C. Asbach, C. Alexander, S. Clavaguera, D. Dahmann, H. Dozol et al., Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces, Sci. Total Environ, vol.603, pp.793-806, 2017.

M. Auffan, C. Mouneyrac, J. Rose, C. Fito, P. Chaurand et al., Development of an aquatic Mesocosms Platform allowing the evaluation of kinetics of aggregation, Nanoreg Public Deliverable D3.05, 2016.

. Mesocosms_platform,

M. Auffan, M. Tella, C. Santaella, L. Brousset, C. Pailles et al., An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems, Sci, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01426264

P. E. Buffet, M. Richard, F. Caupos, A. Vergnoux, H. Perrein-ettajani et al., A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor), Environ. Sci. Technol, vol.47, issue.3, pp.1620-1628, 2013.

M. R. Embry, A. N. Bachman, D. R. Bell, A. R. Boobis, S. M. Cohen et al., Risk assessment in the 21st century: roadmap and matrix, Crit. Rev. Toxicol, vol.44, pp.6-16, 2014.

B. Fadeel, L. Farcal, B. Hardy, S. Vazquez-campos, D. Hristozov et al., Advanced tools for the safety assessment of nanomaterials, Nat. Nanotechnol, vol.13, issue.7, pp.537-543, 2018.

J. L. Ferry, P. Craig, C. Hexel, P. Sisco, R. Frey et al., Transfer of gold nanoparticles from the water column to the estuarine food web, Nat. Nanotechnol, vol.4, p.441, 2009.

B. Giese, F. Klaessig, B. Park, R. Kaegi, M. Steinfeldt et al., Risks, release and concentrations of engineered nanomaterial in the environment, Sci. Rep, vol.8, 2018.

A. Gondikas, F. Von-der-kammer, R. Kaegi, O. Borovinskaya, E. Neubauer et al., Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters, Environ. Sci. Nano, vol.5, issue.2, pp.313-326, 2018.

A. P. Gondikas, F. Kammer, R. B. Reed, S. Wagner, J. F. Ranville et al., Release of TiO 2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube Recreational Lake, Environ. Sci. Technol, vol.48, issue.10, pp.5415-5422, 2014.

F. Gottschalk, C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack, Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment, Int. J. Environ. Res. Public Health, vol.12, issue.5, pp.5581-5602, 2015.

R. D. Handy, G. Cornelis, T. Fernandes, O. Tsyusko, A. Decho et al., Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench, Environ. Toxicol. Chem, vol.31, issue.1, pp.15-31, 2012.

C. O. Hendren, G. V. Lowry, J. M. Unrine, and M. R. Wiesner, A functional assay-based strategy for nanomaterial risk forecasting, Sci. Total Environ, vol.536, pp.1029-1037, 2015.

P. A. Holden, J. L. Gardea-torresdey, F. Klaessig, R. F. Turco, M. Mortimer et al., Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials, Environ. Sci. Technol, vol.50, issue.12, pp.6124-6145, 2016.

I. Iavicoli, L. Fontana, P. Pingue, A. M. Todea, and C. Asbach, Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors, Sci. Total Environ, vol.627, pp.689-702, 2018.

S. Karcher, E. L. Willighagen, J. Rumble, F. Ehrhart, C. T. Evelo et al., Integration among databases and data sets to support productive nanotechnology: challenges and recommendations, vol.9, pp.85-101, 2018.

T. A. Kuhlbusch, C. Asbach, H. Fissan, D. Göhler, M. Stintz et al., Nanomaterial exposures for worker, consumer and the general public, Part. Fibre Toxicol, vol.8, pp.11-25, 2011.

G. V. Lowry, B. P. Espinasse, A. R. Badireddy, C. J. Richardson, B. C. Reinsch et al., Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland, Environ. Sci. Technol, vol.46, issue.13, pp.7027-7036, 2012.

R. L. Marchese-robinson, I. Lynch, W. Peijnenburg, J. Rumble, F. Klaessig et al., How should the completeness and quality of curated nanomaterial data be evaluated, Nanoscale, vol.8, issue.19, pp.9919-9943, 2016.

, Guidance Document on Simulated Freshwater Lentic Field Tests (Outdoor Microcosms and Mesocosms), 2006.

, Ecotoxicology and Environmental Fate of Manufactured Nanomaterials: Test Guidelines, 2014.

E. J. Petersen, S. A. Diamond, A. J. Kennedy, G. G. Goss, K. Ho et al., Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations, Environ. Sci. Technol, vol.49, issue.16, pp.9532-9547, 2015.
DOI : 10.1021/acs.est.5b00997

URL : https://hal.archives-ouvertes.fr/ineris-01855087

T. Y. Sun, N. A. Bornhoft, K. Hungerbuhler, and B. Nowack, Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials, Environ. Sci. Technol, vol.50, issue.9, pp.4701-4711, 2016.

M. Tella, M. Auffan, L. Brousset, J. Issartel, I. Kieffer et al., Transfer, transformation, and impacts of ceria nanomaterials in aquatic Mesocosms simulating a pond ecosystem, Environ. Sci. Technol, vol.48, issue.16, pp.9004-9013, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01426115

T. Tolaymat, A. El-badawy, R. Sequeira, and A. Genaidy, An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials, J. Hazard. Mater, vol.298, pp.270-281, 2015.

F. Von-der-kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers et al., Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies, Environ. Toxicol. Chem, vol.31, issue.1, pp.32-49, 2012.