R. Li, P. L. Dudemaine, X. Zhao, C. Lei, and E. M. Ibeaghaawemu, Comparative analysis of the miRNome of bovine milk fat, whey and cells, PLoS One, vol.11, issue.4, p.154129, 2016.

M. Alsaweed, C. T. Lai, P. E. Hartmann, D. T. Geddes, and F. Kakulas, Human milk cells and lipids conserve numerous known and novel miRNAs, some of which are differentially expressed during lactation, PLoS One, vol.11, issue.4, p.152610, 2016.

T. Chen, Q. Y. Xi, R. S. Ye, X. Cheng, Q. E. Qi et al., Exploration of microRNAs in porcine milk exosomes, BMC Genomics, vol.15, issue.1, pp.1471-2164, 2014.

H. Izumi, N. Kosaka, T. Shimizu, K. Sekine, T. Ochiya et al., Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey, PLoS One, vol.9, issue.2, p.88843, 2014.

V. Modepalli, A. Kumar, L. A. Hinds, J. A. Sharp, K. R. Nicholas et al., Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii), BMC Genomics, vol.15, issue.1, pp.1471-2164, 2014.

N. Kosaka, H. Izumi, K. Sekine, and T. Ochiya, MicroRNA as a new immune-regulatory agent in breast milk, Silence, vol.1, issue.1, p.7, 2010.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: MicroRNA biogenesis pathways and their regulation, Nat. Cell Biol, vol.11, issue.3, pp.228-234, 2009.
DOI : 10.1038/ncb0309-228

H. Izumi, M. Tsuda, Y. Sato, N. Kosaka, T. Ochiya et al., Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages, J. Dairy Sci, vol.98, issue.5, pp.2920-2933, 2015.

S. R. Baier, C. Nguyen, F. Xie, J. R. Wood, and J. Zempleni, MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers, J. Nutr, vol.144, issue.10, pp.1495-1500, 2014.

Q. Sun, X. Chen, J. Yu, K. Zen, C. Y. Zhang et al., Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum, Protein Cell, vol.4, issue.3, pp.197-210, 2013.

C. Admyre, S. M. Johansson, K. R. Qazi, J. J. Filen, R. Lahesmaa et al., Exosomes with immune modulatory features are present in human breast milk, J. Immunol, vol.179, issue.3, pp.1969-1978, 2007.

Q. J. Li, J. Chau, P. J. Ebert, G. Sylvester, H. Min et al., ) miR-181a is an intrinsic modulator of T cell sensitivity and selection, Cell, vol.129, issue.1, pp.147-161, 2007.

D. Gaidatzis, E. Nimwegen, J. Van-hausser, and M. Zavolan, Inference of miRNA targets using evolutionary conservation and pathway analysis, BMC Bioinformatics, vol.8, p.69, 2007.

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, issue.1, pp.92-105, 2009.
DOI : 10.1101/gr.082701.108

URL : http://genome.cshlp.org/content/19/1/92.full.pdf

K. Chokeshaiusaha, R. Thanawongnuwech, D. Puthier, and C. Nguyen, Inspection of C-type lectin superfamily expression profile in chicken and mouse dendritic cells, Thai. J. Vet. Med, vol.46, issue.3, pp.443-453, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01460130

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J, vol.17, issue.1, p.10, 2011.
DOI : 10.14806/ej.17.1.200

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The sequence alignment/map format and SAM tools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 2009.
DOI : 10.1093/bioinformatics/btp352

URL : https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf

F. Ramírez, F. Dündar, S. Diehl, B. A. Grüning, and T. Manke, Deep tools: A flexible platform for exploring deep-sequencing data, Nucleic Acids Res, vol.42, issue.W1, pp.187-191, 2014.

M. I. Love, S. Anders, and W. Huber, Differential analysis of count data-the DESeq2 package, Genome Biol, vol.15, p.550, 2014.

G. Yu, L. G. Wang, Y. Han, and Q. Y. He, Cluster profiler: An R package for comparing biological themes among gene clusters, Omi A J. Integr. Biol, vol.16, issue.5, pp.284-287, 2012.
DOI : 10.1089/omi.2011.0118

URL : http://europepmc.org/articles/pmc3339379?pdf=render

Z. Gu, R. Eils, and M. Schlesner, Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, vol.32, issue.18, pp.2847-2849, 2016.

G. Csárdi and T. Nepusz, The igraph software package for complex network research, Int. J. Complex Syst, vol.1695, pp.1-9, 2006.

X. P. Wang, Z. M. Luoreng, L. S. Zan, F. Li, and N. Li, Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene, J. Dairy Sci, vol.100, issue.9, pp.7648-7658, 2017.

N. Sonda, F. Simonato, E. Peranzoni, B. Calì, S. Bortoluzzi et al., MiR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis, Immunity, vol.38, issue.6, pp.1236-1249, 2013.
DOI : 10.1016/j.immuni.2013.06.004

URL : https://doi.org/10.1016/j.immuni.2013.06.004

H. Wu, K. Jiang, X. Ma, N. Yin, G. Zhao et al., IFN-? mediated control of bovine major histocompatibility complex class I expression and function via the regulation of bta-miR-148b/152 in bovine endometrial epithelial cells, Front Immunol, vol.9, p.167, 2018.

J. Zhu, K. Yao, J. Guo, H. Shi, L. Ma et al., 2017) miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway, J. Cell Mol. Med, vol.21, issue.11, pp.2884-2895
DOI : 10.1111/jcmm.13201

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcmm.13201

H. M. Lee, T. S. Kim, J. , and E. K. , MiR-146 and miR-125 in the regulation of innate immunity and inflammation, BMB Rep, vol.49, issue.6, pp.311-318, 2016.

A. Sathe, K. Ayyar, and K. V. Reddy, MicroRNA let-7 in the spotlight: Role in innate immunity, Inflamm. Cell Signal, vol.1, pp.66-75, 2014.

X. M. Chen, P. L. Splinter, S. P. O'hara, L. Russo, and N. F. , A cellular micro-RNA, let-7i, regulates toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection, J. Biol. Chem, vol.282, issue.39, pp.28929-28938, 2007.

T. M. Witkos, E. Koscianska, and W. J. Krzyzosiak, Practical aspects of microRNA target prediction, Curr. Mol. Med, vol.11, issue.2, pp.93-109, 2011.

R. Raghunandan, F. W. Frissora, and N. Muthusamy, Modulation of Ets-1 expression in B lymphocytes is dependent on the antigen receptor-mediated activation signals and cell cycle status, Scand. J. Immunol, vol.77, issue.2, pp.75-83, 2013.

L. A. Garrett-sinha, Review of Ets1 structure, function, and roles in immunity, Cell Mol. Life Sci, vol.70, issue.18, pp.3375-3390, 2013.

J. Klaewsongkram, Y. Yang, S. Golech, J. Katz, K. H. Kaestner et al., Krüppel-like factor 4 regulates B cell number and activation-induced B cell proliferation, J. Immunol, vol.179, issue.7, pp.4679-4684, 2007.

G. T. Hart, K. A. Hogquist, and S. C. Jameson, Krüppel-like factors in lymphocyte biology, J. Immunol, vol.188, issue.2, pp.521-526, 2012.

A. Y. Wen, K. M. Sakamoto, and L. S. Miller, The role of the transcription factor CREB in immune function, J. Immunol, vol.185, issue.11, pp.6413-6419, 2010.

G. C. Preston, L. V. Sinclair, A. Kaskar, J. L. Hukelmann, M. N. Navarro et al., Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes, EMBO J, vol.34, issue.15, pp.2008-2024, 2015.

K. A. Donnell, D. Yu, K. I. Zeller, J. Kim, F. Racke et al., Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis, Mol. Cell Biol, vol.26, issue.6, pp.2373-2386, 2006.

T. E. Sweeney, H. B. Suliman, J. W. Hollingsworth, and C. A. Piantadosi, Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis, PLoS One, vol.5, issue.7, p.11606, 2010.

J. N. Gnanaprakasam and R. Wang, MYC in regulating immunity: Metabolism and beyond, vol.8, p.88, 2017.

V. Kumar and D. I. Gabrilovich, Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment, Immunology, vol.143, issue.4, pp.512-519, 2014.

Y. Xia and A. L. Schneyer, The biology of activin: Recent advances in structure, regulation and function, J. Endocrinol, vol.202, issue.1, pp.1-12, 2009.

K. Okkenhaug, Signaling by the phosphoinositide 3-kinase family in immune cells, Annu. Rev. Immunol, vol.31, issue.1, pp.675-704, 2013.

T. T. Renault and J. E. Chipuk, Getting away with murder: How does the BCL-2 family of proteins kill with immunity?, Ann. N. Y. Acad. Sci, vol.1285, issue.1, pp.59-79, 2013.

H. E. Broome, C. M. Dargan, S. Krajewski, and J. C. Reed, Expression of Bcl-2, Bcl-x, and Bax after T cell activation and IL-2 withdrawal, J. Immunol, vol.155, issue.5, pp.2311-2317, 1950.

J. D. Noti, Sp3 mediates transcriptional activation of the leukocyte integrin genes CD11C and CD11B and cooperates with c-Jun to activate CD11C, J. Biol. Chem, vol.272, issue.38, pp.24038-24045, 1977.

M. C. Grekova, K. Salerno, R. Mikkilineni, and J. R. Richert, Sp3 expression in immune cells: A quantitative study, Lab Investig, vol.82, issue.9, pp.1131-1138, 2002.

Z. Cao, A. K. Wara, B. Icli, X. Sun, R. R. Packard et al., Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+) CD25(-) T cells and T regulatory cells, J. Biol. Chem, vol.284, issue.37, pp.24914-24924, 2009.

K. A. Papadakis, J. Krempski, J. Reiter, P. Svingen, Y. Xiong et al., Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-? signaling in CD8+ T lymphocytes, Am. J. Physiol. Cell. Physiol, vol.308, issue.5, pp.362-371, 2015.