I. Sotiropoulos, M. C. Galas, J. M. Silva, E. Skoulakis, S. Wegmann et al., Atypical, non-standard functions of the microtubule associated Tau protein, Acta Neuropathol. Commun, vol.5, p.91, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01654098

Y. Wang and E. Mandelkow, Tau in physiology and pathology, vol.17, pp.5-21, 2016.

M. Goedert and M. G. Spillantini, Propagation of Tau aggregates, Mol. Brain, vol.10, p.18, 2017.

M. Goedert, A. Klug, and R. A. Crowther, Tau protein, the paired helical filament and Alzheimer's disease, J. Alzheimers Dis, issue.9, pp.195-207, 2006.

S. M. Ward, D. S. Himmelstein, J. K. Lancia, and L. I. Binder, Tau oligomers and tau toxicity in neurodegenerative disease, vol.40, pp.667-671, 2012.

T. A. Shelkovnikova, A. A. Kulikova, F. O. Tsvetkov, O. Peters, S. O. Bachurin et al., Proteinopathies-forms of neurodegenerative disorders with protein aggregation-based pathology, Mol. Biol. (Mosk), vol.46, pp.402-415, 2012.

A. Mudher, M. Colin, S. Dujardin, M. Medina, I. Dewachter et al., What is the evidence that tau pathology spreads through prion-like propagation?, Acta Neuropathol. Commun, vol.5, p.99, 2017.

F. Kametani and M. Hasegawa, Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease, Front. Neurosci, vol.12, p.25, 2018.

A. Ochalek, B. Mihalik, H. X. Avci, A. Chandrasekaran, A. Teglasi et al., Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation, Alzheimers Res. Ther, vol.9, p.90, 2017.

T. F. Gendron and L. Petrucelli, The role of tau in neurodegeneration, Mol. Neurodegener, vol.4, p.13, 2009.

J. E. Gerson, K. M. Farmer, N. Henson, D. L. Castillo-carranza, M. C. Murillo et al., Tau oligomers mediate alpha-synuclein toxicity and can be targeted by immunotherapy, Mol. Neurodegener, vol.13, p.13, 2018.

S. Moussaud, D. R. Jones, E. L. Moussaud-lamodiere, M. Delenclos, O. A. Ross et al., Alpha-synuclein and tau: teammates in neurodegeneration?, Mol. Neurodegener, vol.9, p.43, 2014.

A. C. Kim, S. Lim, and Y. K. Kim, Metal ion effects on Abeta and tau aggregation, Int. J. Mol. Sci, vol.19, 2018.

T. Kimura, G. Sharma, K. Ishiguro, and S. I. Hisanaga, Phosphotau bar code: analysis of phosphoisotypes of tau and its application to tauopathy, Front. Neurosci, vol.12, p.44, 2018.

M. Inoue, S. Kaida, S. Nakano, C. Annoni, E. Nakata et al., Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubulebinding domain of human tau, Bioorg. Med. Chem, vol.22, pp.6471-6480, 2014.

S. L. Forrest, J. J. Kril, C. H. Stevens, J. B. Kwok, M. Hallupp et al., Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies, Brain, vol.141, pp.521-534, 2018.

S. A. Kozin, A. A. Kulikova, A. N. Istrate, P. O. Tsvetkov, S. S. Zhokhov et al., The English, vol.6

, Alzheimer's disease mutation facilitates zinc-induced dimerization of the amyloid-beta metal-binding domain, Metallomics, vol.7, pp.422-425, 2015.

A. D. Efimova, R. K. Ovchinnikov, A. Y. Roman, A. V. Maltsev, V. V. Grigoriev et al., The FUS protein: physiological functions and a role in amyotrophic lateral sclerosis, Mol. Biol. (Mosk), pp.387-399, 2017.

A. A. Valiente-gabioud, V. Torres-monserrat, L. Molinarubino, A. Binolfi, C. Griesinger et al., Structural basis behind the interaction of Zn(2)(+) with the protein alpha-synuclein and the Abeta peptide: a comparative analysis, J. Inorg. Biochem, vol.117, pp.334-341, 2012.

A. Caragounis, K. A. Price, C. P. Soon, G. Filiz, C. L. Masters et al., Zinc induces depletion and aggregation of endogenous TDP-43, Free Radic, Biol. Med, vol.48, pp.1152-1161, 2010.

C. Garnier, F. Devred, D. Byrne, R. Puppo, A. Y. Roman et al., Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates, Sci. Rep, vol.7, p.6812, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570091

P. O. Tsvetkov, A. Y. Roman, V. E. Baksheeva, A. A. Nazipova, M. P. Shevelyova et al., Functional status of neuronal calcium sensor-1 is modulated by zinc binding, Front. Mol. Neurosci, vol.11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01955226

Z. Y. Mo, Y. Z. Zhu, H. L. Zhu, J. B. Fan, J. Chen et al., Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322, J. Biol. Chem, vol.284, pp.34648-34657, 2009.

A. C. Jiji, A. Arshad, S. R. Dhanya, P. S. Shabana, C. K. Mehjubin et al., Zn(2+) interrupts R4-R3 association leading to accelerated aggregation of tau protein, Chemistry, vol.23, pp.16976-16979, 2017.

J. Y. Hu, D. L. Zhang, X. L. Liu, X. S. Li, X. Q. Cheng et al., Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells, Biochim. Biophys. Acta, vol.2017, pp.414-427, 1863.

T. Arendt, J. Stieler, A. M. Strijkstra, R. A. Hut, J. Rudiger et al., Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals, J. Neurosci, vol.23, pp.6972-6981, 2003.

M. E. King, T. C. Gamblin, J. Kuret, and L. I. Binder, Differential assembly of human tau isoforms in the presence of arachidonic acid, J. Neurochem, vol.74, pp.1749-1757, 2000.

Y. Mutreja and T. C. Gamblin, Optimization of in vitro conditions to study the arachidonic acid induction of 4R isoforms of the microtubule-associated protein tau, Methods Cell Biol, vol.141, pp.65-88, 2017.

Z. Yu, J. C. Reid, and Y. P. Yang, Utilizing dynamic light scattering as a process analytical technology for protein folding and aggregation monitoring in vaccine manufacturing, J. Pharm. Sci, vol.102, pp.4284-4290, 2013.

H. Kozlowski, M. Luczkowski, M. Remelli, and D. , Valensin, Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases), Coord. Chem. Rev, vol.256, pp.2129-2141, 2012.

F. Devred, P. Barbier, S. Douillard, O. Monasterio, J. M. Andreu et al., Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions, Biochemistry, vol.43, pp.10520-10531, 2004.

K. Asadollahi, G. Riazi, A. Chadegani, and S. Rafiee, DNA-binding mode transition of tau in the presence of zinc ions, J. Biomol. Struct. Dyn, pp.1-9, 2017.

A. Takeda, Zinc homeostasis and functions of zinc in the brain, Biometals, vol.14, pp.343-351, 2001.

S. D. Gower-winter and C. W. Levenson, Zinc in the central nervous system: from molecules to behavior, vol.38, pp.186-193, 2012.

P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, Zinc at glutamatergic synapses, Neuroscience, vol.158, pp.126-136, 2009.

D. J. Eide, Zinc transporters and the cellular trafficking of zinc, Biochim. Biophys. Acta, pp.711-722, 1763.

X. Y. Sun, Y. P. Wei, Y. Xiong, X. C. Wang, A. J. Xie et al., Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A), J. Biol. Chem, vol.287, pp.11174-11182, 2012.

W. H. Stoothoff and G. V. Johnson, Tau phosphorylation: physiological and pathological consequences, Biochim. Biophys. Acta, pp.280-297, 1739.

T. De-bessa, G. Breuzard, D. Allegro, F. Devred, V. Peyrot et al., Tau interaction with tubulin and microtubules: from purified proteins to cells, Methods Mol. Biol, vol.1523, pp.61-85, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744157

P. O. Tsvetkov, P. Barbier, G. Breuzard, V. Peyrot, and F. Devred, Microtubule-associated proteins and tubulin interaction by isothermal titration calorimetry, Methods Cell Biol, vol.115, pp.283-302, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01478645

P. O. Tsvetkov, A. A. Makarov, S. Malesinski, V. Peyrot, and F. Devred, New insights into tau-microtubules interaction revealed by isothermal titration calorimetry, vol.94, pp.916-919, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01749107

D. Sui, M. Liu, and M. H. Kuo, In vitro aggregation assays using hyperphosphorylated tau protein, J. Vis. Exp, vol.95, 2015.