride, THF, 55 min) gave [Ala₁]-halocyamine A 12 in 67% yield.

Scheme 2. Reagents and conditions: (i) EDC.HCl (1.5 eq.), HOBt (2 eq.), DIPEA (6 eq.), CH₂Cl₂, 9 h, 39%; (ii) piperidine, DMF, r.t. 20 min, 68%; (iii) Et₃N.3HF, THF, 0 °C, 55 min, 69%; (iv) 0.01 N HCl/HFIP, H₂O, TIS, r.t., 1 h, 73%.
Scheme 3. Reagents and conditions: (i) 4 (1 eq.), EDC.HCl (1.5 eq.), HOBT (2 eq.), DIPEA (6 eq.), CH₂Cl₂, r.t., 7.5 h, 42%; (ii) piperidine, DMF, r.t., 20 min, 36% (Z), 31% (E); (iii) Et₃N.3HF, THF, 0 °C, 55 min, 67%.

A similar reaction sequence was used to prepare the second Ala-variant 13 with Ala replacing the DOPA residue. Dipeptide 17, prepared by Fmoc-SPPS in 88% yield, was coupled with 4 to give 18 in 44% yield (Scheme 3). Deprotection at the N-terminus (piperidine, DMF, 20 min) gave 19 (86%) which followed by removal of the trityl group (HCl/HFIP, H₂O, TIS, 1 h) afforded [Ala²]-halocyamine A (13) (83%) as an inseparable mixture of Z/E (1:0.9) isomers.

Scheme 1. Reagents and conditions: (i) 4 (1 eq.), EDC.HCl (1.1 eq.), HOBT (1.5 eq.), DIPEA (5 eq.), CH₂Cl₂, DMF, r.t., 8 h, 44%; (ii) piperidine, DMF, r.t., 20 min, 86%; (iii) 0.01 N HCl/HFIP, H₂O, TIS, r.t., 1 h, 83% (Z:E, 1:0.9).

A final two analogues were prepared that explored substituting both His and DOPA residues for either L-Ala-L-Ala (20) or D-Ala-D-Ala (21). The requisite fmoc-dipeptides 22 and 23 were prepared by SPSS and then coupled with 4 (EDC, HOBT, DIPEA, 8h) to afford, respectively 24 (33%) or 25.
(34%). Subsequent deprotection (piperidine, DMF, 20 min) gave [Ala\textsuperscript{1},Ala\textsuperscript{2}]-halocyamine A \textbf{20} (60%) or [D-Ala\textsuperscript{1},D-Ala\textsuperscript{2}]-halocyamine A \textbf{21} (69%), respectively.

*Fig. 3. Fmoc-protected dipeptides 22 and 23.*

*Scheme 2. Reagents and conditions: (i) piperidine, DMF, r.t., 20 min, 60%; (ii) piperidine, DMF, r.t., 20 min, 69%.*

Des-bromo halocyamine A \textbf{2}, alanine analogues \textbf{12} and \textbf{13}, di-alaninyl analogues \textbf{20} and \textbf{21} and a number of the reaction intermediates (\textbf{15}, \textbf{16}, \textbf{18}, \textbf{19}, \textbf{24}, \textbf{25}) were evaluated against a panel of Gram-negative (*Pseudomonas aeruginosa* ATCC 27853, *Escherichia coli* ATCC 25922) and Gram-positive (*Staphylococcus aureus* ATCC 25923, *Enterococcus faecalis* ATCC 29212) bacteria and for cytotoxicity towards the mammalian L6 rat skeletal myoblast cell line (Table 1). As we have previously noted, halocyamine A exhibits poor levels of antibacterial activity, with a modest MIC of 100 \(\mu\)M towards *P. aeruginosa* and *E. faecalis*.\textsuperscript{[ref7]} In the present study, the des-bromo analogue \textbf{2} failed to exhibit any antibacterial activities, while both of the [Ala\textsuperscript{1}] \textbf{(12)} and [Ala\textsuperscript{2}] \textbf{(13)} analogues (the latter tested as an \textit{E}/\textit{Z} mixture of isomers) showed a modest increase in activity towards Gram-positive bacteria (*S. aureus* MIC 100 \(\mu\)M; *E. faecalis* 50 – 100 \(\mu\)M). An interesting finding related to the [Ala\textsuperscript{2}] analogue was the enhanced activity towards the Gram-negative bacterium *E. coli* (MIC
25–50 μM) for the fmoc/trityl (19) and trityl-protected (19) intermediates. Although these same two compounds also exhibited cytotoxicity towards the L6 cell line (IC₅₀ 65.6 and 25.6 μM, respectively) the observation of antibacterial activity for these compounds and not for the corresponding de-tritylated analogue (13) suggests that the presence of a sterically bulky lipophilic residue at the His-residue position in halocyamine A may be a useful starting point for the discovery of novel Gram-negative antibacterials.

Gram-positive antibacterial activity was observed for both di-alaninyl analogues with the di-L-alaninyl variant 20 exhibiting activity towards *S. aureus* (MIC 12.5 μM) and the di-D-alaninyl analogue 21 exhibiting activity towards both *S. aureus* and *E. faecalis* (both MIC 50 μM). Modest cytotoxicity was observed for these analogues (IC₅₀ 115.8 and 142 μM, respectively), equating to a selectivity index (= cytotoxicity IC₅₀ / antibacterial MIC) in the case of di-L-alaninyl 20 of close to ten. The antibacterial activity for both di-alaninyl analogues was dependent upon a free amine at the N-terminus, as both fmoc-protected precursors (24 and 25) were inactive.
Table 1
Summary of biological activities observed for compounds 1, 2, 12, 13, 15, 16, 18-21, 24 and 25.

<table>
<thead>
<tr>
<th>Compound</th>
<th>P. aeruginosaa</th>
<th>E. coli b</th>
<th>S. aureusc</th>
<th>E. faecalis d</th>
<th>L6e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HaloA</td>
<td>100</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>100</td>
<td>NT</td>
</tr>
<tr>
<td>2 HF7-137 Des</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>NT</td>
<td>&gt;150</td>
</tr>
<tr>
<td>12 HF7-154 Ala1</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>100</td>
<td>50</td>
<td>82.8</td>
</tr>
<tr>
<td>13 HF8-141 Ala2g</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>100</td>
<td>100</td>
<td>136.8</td>
</tr>
<tr>
<td>15 HF7-81 fmoc tbs ala-dopa</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>16 HF7-140 tbs ala-dopa</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>25</td>
<td>NT</td>
<td>4.8</td>
</tr>
<tr>
<td>18 HF8-99/HF8-87 fmoc-trt-his-ala</td>
<td>&gt;200</td>
<td>50</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>65.6</td>
</tr>
<tr>
<td>19 HF8-102 trt-his-ala</td>
<td>&gt;200</td>
<td>25</td>
<td>25</td>
<td>200</td>
<td>25.6</td>
</tr>
<tr>
<td>20 HF8-100/HF8-103 Ala-Ala</td>
<td>&gt;200</td>
<td>200</td>
<td>12.5</td>
<td>200</td>
<td>115.8</td>
</tr>
<tr>
<td>21 HF8-136 d-ala-d-ala</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>50</td>
<td>50</td>
<td>142</td>
</tr>
<tr>
<td>24 HF8-81 fmoc Ala-Ala</td>
<td>&gt;200</td>
<td>100</td>
<td>200</td>
<td>&gt;200</td>
<td>48.5</td>
</tr>
<tr>
<td>25 HF8-118/HF8-95 fmoc-d-ala-d-ala</td>
<td>&gt;200</td>
<td>&gt;200</td>
<td>100</td>
<td>100</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colistin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>1.5 – 3</td>
<td>1.5 – 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podophyllotoxin</td>
<td></td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ a \] *P. aeruginosa* ATCC27853. MIC (\( \mu \text{M} \)) values presented as the mean (n = 3).

\[ b \] *E. coli* ATCC25922. MIC (\( \mu \text{M} \)) values presented as the mean (n = 3).

\[ c \] *S. aureus* ATCC25923. MIC (\( \mu \text{M} \)) values presented as the mean (n = 3).

\[ d \] *E. faecalis* ATCC29212. MIC (\( \mu \text{M} \)) values presented as the mean (n = 3).

\[ e \] L6 rat skeletal myoblast cell line. IC\(_{50}\) (\( \mu \text{M} \)) values presented as the average (n = 2).

\[ f \] Not tested.

\[ g \] Tested as a mixture of *E/Z* isomers.
3. Conclusions

In conclusion, we have established that alaninyl analogues of the marine natural product halocyamine A exhibit more pronounced antibacterial activities than the natural product. While single alanine substitutions gave modest increases in activity (to MIC 50–100 μM), di-alaninyl analogues exhibited MIC values of 12.5–50 μM towards the Gram-positive bacteria *S. aureus* and *E. faecalis*. The finding of activity of a His(Trt)-Ala analogue of halocyamine A towards *E. coli* is particularly encouraging, suggesting that exploration of increasingly lipophilic analogues of [Ala₂]-halocyamine could be worthwhile in the search for new molecules active against Gram-negative bacteria.

4. Experimental

4.1. General

Infrared spectra were run as dry films on an FTIR infrared spectrometer fitted with a universal ATR sampling accessory. Optical rotations were recorded using a 0.1 dm cell in methanol. NMR spectra were recorded at either 500 or 400 MHz for ¹H nuclei and 125 or 100 MHz for ¹³C nuclei. Proto-deutero solvent signals were used as internal references (CD₃OD: δH 3.31, δC 49.0; CDCl₃: δH TMS 0, δC 77.16; DMSO-d₆: δH 2.50, δC 39.52). ¹H NMR data is reported as position (δ), relative integral, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, obs = obscured), coupling constant (J, Hz), and the assignment of the atom. ¹³C NMR data are reported as position (δ) and assignment of the atom. Assignments were based on 2D NMR data acquired using standard COSY, multiplicity edited HSQC and HMBC pulse sequences. MS data were acquired on a micrOTOF Q II mass spectrometer. Flash column chromatography was carried out on C₂ or C₈ (reversed-phase) or on silica gel (normal phase). All solvents used were distilled analytical grade or better. Chemical reagents used were purchased from standard chemical suppliers. Compounds Fmoc-DOPA(TBDMS)₂-OH [Ref9 Sever tet 2001], Fmoc-His(Trt)-DOPA(TBDMS)₂-OH 3 HF2.19 [ref7], bromo-indole-enamide 4 HF3.1 [ref7] and indolic alkyne 6 HF3.10 [ref8 Unsworth 2013], were prepared by published routes and data obtained were in agreement with those previously reported.

4.1.1. tert-Butyl (Z)-3-(2-(2-aminoacetamido)vinyl)-1H-indole-1-carboxylate (7 HF4.68) and di-tert-butyl 3,3’-(but-1-en-3-yne-1,4-diyl)(E)-bis(1H-indole-1-carboxylate) (8 HF8.14)

Fmoc-Gly-NH₂ (0.296 g, 1.00 mmol), tert-butyl 3-ethynyl-1H-indole-carboxylate (0.482 g, 2.00 mmol), bis(2-methylallyl)(1,5-cycloocta-diene)ruthenium(II) (0.016 g, 0.05 mmol), 1,4-bis(dicyclohexylphosphino)butane (0.027 g, 0.06 mmol) and ytterbium triflate (0.025 g, 0.04 mmol) were placed under vacuum and then flushed with N₂ (four times). A degassed DMF (3.00 mL) / water
(108 µL, 6 mmol) mixture was added and the solution stirred under N₂ at 70 ºC for 32 h. The reaction was then quenched with sat. aq. NaHCO₃ (30 mL) and the resulting mixture extracted with EtOAc (5 x 20 mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried (MgSO₄), filtered, and the solvent removed in vacuo. Purification using silica gel column chromatography (eluting with n-hexane to n-hexane/EtOAc 9:1) afforded 8 HF8-14 (0.087 g, 18%) as a brown oil while elution with a more polar solvent mixture (n-hexane/EtOAc 1:1 to EtOAc) gave 7 HF4-68 (0.220 g, 69%) as a yellow oil.

4.1.1.1. 7 HF4-68: Rf 0.15 (n-hexane/EtOAc 8:2); IR (ATR) νmax 3329, 2973, 2931, 1700, 1451, 1368, 1253, 1149 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.71 (1H, d, J = 11.6 Hz, H-4), 8.13 (1H, d, J = 7.9 Hz, H-10), 7.76 (1H, s, H-8), 7.58 (1H, d, J = 7.9 Hz, H-13), 7.36 (1H, td, J = 7.9, 1.2 Hz, H-11), 7.28 (1H, td, J = 7.9, 1.2 Hz, H-12), 7.06 (1H, dd, J = 11.6, 9.2 Hz, H-5), 5.86 (1H, d, J = 9.2 Hz, H-6), 3.47 (2H, s, H-12), 1.68 (9H, s, CO₂C(CH₃)₃); ¹³C NMR (CDCl₃, 100 MHz) δ 170.5 (C-3), 149.7 (CO₂C(CH₃)₃), 135.1 (C-9a), 129.9 (C-13a), 125.2 (C-11), 123.0 (C-12), 122.6 (C-8), 121.9 (C-5), 119.4 (C-13), 115.9 (C-7), 115.3 (C-10), 100.4 (C-6), 84.0 (CO₂C(CH₃)₃), 44.6 (C-2), 28.3 (CO₂C(CH₃)₃); (+)-HRESIMS [M+H]+ 316.1650 (calcd. for C₁₇H₂₂N₃O₃, 316.1656).

4.1.1.2. 8 HF8-14: Rf 0.79 (n-hexane/EtOAc 4:1); IR (ATR) νmax 2977, 2933, 2865, 1733, 1451, 1368, 1231, 1147, 1093 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.18–8.14 (2H, m, H-7 and H-15), 7.78 (1H, s, H-13), 7.78–7.73 (2H, m, H-4 and H-18), 7.70 (1H, s, H-2), 7.37–7.32 (2H, m, H-6 and H-16), 7.31–7.26 (2H, m, H-5 and H-17), 7.17 (1H, d, J = 15.8 Hz, H-8), 6.52 (1H, d, J = 15.8 Hz, H-9), 1.66–1.65 (18H, m, 3H₃-21 and 3H₃-24); ¹³C NMR (CDCl₃, 100 MHz) δ 149.4 (C-19 or C-22), 149.1 (C-19 or C-22), 136.1 (C-7a), 134.8 (C-14a), 132.6 (C-8), 130.6 (C-18a), 128.5 (C-13), 128.2 (C-3a), 125.2 (C-6 or C-16), 125.0 (C-6 or C-16), 124.8 (C-2), 123.29 (C-5 or C-17), 123.27 (C-5 or C-17), 120.2 (C-4 or C-18), 120.0 (C-4 or C-18), 118.5 (C-3), 115.6 (C-7 or C-15), 115.3 (C-7 or C-15), 108.0 (C-9), 103.9 (C-12), 92.9 (C-10), 84.24 (C-20 or C-23), 84.17 (C-20 or C-23), 83.4 (C-11), 28.19 (3C-21 or 3C-24), 28.17 (3C-21 or 3C-24); (+)-HRESIMS [M+Na]+ 505.2091 (calcd. for C₃₀H₃₀N₂O₄Na, 505.2098).

4.1.2.  (Z)-N-(2-(1H-Indol-3-yl)vinyl)-2-aminoacetamide (5 HF4-154)

A solution of 7 HF4-68 (0.17 g, 0.436 mmol) in CH₂Cl₂ (2 mL) was stirred at 0 ºC under N₂ for 5 min before TFA (2 mL, 26.1 mmol) was added dropwise. The solution was then stirred for a further 8 h at 0 ºC. The reaction was quenched with sat. aq. NaHCO₃ (20 mL) and extracted with EtOAc (4 x 20 mL). The organic layers were combined and dried in vacuo. The crude black oil was purified by silica gel column chromatography (eluting with EtOAc to CH₂Cl₂/MeOH 9:1) to afford 5
HF4-154 (0.13 g, 89%) as a black oil. R_f 0.50 (CH_2Cl_2/MeOH 9:1); IR (ATR) v_max 3403, 3295, 1655, 1535, 1499, 1231 cm^{-1}; 1H NMR (CDCl_3, 400 MHz) δ 9.53 (1H, br s, NH-4), 8.30 (1H, br s, NH-9), 7.65 (1H, d, J = 7.5 Hz, H-13), 7.40 (1H, d, J = 8.6 Hz, H-10), 7.35 (1H, d, J = 2.4 Hz, H-8), 7.27–7.24 (1H, m, H-11), 7.18 (1H, t, J = 7.5 Hz, H-12), 6.98 (1H, dd, J = 11.5, 9.2 Hz, H-5), 6.00 (1H, d, J = 9.2 Hz, H-6), 3.45 (2H, s, H_2-2); 13C NMR (CDCl_3, 100 MHz) δ 170.3 (C-3), 135.9 (C-9a), 126.8 (C-13a), 123.0 (C-11), 121.8 (C-8), 120.3 (C-12), 119.7 (C-13), 119.5 (C-5), 112.0 (C-7), 111.3 (C-10), 102.6 (C-6), 44.7 (C-2); (+)-HRESIMS [M+H]^+ 216.1130 (calcd. for C_{12}H_{14}N_3O, 216.1131).

4.1.3. (9H-Fluoren-9-yl)methyl ((S)-1-(((S)-1-(((2-((Z)-2-((1H-indol-3-yl)vinyl)amino)-2-oxoethyl)amino)-3-(3,4-bis((tert-butyldimethylsilyl)oxy)phenyl)-1-oxopropan-2-yl)amino)-1-oxo-3-(1-trityl-1H-imidazol-4-yl)propan-2-yl)carbamate (10 HF7-118)

To a solution of dipeptide 3 HF2.19 (0.43 g, 0.42 mmol), enamide 5 HF4-154 (0.09 g, 0.42 mmol), EDC.HCl (0.12 g, 0.63 mmol) and HOBT (0.11 g, 0.84 mmol) in CH_2Cl_2 (3 mL) was added DIPEA (0.44 mL, 2.5 mmol) under N_2 and stirred for 9 h. The reaction mixture was diluted with CH_2Cl_2 (15 mL), washed with water (10 mL) and the organic solvent removed in vacuo. Subsequent purification by silica gel column chromatography (eluting with n-hexane/EtOAc 9:1 to n-hexane/EtOAc 1:1) afforded 9 HF7-118 (0.20 g, 39%) as a yellow oil. [α]_{D}^{26.7} +16.6 (c 1.57, CH_2Cl_2); R_f 0.58 (CH_2Cl_2/MeOH 9:1); IR (ATR) v_max 2930, 2861, 1714, 1670, 1509, 1447, 1297, 1253, 1155, 1130 cm^{-1}; 1H NMR (CDCl_3, 500 MHz) δ 9.02 (2H, br s, NH), 4.15–4.12 (2H, m, CO_2CH_2CH and H_2-21a), 3.76 (1H, dd, J = 16.7, 4.8 Hz, H_2-21b), 3.07 (1H, dd, J = 14.2, 7.1 Hz, H_2-12a), 3.00–2.94 (2H, m, H_2-3a and H_2-12b), 2.65 (1H, br s, H_2-3b), 0.97–0.95 (18H, m, 2SiC(CH_3)_3), 0.17–0.16 (12H, m, 2SiC(CH_3)_2); 13C NMR (CDCl_3, 125 MHz) δ 172.1 (C-19), 170.6 (C-9), 166.6 (C-22), 156.2 (CO_2CH_2CH), 147.3 (C-15), 146.3 (C-16), 143.9 (C-FmocAr), 143.7 (C-FmocAr), 141.4 (2C-FmocAr and 3C-TrtAr), 135.9 (C-28a), 129.8 (3C-TrtAr), 129.7 (6C-TrtAr), 129.2 (C-13), 128.4 (6C-TrtAr), 127.9 (2C-FmocAr), 127.2 (2C-FmocAr), 122.9 (C-27), 122.7 (C-30), 122.3 (C-18), 122.0 (C-14), 121.3 (C-17), 120.9 (C-8), 120.2 (2C-FmocAr), 120.0 (C-31), 119.0 (C-32), 118.9 (C-24), 111.5 (C-29), 111.1 (C-26), 103.4 (C-25), 67.4 (CO_2CH_2CH), 54.7 (C-2 and C-11), 47.2 (CO_2CH_2CH), 43.9 (C-21), 36.6 (C-12), 29.5 (C-3),
26.1 (2SiC(CH$_3$)$_3$), 18.6 (2SiC(CH$_3$)$_3$), −3.9 (2Si(CH$_3$)$_2$); (+)-HRESIMS [M+H]$^+$ 1224.5848 (calcd. for C$_{73}$H$_{82}$N$_7$O$_7$Si$_2$, 1224.5809).

4.1.4. (S)-N-2-((Z)-2-(1H-Indol-3-yl)vinyl)amino)-2-oxoethyl)-2-((S)-2-amino-3-(1-trityl-1H-imidazol-4-yl)propanamido)-3-(3,4-dihydroxy phenyl)propanamide (10 HF7-88)

Piperidine (0.18 mL, 1:4 v/v in DMF) was added to 9 HF7-118 (43.9 mg, 35.9 µmol) and stirred at r.t. under N$_2$ for 20 min. Water (10 mL) was added to the solution and the aqueous layer was extracted with EtOAc (4 x 20 mL). The organic layers were combined and dried in vacuo. The crude product was purified by silica gel column chromatography (eluting with EtOAc to CH$_2$Cl$_2$/MeOH 9:1) to afford 10 HF7-88 (24.5 mg, 68%) as a yellow oil. [α]$^{267}_D$ −12.2 (c 2.66, CH$_2$Cl$_2$); R$_f$ 0.62 (CH$_2$Cl$_2$/MeOH 9:1); IR (ATR) $\nu_{\text{max}}$ 2931, 2857, 1659, 1509, 1364, 1251, 1230, 1158, 1132, 1092 cm$^{-1}$; $^1$H NMR (CDCl$_3$, 400 MHz) $\delta$ 9.40 (1H, br s, NH); 8.72 (1H, dd, $J$ = 6.0, 6.0 Hz, NH-20), 8.24 (1H, d, $J$ = 10.9 Hz, NH-23), 7.57 (1H, d, $J$ = 7.8 Hz, H-32), 7.36–7.34 (2H, m, H-6 and H-29), 7.31–7.26 (6H, m, 6H-TrtAr), 7.25–7.23 (1H, m, H-27), 7.21–7.17 (1H, m, H-30), 7.13–7.06 (4H, m, H-31, and 3H-TrtAr), 7.02–7.00 (6H, m, 6H-TrtAr), 6.89 (1H, d, $J$ = 7.8 Hz, NH-10), 6.74–6.70 (2H, m, H-17 and H-24), 6.68–6.67 (1H, m, H-14), 6.58–6.55 (2H, m, H-8 and H-18), 5.87 (1H, d, $J$ = 9.1 Hz, H-25), 4.69 (1H, ddd, $J$ = 7.8, 7.2, 6.4 Hz, H-11), 4.12 (1H, dd, $J$ = 16.8, 6.0 Hz, H$_2$-21a), 3.83 (1H, dd, $J$ = 16.8, 6.0 Hz, H$_2$-21b), 3.50 (1H, dd, $J$ = 5.2, 5.2 Hz, H-2), 3.05 (1H, dd, $J$ = 14.1, 7.2 Hz, H$_2$-12a), 2.99 (1H, dd, $J$ = 14.1, 7.2 Hz, H$_2$-12b), 2.85 (1H, dd, $J$ = 14.7, 5.2 Hz, H$_2$-3a), 2.71 (1H, dd, $J$ = 14.7, 5.2 Hz, H$_2$-3b), 0.97–0.96 (18H, m, 2SiC(CH$_3$)$_3$), 0.17–0.16 (12H, m, 2Si(CH$_3$)$_2$); $^{13}$C NMR (CDCl$_3$, 100 MHz) $\delta$ 174.9 (C-9), 172.3 (C-19), 166.7 (C-22), 147.1 (C-15), 146.1 (C-16), 142.2 (3C-TrtAr), 128.1 (3C-TrtAr), 139.0 (C-6), 136.0 (C-4), 135.8 (C-28a), 129.8 (C-13), 129.7 (6C-TrtAr), 128.3 (6C-TrtAr), 127.1 (C-32a), 123.1 (C-27), 122.6 (C-30), 122.3 (C-18), 122.1 (C-14), 121.3 (C-17), 120.6 (C-8), 119.9 (C-31), 118.9 (C-32), 118.6 (C-24), 111.4 (C-29), 110.8 (C-26), 103.6 (C-25), 75.6 (CAr$_3$), 54.40 (C-2 or C-11), 54.37 (C-2 or C-11), 43.8 (C-21), 36.6 (C-12), 33.1 (C-3), 26.1 (2SiC(CH$_3$)$_3$), 18.6 (SiC(CH$_3$)$_3$), 18.5 (SiC(CH$_3$)$_3$), −3.9 (2Si(CH$_3$)$_2$); (+)-HRESIMS [M+H]$^+$ 1002.5152 (calcd. for C$_{88}$H$_{82}$N$_8$O$_8$Si$_2$, 1002.5128).

4.1.5. (S)-N-2-((Z)-2-(1H-Indol-3-yl)vinyl)amino)-2-oxoethyl)-2-((S)-2-amino-3-(1-trityl-1H-imidazol-4-yl)propanamido)-3-(3,4-dihydroxy phenyl)propanamide (11 HF8-25)

Triethylamine trihydrofluoride (4.59 µL, 28.5 µmol) was added to a solution of 10 HF7-88 (9.5 mg, 9.5 µmol) in THF (0.50 mL) at 0 ºC and stirred under N$_2$ for 55 min. The reaction mixture was dried under a stream of N$_2$ and water (15 mL) was added. The aqueous layer was extracted with CH$_2$Cl$_2$ (4 x 20 mL) and the organic layers were combined and solvent was removed in vacuo to give
a yellow oil. Purification by silica gel column chromatography (eluting with EtOAc to MeOH/CH₂Cl₂, 1:9), afforded 11 HF8-25 (5.1 mg, 69%) as a yellow oil. [α]$_{22}^{2}$D $-5.1$ (c 0.28, CH₂Cl₂); R$_{f}$ 0.33 (CH₂Cl₂/MeOH 9:1); IR (ATR) $\nu_{\text{max}}$ 3312, 1657, 1493, 1445, 1281, 1155, 1037 cm$^{-1}$; $^1$H NMR (CD$_3$OD, 500 MHz) $\delta$ 7.52, (1H, d, $J$ = 7.9 Hz, H-32), 7.41 (1H, br s, H-27), 7.36 (1H, d, $J$ = 1.4 Hz, H-6), 7.34–7.31 (10H, m, H-29 and 9H-TrtAr), 7.12–7.09 (1H, m, H-30), 7.09–7.07 (6H, m, 6H-TrtAr), 7.04–7.01 (1H, m, H-31), 6.68 (1H, br s, H-8), 6.64–6.61 (3H, m, H-14, H-17 and H-24), 6.49 (1H, dd, $J$ = 8.1, 2.1 Hz, H-18), 5.99 (1H, d, $J$ = 9.0 Hz, H-25), 4.54 (1H, dd, $J$ = 9.1, 5.3 Hz, H-11), 3.88 (2H, br s, H$_2$-21), 3.53 (1H, dd, $J$ = 5.8, 5.6 Hz, H-2), 3.01 (1H, dd, $J$ = 14.1, 5.3 Hz, H-2-12a), 2.80 (1H, dd, $J$ = 14.7, 5.6 Hz, H$_2$-3a), 2.74–2.67 (2H, m, H$_2$-3b and H$_2$-12b); $^{13}$C NMR (CD$_3$OD, 125 MHz) $\delta$ 175.7 (C-9), 174.6 (C-19), 169.2 (C-22), 146.3 (C-15), 145.3 (C-16), 143.6 (C-TrtAr), 139.8 (C-6), 137.51 (C-4 or C-28a), 137.48 (C-4 or C-28a), 130.8 (6C-TrtAr), 129.7 (C-13), 129.2 (9C-TrtAr), 128.2 (C-32a), 124.7 (C-27), 123.1 (C-30), 121.7 (C-8 or C-18$^*$), 121.6 (C-8 or C-18$^*$), 120.5 (C-31), 119.4 (C-32), 118.8 (C-24), 117.3 (C-14), 116.3 (C-17), 112.4 (C-29), 111.0 (C-26), 106.2 (C-25), 76.8 (C$_{Ar_3}$), 56.3 (C-11), 55.4 (C-2), 44.1 (C-21), 37.9 (C-12), 33.8 (C-3); (+)-HRESIMS [M+Na]$^+$ 774.3411 (calcd. for C$_{46}$H$_{77}$Na$_3$O$_6$Na, 774.3388).

4.1.6. Des-bromo halocyanine A dihydrochloride (2 HF7-137)

A cocktail solution of 0.01 N HCl/HFIP-TIS/H$_2$O (2 mL, 95:2.5:2.5) was added to 11 HF8-25 (48.6 mg, 0.0628 mmol) and stirred for 1 h. The reaction was dried under a stream of N$_2$. Purification by C$_8$ column chromatography (eluting with H$_2$O to H$_2$O/MeOH 6:4) afforded 2 HF7-137 (24.4 mg, 73%) as a white powder. m.p. 260 °C (decomposed); R$_{f}$ 0.87 (butan-1-ol/acetic acid/H$_2$O 2:1:1); [α]$_{23}^{23}$D $+7.8$ (c 0.43, MeOH); IR (ATR) $\nu_{\text{max}}$ 3262, 3024, 2928, 1652, 1494, 1445, 1258, 1184, 1079, 1032 cm$^{-1}$; $^1$H NMR (DMSO-$d_6$, 500 MHz) $\delta$ 11.39 (1H, s, NH-28), 9.06 (1H, d, $J$ = 10.1 Hz, NH-23), 8.71 (1H, d, $J$ = 18.7 Hz, NH-20), 8.13 (1H, d, $J$ = 6.0 Hz, NH-10), 7.71 (1H, d, $J$ = 2.0 Hz, H-27), 7.60 (1H, d, $J$ = 8.0 Hz, H-32), 7.55 (1H, s, H-6), 7.39 (1H, d, $J$ = 8.0 Hz, H-29), 7.12 (1H, t, $J$ = 8.0 Hz, H-30), 7.04 (1H, t, $J$ = 8.0 Hz, H-31), 6.82 (1H, br s, H-8), 6.65 (1H, dd, $J$ = 10.1, 9.6 Hz, H-24), 6.61–6.58 (2H, m, H-14 and H-17), 6.42 (1H, dd, $J$ = 8.0, 1.8 Hz, H-18), 5.95 (1H, d, $J$ = 9.6 Hz, H-25), 4.44 (1H, br s, H-11), 3.99 (1H, dd, $J$ = 18.7, 5.9 Hz, H$_2$-21a), 3.93 (1H, dd, $J$ = 18.7, 5.9 Hz, H$_2$-21b), 3.38 (1H, obs, H-2), 2.92 (1H, dd, $J$ = 13.9, 4.2 Hz, H$_2$-12a), 2.80 (1H, dd, $J$ = 14.5, 4.4 Hz, H$_2$-3a), 2.68 (1H, dd, $J$ = 13.9, 9.0 Hz, H$_2$-12b), 2.53 (1H, d, $J$ = 8.7 Hz, H$_2$-3b); $^{13}$C NMR (DMSO-$d_6$, 125 MHz) $\delta$ 172.0 (C-19), 167.5 (C-22), 144.8 (C-15), 143.7 (C-16), 135.5 (C-28a), 134.9 (C-6), 128.4 (C-13), 126.6 (C-32a), 123.9 (C-27), 121.6 (C-30), 120.0 (C-18), 119.0 (C-31), 118.2 (C-32), 117.8 (C-24), 116.6 (C-14), 115.2 (C-17), 111.5 (C-29), 109.4 (C-26), 102.8 (C-25), 54.9 (C-2), 53.9 (C-11), 42.6 (C-21), 39.8 (C-3), 36.9 (C-12); (+)-HRESIMS [M+H]$^+$ 532.2296 (calcd. for C$_{27}$H$_{30}$N$_7$O$_5$, 532.2303).
4.1.7. **Fmoc-Ala-DOPA(TBDMs)\textsubscript{2}-OH (14 HF7-60)**

A solution of Fmoc-DOPA(TBDMs)\textsubscript{2}-OH [Ref9 Sever Tet 2001] (0.65 g, 1.0 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (15 mL) was added to 2-chlorotrityl chloride resin (2 g, loading at 0.5 mmol/g), followed by DIPEA (0.17 mL, 1.0 mmol). After the resin mixture was agitated for 10 min, DIPEA (0.26 mL, 1.5 mmol) was added and the mixture was further shaken for 1 h. The solution was drained off and the resin was washed with DMF (10 mL). A solution of CH\textsubscript{2}Cl\textsubscript{2}/MeOH/DIPEA (12.5 mL, 80:15:5) was added to the mixture and shaken for 23 min. The solution was drained and the procedure was repeated. The resin was then washed with DMF (10 mL). Piperidine in DMF (12.5 mL, 1:4) was added to the resin mixture and shaken for 10 min. The liquid was drained off and piperidine washing was repeated for another 20 min. The amino acid-loaded resin was thoroughly washed with DMF (15 mL), isopropanol (15 mL) and n-hexane (15 mL). The resin was then dried under vacuum for 30 min and placed in a desiccator overnight. CH\textsubscript{2}Cl\textsubscript{2} (30 mL) was added to the resin and left for 1 h. The solution was drained and a solution of HBTU (1.42 g, 3.75 mmol), HOBt (0.570 g, 3.75 mmol), Fmoc-Ala-OH (0.62 g, 2.0 mmol) and DIPEA (0.87 mL, 5.0 mmol) in DMF (3.75 mL) was added. The amino acid resin mixture was agitated for 5 h. The solution was then drained and washed with DMF (20 mL), isopropanol (20 mL) and n-hexane (20 mL). 2,2,2-Trifluoroethanol in CH\textsubscript{2}Cl\textsubscript{2} (12.5 mL, 1:4) was added to the amino acid-loaded resin and agitated for 2 h. The solution was drained and the organic solvent was removed in vacuo and dried extensively to afford 14 HF7-60 (0.61 g, 85%) as a yellow foam. m.p. 79–80 °C; [α]\textsuperscript{25}D +10.2 (c 1.59, CH\textsubscript{2}Cl\textsubscript{2}); R\textsubscript{f} 0.38 (EtOAc); IR (ATR) ν\textsubscript{max} 2932, 2858, 1719, 1665, 1509, 1450, 1423, 1297, 1251, 1127 cm\textsuperscript{-1}; \textsuperscript{1}H NMR (CDCl\textsubscript{3}, 500 MHz) δ 7.74 (2H, d, J = 7.3 Hz, 2H-FmocAr), 7.57 (2H, d, J = 7.3 Hz, 2H-FmocAr), 7.38 (2H, t, J = 7.3 Hz, 2H-FmocAr), 7.28 (2H, t, J = 7.3 Hz, 2H-FmocAr), 6.70 (1H, d, J = 8.2 Hz, H-12), 6.65 (1H, d, J = 1.9 Hz, H-9), 6.59–6.57 (1H, m, H-13), 6.53 (1H, br s, NH-5), 5.56 (1H, br s, NH-1), 4.75 (1H, ddd, J = 6.2, 6.2, 6.2 Hz, H-6), 4.38–4.36 (2H, m, CO\textsubscript{2}CH\textsubscript{2}CH), 4.23 (1H, br s, H-2), 4.19 (1H, t, J = 7.0 Hz, CO\textsubscript{2}CH\textsubscript{2}CH), 3.07 (1H, dd, J =14.0, 6.2 Hz, H-2a), 2.98 (1H, dd, J = 14.0, 6.2 Hz, H-2b), 1.32 (3H, d, J = 5.7 Hz, H-3-3), 0.95–0.94 (18H, m, 2SiC(CH\textsubscript{3})\textsubscript{3}), 0.16–0.14 (12H, m, 2Si(CH\textsubscript{3})\textsubscript{2}); \textsuperscript{13}C NMR (CDCl\textsubscript{3}, 125 MHz) δ 174.6 (C-14), 172.5 (C-4), 156.1 (CO\textsubscript{2}CH\textsubscript{2}CH), 147.0 (C-10), 146.3 (C-11), 143.8 (2C-FmocAr), 141.4 (2C-FmocAr), 128.7 (C-8), 127.9 (2C-FmocAr), 127.2 (2C-FmocAr), 125.2 (2C-FmocAr), 122.4 (C-13), 122.1 (C-9), 121.2 (C-12), 120.1 (2C-FmocAr), 67.3 (CO\textsubscript{2}CH\textsubscript{2}CH), 53.5 (C-6), 50.6 (C-2), 47.2 (CO\textsubscript{2}CH\textsubscript{2}CH), 36.8 (C-7), 26.0 (2SiC(CH\textsubscript{3})\textsubscript{3}), 18.9 (C-3), 18.5 (2SiC(CH\textsubscript{3})\textsubscript{3}), −3.9 (2Si(CH\textsubscript{3})\textsubscript{2}); (+)-HRESIMS [M+Na]\textsuperscript{+} 741.3381 (calcd. for C\textsubscript{39}H\textsubscript{54}NaN\textsubscript{2}O\textsubscript{7}Si\textsubscript{2}, 741.3362).
4.1.8. (9H-Fluoren-9-yl)methyl ((S)-1-(((S)-3-(3,4-bis((tert-butyldimethylsilyl)oxy)phenyl)-1-((2-((Z)-2-(6-bromo-1H-indol-3-yl)vinyl)amino)-2-oxoethyl) amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl) carbamate (15 HF7-81)

To a solution of enamide 4 HF3.1 (0.14 g, 0.49 mmol), 14 HF7-60 (0.36 g, 0.49 mmol), EDC.HCl (0.14 g, 0.73 mmol) and HOBt (0.13 g, 0.98 mmol) in CH₂Cl₂ (5 mL) under N₂, was added DIPEA (0.51 mL, 2.9 mmol) and the mixture was stirred at r.t. for 7.5 h. Water (10 mL) was added and the crude reaction product was extracted with EtOAc (4 x 15 mL). Afritt rendered to give a crude oil. Purification by silica gel column chromatography (eluting with n-hexane/EtOAc 9:1 to n-hexane/EtOAc 1:1) afforded 15 HF7-81 (112 mg, 42%) as a yellow oil. R_f 0.45 (n-hexane/EtOAc 1:1); [α]²⁴⁻⁸⁰⁺⁻³٫² (c 0.52, CH₂Cl₂); IR (ATR) νmax 3280, 2931, 2858, 1629, 1504, 1447, 1293, 1252, 1160 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.15 (1H, br s, NH), 7.74 (2H, d, J = 7.2 Hz, 2H-FmocAr), 7.52 (2H, t, J = 7.2 Hz, 2H-FmocAr), 7.44 (1H, d, J = 1.2 Hz, H-24), 7.39–7.36 (3H, m, H-27 and 2H-FmocAr), 7.27 (2H, t, J = 7.2 Hz, 2H-FmocAr), 7.21 (1H, d, J = 1.9 Hz, H-22), 7.18 (1H, dd, J = 8.5, 1.2 Hz, H-26), 7.14 (1H, br s, NH-19), 6.94 (1H, d, J = 7.5 Hz, NH-5), 6.80 (1H, dd, J = 10.2, 9.6 Hz, H-19), 6.68 (1H, d, J = 8.2 Hz, H-12), 6.63 (1H, d, J = 2.0 Hz, H-9), 6.51 (1H, dd, J = 8.2, 2.0 Hz, H-13), 5.87 (1H, d, J = 9.6 Hz, H-20), 5.36 (1H, d, J = 4.2 Hz, NH-1), 4.62 (1H, ddd, J = 7.5, 7.5, 7.5 Hz, H-6), 4.37 (2H, d, J = 6.1 Hz, CO₂CH₂CH), 4.15–4.10 (1H, m, CO₂CH₂CH), 4.09–4.03 (2H, m, H-2 and H-16a), 3.82–3.78 (1H, m, H₂-16a), 2.96 (1H, dd, J = 13.9, 7.5 Hz, H₂-7a), 2.86 (1H, dd, J = 13.9, 7.5 Hz, H₂-7b), 1.17 (3H, d, J = 7.0 Hz, H₃-3), 0.95–0.93 (18H, m, 2Si(C(H₃)₃), 0.14–0.13 (12H, m, 2Si(CH₃)₂); ¹³C NMR (CDCl₃, 125 MHz) δ 172.6 (C-4), 172.3 (C-14), 166.6 (C-17), 156.7 (CO₂CH₂CH), 147.1 (C-10), 146.3 (C-11), 143.7 (C-FmocAr), 143.6 (C-FmocAr), 141.42 (C-FmocAr), 141.41 (C-FmocAr), 136.7 (C-23a), 129.2 (C-8), 128.0 (2C-FmocAr), 127.3 (2C-FmocAr), 125.9 (C-27a), 125.0 (2C-FmocAr), 123.5 (C-22), 123.2 (C-26), 122.1 (C-9 or C-13), 122.0 (C-9 or C-13), 121.2 (C-12), 120.2 (C-27 and 2C-FmocAr), 119.5 (C-19), 116.2 (C-25), 114.4 (C-24), 110.9 (C-21), 103.4 (C-20), 67.3 (CO₂CH₂CH), 54.6 (C-6), 51.3 (C-2), 47.2 (CO₂CH₂CH), 44.0 (C-16), 37.4 (C-7), 26.0 (2SiC(CH₃)₃), 18.6 (SiC(CH₃)₃), 18.5 (SiC(CH₃)₃), 18.2 (C-3), −4.0 (2Si(CH₃)₂); (+)-HRESIMS [M⁺Na⁺]⁺ 1016.3451 (calcd. for C₅₁H₆₆Na⁺²⁹BrN₅O₇Si₂, 1016.3420).

4.1.9. (S)-2-((S)-2-Aminopropanamido)-3-(3,4-bis((tert-butyldimethylsilyl)oxy)phenyl)-N-((2-(2-(6-bromo-1H-indol-3-yl)vinyl)amino)-2-oxoethyl)propanamide (16 HF7-I40)

Piperidine (0.23 mL, 20% in DMF) was added to 15 HF7-81 (47.0 mg, 0.0473 mmol) and the solution was stirred under N₂ at r.t. for 20 min. EtOAc (15 mL) was added and the mixture was washed with water (5 mL). The aqueous layer was further washed with EtOAc (3 x 15 mL) and then
the organic layers were combined and dried in vacuo. The crude product was purified by silica gel column chromatography (eluting with EtOAc to CH₂Cl₂/MeOH 9:1), to afford Z-16 HF7-140Z (13.0 mg, 36%) and E-16 HF7-140E (13.0 mg, 31%) as yellow oils.

4.1.9.1. **Z-16 HF7-140Z**: Rf 0.71 (CH₂Cl₂/MeOH 9:1); [α]²²².3D +22.1 (c 1.14, CH₂Cl₂); IR (ATR) νmax 3280, 2931, 1632, 1508, 1472, 1422, 1295, 1252, 1161, 1127 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.20 (1H, br s, NH-23), 8.29 (1H, d, J = 10.4 Hz, NH-18), 7.78 (1H, d, J = 7.8 Hz, NH-5), 7.53 (1H, br s, H-24), 7.43 (1H, d, J = 8.1 Hz, H-27), 7.23 (2H, br s, H-22 and H-26), 7.01 (1H, br s, NH-15), 6.83 (1H, dd, J = 10.4, 9.6 Hz, H-19), 6.73 (1H, d, J = 7.9 Hz, H-12), 6.66 (1H, s, H-9), 6.56 (1H, d, J = 7.9 Hz, H-13), 5.91 (1H, d, J = 9.6 Hz, H-20), 4.60–4.57 (1H, m, H-6), 4.04 (1H, dd, J = 16.7, 4.8 Hz, H₂-16a), 3.81 (1H, d, J = 16.7 Hz, H₂-16b), 3.38–3.37 (1H, m, H-2), 2.98 (1H, dd, J = 13.6, 5.9 Hz, H₂-7a), 2.88–2.84 (1H, m, H₂-7b), 1.16 (3H, d, J = 6.4 Hz, H₃-3), 0.97 (18H, br s, 2SiC(CH₃)₃), 0.16 (12H, br s, 2Si(CH₃)₂); ¹³C NMR (CDCl₃, 125 MHz) δ 176.5 (C-4), 172.6 (C-14), 166.5 (C-17), 147.1 (C-10), 146.3 (C-11), 136.7 (C-23a), 129.2 (C-8), 125.9 (C-27a), 123.4 (C-22 or C-26), 123.3 (C-22 or C-26), 122.2 (C-9 or C-13), 122.17 (C-9 or C-13), 121.3 (C-12), 120.3 (C-27), 119.7 (C-19), 116.4 (C-25), 114.4 (C-24), 111.1 (C-21), 103.3 (C-20), 54.3 (C-6), 50.7 (C-2), 43.9 (C-16), 37.3 (C-7), 26.1 (2SiC(CH₃)₃), 21.4 (C-3), 18.62 (2SiC(CH₃)₃), 18.55 (2SiC(CH₃)₃), −3.9 (2Si(CH₃)₂); (+)-HRESIMS [M+Na]⁺ 794.2745 (calcd. for C₃₆H₅₇⁷⁹BrNaN₃O₅Si₂, 794.2739).

4.1.9.2. **E-16 HF7-140E**: Rf 0.61 (CH₂Cl₂/MeOH 9:1); [α]²²².6D +16.8 (c 0.83, CH₂Cl₂); IR (ATR) νmax 3021, 2881, 1597, 1487, 1480, 1429, 1357, 1268, 1179, 1090 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.90 (1H, br d, J = 10.2 Hz, NH-18), 8.46 (1H, br s, NH-23), 7.93 (1H, br s, NH-5), 7.55 (1H, d, J = 8.5 Hz, H-27), 7.48 (1H, s, H-24), 7.32 (1H, dd, J = 14.7, 10.2 Hz, H-19), 7.18 (1H, dd, J = 8.5, 1.0 Hz, H-26), 7.10 (1H, s, H-22), 6.84 (1H, br s, NH-15), 6.77 (1H, d, J = 8.1 Hz, H-12), 6.70 (1H, d, J = 1.9 Hz, H-9), 6.65 (1H, dd, J = 8.1, 1.9 Hz, H-13), 6.48 (1H, d, J = 14.7 Hz, H-20), 4.30 (1H, ddd, J = 7.1, 7.1, 7.1 Hz, H-6), 4.13 (1H, dd, J = 16.9, 5.9 Hz, H₂-16a), 3.79 (1H, dd, J = 16.9, 5.9 Hz, H₂-16b), 3.51–3.48 (1H, m, H-2), 3.11 (1H, dd, J = 13.9, 7.1 Hz, H₂-7a), 2.93 (1H, dd, J = 13.9, 7.1 Hz, H₂-7b), 1.27 (3H, d, J = 7.0 Hz, H₃-3), 0.98–0.96 (18H, m, 2SiC(CH₃)₃), 0.18–0.17 (12H, m, 2Si(CH₃)₂); ¹³C NMR (CDCl₃, 125 MHz) δ 177.3 (C-4), 172.0 (C-14), 166.3 (C-17), 147.2 (C-10), 146.3 (C-11), 137.5 (C-23a), 129.2 (C-8), 124.6 (C-27a), 123.4 (C-26), 122.6 (C-22), 122.1 (C-9 or C-13)*, 122.0 (C-9 or C-13)*, 121.4 (C-12), 121.0 (C-27), 120.4 (C-19), 116.0 (C-25), 114.4 (C-24), 113.4 (C-21), 107.0 (C-20), 56.3 (C-6), 50.7 (C-2), 43.3 (C-16), 36.5 (C-7), 26.1 (2SiC(CH₃)₃), 21.2 (C-3), 18.63 (SiC(CH₃)₃), 18.57 (SiC(CH₃)₃), −3.9 (2Si(CH₃)₂); (+)-HRESIMS [M+Na]⁺ 794.2731 (calcd. for C₃₆H₅₇⁷⁹BrNaN₃O₅Si₂, 794.2739).
4.1.10. \((S)-1-(((S)-1-((2-((Z)-2-(6-Bromo-1H-indol-3-yl)vinyl)amino)-2-oxoethyl)amino)-3-(3,4-
dihydroxy phenyl)-1-oxopropan-2-yl)amino)-1-oxopropan-2-amininium 2,2,2-trifluoroacetate (12 HF7-154)

A solution of Z-16 HF7-140Z (18.2 mg, 0.0236 mmol) in THF (2 mL) was stirred at 0 °C under N₂ for 10 min before triethylamine trihydrofluoride (14.0 µL, 0.0856 mmol) was added dropwise. The solution was stirred for 55 min and then dried under a stream of N₂. Purification using C₂ column chromatography [eluting with H₂O/MeOH/TFA (99.99:0.01 to 59.99:39.99:0.02)] afforded 12 HF7-154 (10.4 mg, 67%) as a yellow oil. [α]D +0.66 (c 0.66, MeOH); IR (ATR) νmax 3253, 2923, 1668, 1532, 1456, 1200, 1129, 1023 cm⁻¹; 

\[ \text{[α]}^{22}\text{D} +5.9 \quad (c \text{ 0.66, MeOH}) \]

1H NMR (DMSO-d₆, 500 MHz) δ 11.46 (1H, s, NH-), 9.22 (1H, d, J = 10.2 Hz, NH-18), 8.53 (1H, d, J = 8.5 Hz, NH-5), 8.39 (1H, dd, J = 5.7, 5.7 Hz, NH-15), 8.00–7.99 (3H, m, NH₃-1), 7.74 (1H, d, J = 2.4 Hz, H-22), 7.58 (1H, d, J = 1.7 Hz, H-24), 7.56 (1H, d, J = 8.4 Hz, H-27), 7.17 (1H, dd, J = 8.4, 1.7 Hz, H-26), 6.69–6.67 (2H, m, H-9 and H-19), 6.61 (1H, d, J = 8.1 Hz, H-12), 6.52 (1H, dd, J = 8.1, 2.0 Hz, H-13), 5.91 (1H, d, J = 9.5 Hz, H-20), 4.51 (1H, dddd, J = 4.4, 8.5, 9.6 Hz, H-6), 3.99 (1H, dd, J = 16.9, 5.7 Hz, H₂-16a), 3.93 (1H, dd, J = 16.9, 5.7 Hz, H₂-16b), 3.78–3.76 (1H, m, H-2), 2.89 (1H, dd, J = 13.9, 4.4 Hz, H₂-7a), 2.62 (1H, dd, J = 13.9, 9.6 Hz, H₂-7b), 1.32 (3H, d, J = 7.0 Hz, H₃-3); 13C NMR (DMSO-d₆, 125 MHz) δ 171.4 (C-14), 169.4 (C-4), 167.5 (C-17), 144.9 (C-10), 143.8 (C-11), 136.4 (C-23a), 128.4 (C-8), 125.7 (C-27a), 124.9 (C-22), 121.9 (C-26), 120.2 (C-27), 120.0 (C-13), 118.7 (C-19), 116.6 (C-9), 115.3 (C-12), 114.3 (C-25), 114.0 (C-24), 109.8 (C-21), 102.1 (C-20), 54.7 (C-6), 48.0 (C-2), 42.2 (C-16), 37.0 (C-7), 17.2 (C-3); (+)-HRESIMS [M+H]^+ 544.1173 (calcd. for C₂₄H₂₇⁷⁹BrN₅O₅, 544.1190).

4.1.11. Fmoc-His(Trt)-Ala-OH (17 HF8-62)

A solution of Fmoc-L-Ala-OH (0.93 g, 3.0 mmol) in CH₂Cl₂ (25 mL) and DMF (2 mL) was added to 2-chlorotriptyl chloride resin (6 g, loading at 0.5 mmol/g), followed by DIPEA (0.52 mL, 3.0 mmol). After the resin mixture was agitated for 10 min, DIPEA (0.78 mL, 4.5 mmol) was added and the mixture was further shaken for 2 h. The solution was drained off and the resin was washed with DMF (30 mL). A solution of CH₂Cl₂/MeOH/DIPEA (20 mL, 80:15:5) was added to the mixture and shaken for 30 min. The solution was drained and the procedure was repeated. The resin was then washed with DMF (20 mL). Piperidine in DMF (15 mL, 1:4) was added to the resin mixture and shaken for 5 min. The liquid was drained off and piperidine washing was repeated for another 20 min. The amino acid-loaded resin was thoroughly washed with DMF (30 mL), isopropanol (30 mL) and n-hexane (30 mL). The resin was then dried under vacuum overnight. CH₂Cl₂ (40 mL) was added to the resin and left for 30 min. The solution was drained and a solution of HBTU (4.27 g, 11.25 mmol), HOBt (1.72 g, 11.25 mmol), Fmoc-His(Trt)-OH (4.65 g, 7.5 mmol) and DIPEA (2.61 mL, 15.0 mmol)
in DMF (11.3 mL) was added to the resin. The amino acid resin mixture was agitated for 5 h. The solution was then drained and washed with DMF (30 mL), isopropanol (30 mL) and n-hexane (30 mL). 2,2,2-Trifluoroethanol in CH₂Cl₂ (25 mL, 1:4) was added to the amino acid-loaded resin and agitated for 1.5 h. The solution was drained and the organic solvent removed in vacuo to afford 17 HF8-62 (1.82 g, 88%) as a yellow foam. m.p. 144.1–145.0 °C; Rf 0.55 (CH₂Cl₂/MeOH 9:1); [α]²⁰⁺ = +10.7 (c 1.01, CH₂Cl₂); IR (ATR) νmax 3318, 3063, 1720, 1652, 1526, 1493, 1447, 1237, 1044 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.53 (1H, br s, NH) 7.51 (1H, d, J = 7.4 Hz, 2H-FmocAr), 7.56 (1H, t, J = 7.4 Hz, 2H-FmocAr), 7.29 (3H, m, 2H-TrtAr), 7.04–7.02 (6H, m, 6H-TrtAr), 6.67 (1H, s, H-8), 5.88 (1H, br s, NH-1), 4.88 (1H, t, J = 10.7 Hz, H-2), 4.47 (1H, dq, J = 6.6, 6.6 Hz, H-11), 4.38 (1H, dd, J = 9.4, 7.3 Hz, CO₂CH₂CH), 4.07 (1H, t, J = 7.3 Hz, CO₂CH₂CH), 3.98 (1H, dd, J = 9.4 Hz, CO₂CH₂CH), 3.39 (1H, d, J = 13.2 Hz, H-3a), 2.58 (1H, dd, J = 13.2, 10.7 Hz, H-3b), 1.54 (1H, d, J = 6.6 Hz, H-12); ¹³C NMR (CDCl₃, 125 MHz) δ 176.8 (C-13), 171.0 (C-9), 156.0 (CO₂CH₂CH), 144.2 (C-FmocAr), 143.9 (C-FmocAr), 141.6 (3C-TrtAr), 141.4 (2C-FmocAr), 137.8 (C-6), 135.0 (C-4), 129.8 (6C-TrtAr), 128.6 (3C-TrtAr), 128.4 (6C-TrtAr), 127.8 (2C-FmocAr), 127.3 (2C-FmocAr), 125.6 (C-FmocAr), 125.3 (C-FmocAr), 120.4 (C-8), 120.1 (2C-FmocAr), 76.3 (CAr₃), 67.1 (CO₂CH₂CH), 54.9 (C-2), 50.0 (C-11), 47.3 (CO₂CH₂CH), 32.8 (C-3), 19.2 (C-12); (+)-HRESIMS [M+H]+ 691.2900 (calcd. for C₄₃H₉₈N₄O₅, 691.2915).

4.1.12. Fmoc-Trt-[Ala₂]-halocyamine A (18 HF8-87)

Fmoc-L-His(Trt)-L-Ala-OH 17 HF8-62 (0.243 g, 0.352 mmol), EDC.HCl (0.074 g, 0.387 mmol) and HOBT (0.071 g, 0.527 mmol) were dissolved in CH₂Cl₂ (1.5 mL) and stirred for 1 h at r.t. under N₂. A solution of amide 4 HF3.1 (0.103 g, 0.352 mmol) in DMF (0.5 mL) was added to the mixture followed by DIPEA (0.31 mL, 1.76 mmol). The solution was stirred at r.t. under N₂ for 7 h. The solution was diluted with EtOAc (10 mL) and washed with water (5 mL). The organic layer was dried (MgSO₄), filtered and the solvent removed in vacuo. The crude product was purified by silica gel flash column chromatography (eluting with n-hexane/EtOAc 8:2 to n-hexane/EtOAc/MeOH 5:4:5:0.5) to afford 18 HF8-87 (0.151 g, 44%) as a yellow oil. Rf 0.36 (EtOAc); [α]²⁰⁺ = +15.3 (c 1.26, CH₂Cl₂); IR (ATR) νmax 3303, 2160, 1653, 1494, 1448, 1230, 1041, 1002 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 9.34 (1H, s, NH-22), 9.13 (1H, dd, J = 6.1, 5.6 Hz, NH-15), 8.23 (1H, d, J = 10.8 Hz, NH-17), 7.73–7.71 (2H, m, 2H-FmocAr), 7.52 (1H, d, J = 8.2 Hz, H-FmocAr), 7.49 (1H, d, J = 8.2 Hz, H-FmocAr), 7.47 (1H, s, H-23), 7.40–7.36 (3H, m, 2H-FmocAr and H-26), 7.34 (1H, s, H-6), 7.29–7.26 (9H, m, 9H-TrtAr), 7.25–7.24 (3H, m, 2H-FmocAr and H-21), 7.21–7.17 (1H, m, H-25), 7.03–7.02 (6H, m, 6H-TrtAr), 6.76–6.69 (2H, m, NH-10 and H-18), 6.61 (1H, s, H-8), 6.08 (1H, d, J = 6.3 Hz, NH-1), 5.80 (1H, d, J = 9.2 Hz, H-19), 4.55–4.51 (1H, m, H-11), 4.36–4.33 (3H,
m, CO$_2$CH$_2$CH and H-2), 4.15 (1H, t, $J = 6.3$ Hz, CO$_2$CH$_2$CH), 4.04 (1H, dd, $J = 16.5$, 6.1 Hz, H-2a), 3.87 (1H, dd, $J = 16.5$, 5.6 Hz, H-2b), 3.00–2.84 (2H, m, H-23), 1.31 (3H, d, $J = 7.3$ Hz, H-12); $^{13}$C NMR (CDCl$_3$, 75 MHz) δ 173.5 (C-13), 171.1 (C-9), 167.0 (C-16), 156.4 (CO$_2$CH$_2$CH), 143.8 (2x C-FmocAr), 142.1 (3x C-TrtAr), 141.4 (2x C-FmocAr), 138.9 (C-6), 136.6 (C-22a), 135.5 (C-4), 129.7 (6x C-TrtAr), 128.4 (3x C-TrtAr), 128.3 (6x TrtAr), 128.0 (2x C-FmocAr), 127.2 (2x C-FmocAr), 125.9 (C-26a), 125.1 (2x C-FmocAr), 123.6 (C-21), 123.2 (C-25), 120.6 (C-8), 120.3 (C-26), 120.2 (2x C-FmocAr), 119.4 (C-18), 116.1 (C-24), 114.4 (C-23), 111.0 (C-20), 103.0 (C-19), 75.7 (CAR$_3$), 67.3 (CO$_2$CH$_2$CH), 55.0 (C-2), 49.3 (C-11), 47.2 (CO$_2$CH$_2$CH), 43.9 (C-15), 31.0 (C-3), 17.8 (C-12); (+)-HRESIMS [M+Na]$^+$ 966.2975 (calcd. for C$_{55}$H$_{107}$BrNaN$_7$O$_5$, 966.2973).

4.1.13. Trt-[Ala$_2$]-halocyamine A (19 HF8-102)

A flask containing 18 HF8-87 (95.0 mg, 98.4 μmol) was flushed with N$_2$ before piperidine (20% in DMF, 1 mL) was added. The solution was stirred at r.t. for 20 min before EtOAc (20 mL) was added and the mixture was washed with water (10 mL). The aqueous layer was further washed with EtOAc (3 × 10 mL) and the organic layers were combined and dried in vacuo. Purification by silica gel column chromatography (eluting with EtOAc to CH$_2$Cl$_2$/MeOH 9:1), afforded 19 HF8-102 (62.8 mg, 86%) as a yellow oil. $\rho$ 0.17 (CH$_2$Cl$_2$/MeOH 9:1); [α]$^{26}$D -10.1 (c 0.24, CH$_2$Cl$_2$); IR (ATR) ν$_{\text{max}}$ 3276, 1652, 1533, 1492, 1445, 1231, 1130, 1039 cm$^{-1}$; $^1$H NMR (CHCl$_3$, 300 MHz) δ 9.80 (1H, s, NH-22), 8.76 (1H, dd, $J = 5.8$, 5.6 Hz, NH-14), 8.27 (1H, d, $J = 10.2$ Hz, NH-17), 7.48 (1H, d, $J = 1.5$ Hz, H-23), 7.38 (2H, d, $J = Hz$, H-6 and H-26), 7.32–7.28 (11H, m, NH-10, H-21 and 9H-TrtAr), 7.17 (1H, dd, $J = 8.4$, 1.5 Hz, H-25), 7.06–7.03 (6H, m, 6H-TrtAr), 6.74 (1H, dd, $J = 10.2$, 9.8 Hz, H-18), 6.64 (1H, s, H-8), 5.81 (1H, d, $J = 9.8$ Hz, H-19), 4.48–4.43 (1H, m, H-11), 4.05 (1H, dd, $J = 16.9$, 5.8 Hz, H-2-15a), 3.93 (1H, dd, $J = 16.9$, 5.6 Hz, H-2-15b), 3.66 (1H, s, H-2), 2.94 (1H, dd, $J = 14.6$, 4.8 Hz, H-2-3a), 2.84 (1H, dd, $J = 14.6$, 5.5 Hz, H-2-3b), 1.32 (3H, d, $J = 7.2$ Hz, H-12); $^{13}$C NMR (CDCl$_3$, 75 MHz) δ 174.7 (C-9), 173.6 (C-13), 167.1 (C-16), 142.0 (3C-TrtAr), 139.0 (C-6), 136.7 (C-4), 136.2 (C-22a), 129.7 (6C-TrtAr), 128.3 (6C-TrtAr), 128.2 (3C-TrtAr), 126.0 (C-26a), 123.8 (C-21), 123.1 (C-25), 120.5 (C-8), 120.2 (C-26), 119.3 (C-18), 116.0 (C-24), 114.4 (C-23), 110.8 (C-20), 103.2 (C-19), 75.7 (CAR$_3$), 54.6 (C-2), 49.4 (C-11), 43.8 (C-15), 33.1 (C-3), 17.8 (C-12); (+)-HRESIMS [M+H]$^+$ 744.2307 (calcd. for C$_{44}$H$_{39}$BrN$_7$O$_3$, 744.2292).

4.1.14. [Ala$_2$]-halocyamine A (13 HF8-141)

A cocktail solution of 0.01 N HCl/HFIP-TIS/H$_2$O (1 mL, 95:2.5:2.5) was added to 19 HF8-102 (62.8 mg, 0.0844 mmol) and stirred for 1 h. The reaction was dried under a stream of N$_2$. Subsequent purification by C$_8$ column chromatography (eluting with H$_2$O to H$_2$O/MeOH 25:75) afforded 13 HF8-141 as an inseparable 1Z:0.9E mixture (yellow oil) (39.9 mg, 83%).
The mixture had the following properties: $R_f$ 0.59 (butan-1-ol/acetic acid/H$_2$O 2:1:1); [α]$^{21.6}_D$ -0.6 (c 1.03, MeOH); IR (ATR) $v_{\text{max}}$ 3240, 2963, 1646, 1533, 1410, 1259, 1004 cm$^{-1}$; (+)-HRESIMS [M+H]$^+$ 502.1195 (calcd. for C$_{21}$H$_{25}$BrN$_3$O$_3$, 502.1197). NMR assignments for each of the isomers were discerned from 2D NMR data.

4.1.14.1. Z-13 HF8-141Z: $^1$H NMR (CHCl$_3$, 300 MHz) $\delta$ 11.54 (1H, s, NH-22), 9.06 (1H, d, $J$ = 9.9 Hz, NH-17), 8.80 (1H, br, s, NH-14), 8.20 (1H, d, $J$ = 4.4 Hz, NH-10), 7.71 (1H, s, H-21), 7.59–7.54 (3H, m, H-6, H-23 and H-26), 7.20–7.14 (1H, m, H-25), 6.86–6.85 (1H, m, H-8), 6.67 (1H, dd, $J$ = 9.9, 9.7 Hz, H-18), 5.92 (1H, d, $J$ = 9.7 Hz, H-19), 4.33–4.31 (1H, m, H-11), 3.97–3.94 (2H, m, H$_2$-15), 3.48–3.40 (1H, m, H-2), 2.92–2.83 (1H, m, H$_2$-3a), 2.77–2.62 (1H, m, H$_2$-3b), 1.24 (3H, d, $J$ = 7.1 Hz, H$_3$-12); $^{13}$C NMR (CDCl$_3$, 75 MHz) $\delta$ 174.1 (C-9), 173.1 (C-13), 167.6 (C-16), 136.4 (C-22a), 135.0 (C-6), 125.7 (C-26a), 124.8 (C-21), 122.1 (C-25), 120.6 (C-26), 118.6 (C-18), 114.3 (C-24), 114.0 (C-23), 109.7 (C-20), 102.3 (C-19), 54.7 (C-2), 48.1 (C-11), 42.5 (C-15), 32.7 (C-3), 18.2 (C-12);

4.1.14.2. E-13 HF8-141E: $^1$H NMR (CHCl$_3$, 300 MHz) $\delta$ 11.26 (1H, s, NH-22), 9.71 (1H, d, $J$ = 10.0 Hz, NH-17), 9.07–9.04 (1H, m, NH-14), 8.39 (1H, br, s, NH-10), 7.59–7.54 (3H, m, H-6, H-23 and H-26), 7.47 (1H, d, $J$ = 2.0 Hz, H-21), 7.30 (1H, dd, $J$ = 14.9, 10.0 Hz, H-18), 7.20–7.14 (1H, m, H-25), 6.86–6.85 (1H, m, H-8), 6.49 (1H, d, $J$ = 14.9 Hz, H-19), 4.22–4.15 (1H, m, H-11), 3.86–3.84 (2H, m, H$_2$-15), 3.48–3.40 (1H, m, H-2), 2.92–2.83 (1H, m, H$_2$-3a), 2.77–2.62 (1H, m, H$_2$-3b), 1.28 (3H, d, $J$ = 7.0 Hz, H$_3$-12); $^{13}$C NMR (CDCl$_3$, 75 MHz) $\delta$ 175.3 (C-9), 172.8 (C-13), 166.5 (C-16), 137.6 (C-22a), 134.9 (C-6), 124.3 (C-26a), 123.9 (C-21), 121.9 (C-25), 120.1 (C-26), 120.0 (C-18), 114.3 (C-24), 114.1 (C-23), 111.9 (C-20), 105.7 (C-19), 54.7 (C-2), 49.1 (C-11), 42.2 (C-15), 32.5 (C-3), 17.6 (C-12);

4.1.15. Fmoc-L-Ala-L-Ala-OH (22 HF8-58)

A solution of Fmoc-Ala-OH (0.93 g, 3.0 mmol) in CH$_2$Cl$_2$ (25 mL) was added to 2-chlorotrityl chloride resin (6 g, loading at 0.5 mmol/g), followed by DIPEA (0.52 mL, 3.0 mmol). After the resin mixture was agitated for 14 min, DIPEA (0.78 mL, 4.5 mmol) was added and the mixture was further shaken for 2.5 h. The solution was drained off and the resin was washed with DMF (20 mL). A solution of CH$_2$Cl$_2$/MeOH/DIPEA (40 mL, 80:15:5) was added to the mixture and shaken for 30 min. The solution was drained and the procedure was repeated. The resin was then washed with DMF (20 mL). Piperidine in DMF (15.0 mL, 1:4) was added to the resin mixture and shaken for 10 min. The liquid was drained off and piperidine washing was repeated for another 40 min. The amino acid-loaded resin was thoroughly washed with DMF (35 mL), isopropanol (35 mL) and $n$-hexane (35 mL). The resin was then dried under vacuum for 30 min and placed in a desiccator overnight. CH$_2$Cl$_2$ (50 mL) was added to the resin and left for 1 h. The solution was drained and a solution of HBTU (4.27
g, 11.25 mmol), HOBT (1.72 g, 11.25 mmol), Fmoc-Ala-OH (2.34 g, 7.5 mmol) and DIPEA (2.61 mL, 15.0 mmol) in DMF (11.3 mL) was added. The amino acid resin mixture was agitated for 4 h. The solution was then drained and washed with DMF (30 mL), isopropanol (30 mL) and n-hexane (30 mL). 2,2,2-Trifluoroethanol in CH₂Cl₂ (15 mL, 1:4) was added to the amino acid-loaded resin and agitated for 2 h. The solution was drained and the organic solvent removed in vacuo to afford **22 HF8-58** (0.90 g, 78%) as a yellow foam. m.p. 195–196 °C; Rf 0.50 (CH₂Cl₂/Methanol 9:1); [α]°25 -28.9 (c 1.53, MeOH); IR (ATR) νmax 3297, 2918, 1692, 1650, 1533, 1450, 1318, 1229 cm⁻¹; ¹H NMR (CHCl₃, 500 MHz) δ 8.09 (1H, d, J = 7.2 Hz, NH-5), 7.89 (2H, d, J = 7.4 Hz, 2H-FmocAr), 7.74 (1H, d, J = 7.4 Hz, 1H-FmocAr), 7.72 (1H, d, J = 7.4 Hz, 1H-FmocAr), 7.50 (1H, d, J = 7.5 Hz, NH-1), 7.41 (2H, t, J = 7.4 Hz, H-FmocAr), 7.33 (2H, td, J = 7.4, 0.9 Hz, 2H-FmocAr), 4.27–4.15 (4H, m, CO₂CH₂CH₂, CO₂CH₂CH, H-6), 4.08 (1H, d, J = 7.5, 7.2 Hz, H-2), 1.27 (3H, d, J = 7.3 Hz, H₃-7), 1.22 (3H, d, J = 7.2 Hz, H₃-3); ¹³C NMR (CDCl₃, 125 MHz) δ 174.2 (C-8), 172.2 (C-4), 155.6 (CO₂CH₂CH₂), 143.9 (C-FmocAr), 143.8 (C-FmocAr), 140.7 (2C-FmocAr), 127.6 (2C-FmocAr), 127.1 (2C-FmocAr), 125.3 (2C-FmocAr), 120.1 (2C-FmocAr), 65.6 (CO₂CH₂CH), 49.7 (C-2), 47.5 (C-6), 46.7 (CO₂CH₂CH), 18.2 (C-3), 17.3 (C-7); (+)-HRESIMS [M+Na]⁺ 405.1424 (calcd. for C₂₁H₂₂NaN₂O₅, 405.1421).

4.1.16. **Fmoc-[Ala₁, Ala₂]-halocyanine A (24 HF8-81)**

Fmoc-L-Ala-L-Ala **22 HF8-58** (0.176 g, 0.461 mmol), EDC.HCl (0.097 g, 0.507 mmol) and HOBT (0.093 g, 0.691 mmol) was dissolved in DMF (1.5 mL) and the mixture was stirred for 1 h at r.t. under N₂. A solution of **4 HF3.1** (0.135 g, 0.461 mmol) in DMF (1.5 mL) was added to the mixture followed by DIPEA (0.40 mL, 2.30 mmol). The solution was stirred at r.t. under N₂ for 7 h. The solution was diluted with EtOAc (10 mL) and washed with water (5 mL). The organic layer was dried (MgSO₄), filtered and the solvent removed in vacuo. The crude product was purified by silica gel flash column chromatography (eluting with n-hexane/EtOAc 8:2 to n-hexane/EtOAc/MeOH 5:4:5:0.5) to afford **24 HF8-81** (0.10 g, 33%) as a yellow oil. Rf 0.34 (EtOAc); [α]°21.1D -6.7 (c 0.36, MeOH); IR (ATR) νmax 3019, 2978, 1595, 1488, 1451, 754 cm⁻¹; ¹H NMR (DMSO-d₆, 300 MHz) δ 11.43 (1H, s, NH-17), 9.13 (1H, d, J = 10.0 Hz, NH-12), 8.14 (1H, t, J = 5.7 Hz, NH-9), 8.03 (1H, d, J = 7.4 Hz, NH-5), 7.88 (2H, d, J = 7.3 Hz, 2H-FmocAr), 7.73–7.40 (3H, m, 2H-FmocAr and H-16), 7.58–7.54 (2H, m, H-18 and H-21), 7.52 (1H, d, J = 7.7 Hz, NH-1), 7.41 (2H, t, J = 7.3 Hz, 2H-FmocAr), 7.32 (2H, t, J = 7.3 Hz, 2H-FmocAr), 7.16 (1H, dd, J = 8.4, 1.7 Hz, H-20), 6.66 (1H, dd, J = 10.0, 9.7 Hz, H-13), 5.91 (1H, d, J = 9.7 Hz, H-14), 4.35–4.31 (1H, m, H-6), 4.27–4.18 (3H, m, CO₂CH₂CH and CO₂CH₂CH), 4.10–4.05 (1H, m, H-2), 3.94 (2H, d, J = 5.7 Hz, H₂-10), 1.23 (3H, d, J = 6.7 Hz, H₃-7), 1.21 (3H, d, J = 6.9 Hz, H₃-3); ¹³C NMR (DMSO-d₆, 75 MHz) δ 172.7 (C-8), 172.2 (C-4), 167.5 (C-11), 155.7 (CO₂CH₂CH), 143.9 (C-FmocAr), 143.8 (C-FmocAr), 140.7 (2C-
4.1.17. [Ala,Fmoc]-halocyamine A (20 HF8-100)

To 24 HF8-81 (19.0 mg, 0.0289 mmol) was added piperidine (20% in DMF, 1 mL) and flushed with nitrogen. The solution was stirred at r.t. for 20 min before EtOAc (20 mL) was added and the mixture was washed with water (10 mL). The aqueous layer was further washed with EtOAc (3 × 10 mL) and the organic layers were combined and dried in vacuo. Purification by silica gel column chromatography (eluting with EtOAc to CH2Cl2/MeOH 8:2) afforded 20 HF8-100 (7.54 mg, 60%) as a yellow oil. Rf 0.20 (CH2Cl2/MeOH 8:2); [α]19.4D +1.6 (c 0.26, MeOH); IR (ATR) νmax 3393, 2258, 1655, 1048, 1024 cm−1; 1H NMR (DMSO-d6, 300 MHz) δ 11.49 (1H, br s, NH-H), 9.11 (1H, d, J = 10.1 Hz, NH-H), 8.26 (1H, d, J = 5.7 Hz, NH-H), 8.08 (1H, br s, NH-H), 7.70 (1H, s, H-16), 7.58 (1H, d, J = 1.8 Hz, H-18), 7.56 (1H, d, J = 8.4 Hz, H-21), 7.16 (1H, dd, J = 8.4, 1.8 Hz, H-20), 6.66 (1H, dd, J = 10.1, 9.7 Hz, H-13), 5.91 (1H, d, J = 9.7 Hz, H-14), 4.33 (1H, d, J = 7.2 Hz, H-6), 3.93 (2H, d, J = 5.7 Hz, H2-10), 3.29 (1H, obs, H-2), 1.23 (3H, d, J = 7.2 Hz, H3-3), 1.13 (3H, d, J = 6.9 Hz, H3-3); 13C NMR (DMSO-d6, 75 MHz) δ 175.1 (C-1), 167.5 (C-8), 167.5 (C-11), 136.4 (C-17a), 125.6 (C-21a), 124.9 (C-16), 121.9 (C-20), 120.1 (C-21), 118.7 (C-13), 114.3 (C-19), 114.0 (C-18), 109.7 (C-15), 102.2 (C-14), 50.1 (C-2), 47.7 (C-6), 42.3 (C-10), 21.1 (C-3), 18.5 (C-7); (+)-HRESIMS [M+H]+ 436.0970 (calcd. for C18H23BrNa3O5, 436.0979).

4.1.18. Fmoc-D-Ala-D-Ala-OH (23 HF8-86)

The synthesis of 23 HF8-86 used Fmoc-D-Ala-D-Ala-OH and the same procedure as described for the synthesis of Fmoc-L-Ala-L-Ala-OH (22 HF8-58), to give the product (0.45 g, 79%) as a white solid. m.p. 196–197 ºC; Rf 0.23 (CH2Cl2/MeOH 9:1); [α]18.2D +19.7 (c 0.35, MeOH); IR (ATR) νmax 3293, 2990, 1688, 1653, 1534, 1450, 1319, 1262 cm−1; 1H NMR (CHCl3, 400 MHz) δ 12.52 (1H, br s, OH), 8.13 (1H, d, J = 7.2 Hz, NH-H), 7.89 (2H, d, J = 7.4 Hz, 2H-FmocAr), 7.73 (1H, d, J = 7.4 Hz, 1H-FmocAr), 7.72 (1H, d, J = 7.4 Hz, 1H-FmocAr), 7.51 (1H, d, J = 7.5 Hz, NH-H), 7.41 (2H, t, J = 7.4 Hz, H-FmocAr), 7.32 (2H, td, J = 7.4, 0.9 Hz, 2H-FmocAr), 4.26–4.17 (4H, m, CO2CH2CH, CO2CH2CH, H-6), 4.08 (1H, d, J = 7.5, 7.2 Hz, H-2), 1.27 (3H, d, J = 7.3 Hz, H3-7), 1.22 (3H, d, J = 7.2 Hz, H3-3); 13C NMR (CDCl3, 100 MHz) δ 174.0 (C-8), 172.3 (C-4), 155.6 (CO2CH2CH), 143.9 (C-FmocAr), 143.8 (C-FmocAr), 140.7 (2C-FmocAr), 127.6 (2C-FmocAr), 127.1 (2C-FmocAr), 125.3 (2C-FmocAr), 120.1 (2C-FmocAr), 65.6 (CO2CH2CH), 49.7 (C-2), 47.4 (C-6), 46.6
(CO₂CH₂CH), 18.2 (C-3), 17.2 (C-7); (+)-HRESIMS [M+Na]^+ 405.1423 (calcd. for C₂₁H₂₂Na₂N₂O₅, 405.1421).

4.1.19. Fmoc-[D-Ala¹,D-Ala²]-halocyamine A (25 HF8-95)

Fmoc-D-Ala-D-Ala 23 HF8-86 (0.102 g, 0.266 mmol), EDC.HCl (0.056 g, 0.293 mmol) and HOBT (0.054 g, 0.399 mmol) were dissolved in DMF (1.5 mL) and stirred at r.t. for 1 h under nitrogen. A solution of 4 HF3.1 (0.078 g, 0.266 mmol) in DMF (1.5 mL) was then added followed by DIPEA (0.23 mL, 1.33 mmol). The solution was further stirred at r.t. for 7 h. EtOAc (10 mL) was added to the mixture and washed with water (5 mL). The organic layer was dried (MgSO₄), filtered and the solvent removed in vacuo. The crude product was purified by silica gel flash column chromatography (eluting with n-hexane/EtOAc 8:2 to n-hexane/EtOAc/MeOH 5:4.5:0.5) to afford 25 HF8-95 (60.0 mg, 34%) as a yellow oil. R_f 0.21 (n-hexane/EtOAc/MeOH 5:4.5:0.5); [α]²⁰⁺ 21.4 (c 0.32, MeOH); IR (ATR) νₓ (cm⁻¹) 3274, 2974, 1656, 1494, 1447, 1231, 1130; ¹H NMR (DMSO-d⁶, 300 MHz) δ 7.55 (1H, d, J = 9.9 Hz, H-11), 8.14 (1H, d, J = 5.8 Hz, H-9), 8.03 (1H, d, J = 7.7 Hz, H-5), 7.89 (2H, d, J = 7.2 Hz, 2H-FmocAr), 7.74–7.70 (3H, m, 2H-FmocAr and H-16), 7.58–7.54 (2H, m, H-18 and H-21), 7.52 (1H, d, J = 7.1 Hz, H-11), 7.41 (2H, t, J = 7.2 Hz, 2H-FmocAr), 7.33 (2H, t, J = 7.2 Hz, 2H-FmocAr), 7.16 (1H, dd, J = 8.5, 1.8 Hz, H-20), 6.67 (1H, d, J = 9.9, 9.7 Hz, H-13), 5.91 (1H, d, J = 9.7 Hz, H-14), 4.35–4.31 (1H, m, H-6), 4.27–4.21 (3H, m, CO₂CH₂CH and CO₂CH₂CH₂), 4.10–4.05 (1H, m, H-2), 3.94 (2H, d, J = 5.8 Hz, H₂-10), 1.23 (3H, d, J = 6.9 Hz, H₃-7), 1.21 (3H, d, J = 7.2 Hz, H₃-3); ¹³C NMR (DMSO-d₆, 75 MHz) δ 172.7 (C-8), 172.2 (C-4), 167.4 (C-11), 155.7 (CO₂CH₂CH), 143.9 (C-FmocAr), 143.8 (C-FmocAr), 140.7 (2C-FmocAr), 136.4 (C-17a), 127.6 (2C-FmocAr), 127.1 (2C-FmocAr), 125.7 (C-21a), 125.3 (2C-FmocAr), 124.8 (C-16), 121.9 (C-20), 120.1 (2C-FmocAr and C-21), 118.7 (C-13), 114.3 (C-19), 114.0 (C-18), 109.7 (C-15), 102.1 (C-14), 65.6 (CO₂CH₂CH), 49.9 (C-2), 48.0 (C-6), 46.6 (CO₂CH₂CH₂), 42.3 (C-10), 18.2 (C-3 or C-7), 18.1 (C-3 or C-7); (+)-HRESIMS [M+Na]^+ 680.1464 (calcd. for C₃₃H₉₂⁷⁹BrNa₃N₅O₅, 680.1479).

4.1.20. [D-Ala¹,D-Ala²]-halocyamine A (21 HF8-136)

Piperidine (20% in DMF, 1 mL) was added to 25 HF8-95 (34.2 mg, 0.52 mmol) and stirred at r.t. under N₂ for 20 min. EtOAc (20 mL) was added and the mixture was washed with water (10 mL). The aqueous layer was further washed with EtOAc (3 × 10 mL) and the organic layers were combined and dried in vacuo. Purification by silica gel column chromatography (eluting with EtOAc to CH₂Cl₂/MeOH 8:2), afforded 21 HF8-136 (15.7 mg, 69%) as a clear film. R_f 0.22 (CH₂Cl₂/MeOH 8:2); [α]²⁰⁺ 21.4 (c 1.59, CH₂Cl₂); IR (ATR) νₓ (cm⁻¹) 3274, 2921, 2854, 1646, 1532, 1449, 1398, 1235, 1054; ¹H NMR (CD₃OD, 300 MHz) δ 7.55 (1H, d, J = 1.5 Hz, H-18), 7.51 (1H, d, J = 0.8 Hz,
H-16), 7.47 (1H, d, \( J = 8.5 \) Hz, H-21), 7.18 (1H, dd, \( J = 8.5, 1.5 \) Hz, H-20), 6.76 (1H, d, \( J = 9.2 \) Hz, H-13), 6.00 (1H, dd, \( J = 9.2, 0.76 \) Hz, H-14), 4.36 (1H, d, \( J = 7.1 \) Hz, H-6), 3.97 (2H, s, H₂-10), 3.48 (1H, d, \( J = 6.9 \) Hz, H-2), 1.33 (3H, d, \( J = 7.1 \) Hz, H₃-7), 1.26 (3H, d, \( J = 6.9 \) Hz, H₃-3); \(^{13}\)C NMR (CD₃OD, 75 MHz) δ 177.0 (C₃), 175.7 (C₈), 169.4 (C-11), 138.4 (C-17a), 127.2 (C-21a), 125.5 (C-16), 123.6 (C-20), 121.0 (C-21), 120.0 (C-13), 116.4 (C-19), 115.3 (C-18), 111.4 (C-15), 105.5 (C-14), 51.2 (C2), 50.4 (C-6), 43.9 (C-10), 20.6 (C-3), 17.9 (C-7); (+)-HRESIMS [M+Na]^+ 458.0800 (calcd. for C₁₈H₂₂⁷⁹BrNaN₃O₃, 458.0798).

4.2. **Antibacterial assays**[ref10]

The antibacterial activity of the compounds was studied by determination of minimum inhibitory concentrations (MICs) using the standard broth dilution method in accordance with the NCCLS guidelines M7-A2. Briefly, the MICs were determined with an inoculum of \( 10^5 \) CFU in 200 μL of MH broth containing twofold serial dilutions of each drug. The MIC was defined as the lowest concentration of drug that completely inhibited visible growth after incubation for 18 h at 37 °C. To determine all MICs, the measurements were independently repeated at least three times. Minimum inhibitory concentration of positive control: colistin [\( P. aeruginosa \) (1 μM), \( E. coli \) (2 μM)], streptomycin [\( P. aeruginosa \) (21.5 μM), \( E. coli \) (21.5 μM), \( S. aureus \) (21.5 μM), and \( E. faecalis \) (21.5 μM)] and chloramphenicol [\( S. aureus \) (1.5–3 μM), and \( E. faecalis \) (1.5–3 μM)].

4.3. **In vitro cytotoxicity assay**[ref11]

Assays were performed in 96-well microtiter plates, each well containing 100 μL of RPMI 1640 medium supplemented with 1% L-glutamine (200 mM) and 10% fetal bovine serum, and \( 4 \times 10^4 \) L6 cells (a primary cell line derived from rat skeletal myoblasts). Serial drug dilutions of seven 3-fold dilution steps covering a range from 90 to 0.123 μg/mL were prepared. After 72 h of incubation, the plates were inspected under an inverted microscope to assure growth of the controls and sterile conditions. Alamar Blue solution (10 μL) was then added to each well and the plates incubated for another 2 h. Then the plates were read with a Spectramax Gemini XS microplate fluorometer using an excitation wavelength of 536 nm and an emission wavelength of 588 nm. Data were analysed using the microplate reader software Softmax Pro. Podophyllotoxin was the reference drug used.

**Acknowledgments**
The authors thank Dr. M. Schmitz and Mr T. Chen (University of Auckland) for assistance with NMR and MS data acquisition, and Dr M. Kaiser (Swiss Tropical Public Health Institute, Basel Switzerland) for cytotoxicity data. We gratefully acknowledge funding from the University of Auckland.

**Supplementary data**

Copies of $^1$H and $^{13}$C NMR spectra for all products. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/. These data include MOL files and InChiKeys of the most important compounds described in this article.

**References**