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Targeting the key player: An incentive-based approach✩

Mohamed Belhaj, Frédéric Deroïan ∗

Aix-Marseille University, CNRS, EHESS, Centrale Marseille, AMSE, France

a b s t r a c t

We consider a network game with local complementarities. A policymaker, aiming at minimizing or maximizing aggregate effort, contracts with a 
single agent on the network to trade effort change against transfer. The policymaker has to find the best agent and the optimal contract to offer. Our 
study shows that for all utilities with linear best-responses, it only takes two statistics about the position of each agent on the network to identify the 
key player: the Bonacich centrality and the self-loop centrality. We also characterize key players under linear quadratic utilities for various contractual 
arrangements.

1. Introduction

Inmany economic situations, agents’ behaviors depend on their
peers. Such interactions are well documented for criminal activi-
ties, or for R&D partnerships, or for protective investment against
terrorism for instance. This creates opportunities for a policymaker
to exploit these interdependencies, either to reduce or to increase
the overall activity. For example, effort reduction may be desirable
with criminal activities, whereas increased effort may be valuable
in R&D investment or protection against terrorism. One possible
policy consists in trading effort change against transfers. However
in many circumstances, contracting costs substantially increase
with the number of contracts. With a limited budget, the poli-
cymaker may then resort to make deals with a limited subset of
agents.

This article considers agents organized in a network of local
complementarities. We study the problem of a policymaker con-
tracting with a single agent in order to minimize (resp. maximize)
aggregate effort. The problem can be solved in two steps: first,
studying the optimal contract with any agent, and then selecting
the best agent, called the key player.

Our analysis shows that, for all utilities with linear best-
responses, it only takes two statistics about the position of each
agent on the network to identify the key player: the Bonacich
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centrality, which counts the number of (weighted) walks starting
from the agent, and the self-loop centrality, which counts the
number of (weighted) closed walks starting from the agent. In
more detail, we show that the policy effect is the product of
two components: the change in targeted agent effort (what we
call the individual component) and the change in aggregate effort
following a one-unit change in targeted agent effort (the network
component). The latter is a pure network multiplier effect and is
equal to the ratio of the Bonacich centrality over the self-loop
centrality. The former is a function of both statistics, the budget
level, the shape of utility, andwhether the policymakermaximizes
or minimizes effort. In total, the key player depends on all these
parameters, but only the Bonacich centrality and the self-loop
centrality are network-dependent. We also further characterize
the key player under the standard case of linear quadratic utilities,
and the analysis reveals that the key player is budget-dependent.

We then discuss our modeling assumptions. We first address
the issue of contract enforceability. In this model, opportunism
is a concern under effort maximization but plays no role under
effort minimization. In contrast to enforceable contracts, we find
that the key player does not depend on the budget level. We
also examine the excess-effort linear contract, which is a natural
contract given that agents exert effort in the absence of a principal.
This contract puts the inter-centrality index in the spotlight, which
is reminiscent of the key player analysis of Ballester et al. (2006).
Last, we discuss other policies AMELIORER.

There is already a literature on key-player analysis.1 In their
pioneering work, Ballester et al. (2006) investigate key-player pol-
icy in a context of linear quadratic utilities, examining which

1 See Zenou (2016) for a recent survey.
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agents should be dropped from the network so as to minimize
aggregate effort. The optimal target is an agent maximizing the
inter-centrality index, a specific centrality measure internalizing
how much the agent affects others’ contribution to the aggregate.
Ballester et al. (2010), Liu et al. (2014) and König et al. (2018) elab-
orate on this seminal paper. Our approach complements Ballester
et al. (2006) by considering the situationwhere a policymakerwith
a limited budget needs to compensate the agent in order to reduce
the agent’s effort, whereas in their setup policy intervention is
costless. Our approach opens the way to partial effort reduction,
a useful device when the policymaker has a limited budget.

The key-player policy fits into a more general literature related
to optimal targeting on networks. In a related paper, Belhaj and
Deroïan (2018) study optimal contracting on networks without
any constraint on the number of contracts established by the
principal under linear quadratic utilities. Interestingly, even in this
less restrictive environment, it can be optimal to contract with
a subset of the population, and in particular with a single agent.
Zhou and Chen (2015) examine the benefits of sequentiality in
the same game as ours. In their setting, one (forward-looking)
agent plays in the first stage and the others in the second stage. A
network designer has to find the best agent to play first. Their so-
lution coincides with ours for a zero budget under linear quadratic
utilities. Our key-player analysis, in particular Proposition 2 in
the present article, generalizes their paper’s Proposition 2 to a
non-zero budget. Demange (2017) studies the optimal targeting
strategies of a planner aiming to increase the aggregate action
of agents embedded in a social network, allowing for non-linear
interaction. In a recent paper, Galeotti et al. (2017) study optimal
targeting in networks, where a principal aims at maximizing util-
itarian welfare or minimizing the volatility of aggregate activity.
In the drop-out game of Calvò-Armengol and Jackson (2004), the
planner subsidizes agents’ labor market entry.

The paper is organized as follows. Section 2 presents themodel.
Section 3 first presents our main result (Theorem 1), applicable to
general utilities with linear best-responses, and then characterizes
the key player further by focusing on linear quadratic utilities.
Section 4 discusses contract enforceability, linear contracts, and
alternative policies. Section 5 concludes. All proofs are presented
in the end of the article. An Appendix provides a series of tables
giving the key player and the aggregate performance according to
the nature of the contract and the policymaker’s objective.

2. Model

We consider a finite set of agents interacting on a network of
local complementarities. A policymakerwith a limited budget con-
tracts with a single agent in order to either minimize or maximize
the aggregate effort. Effort, contract andnetwork are assumed to be
publicly observable. We consider a three-stage game. In the first
stage, the policymaker offers a contract to a single agent. In the
second stage, the agent decides whether to accept or reject the
offer. In the third stage, all agents exert effort, and the transfer is
realized. We study the Subgame Perfect Nash Equilibrium (SPNE).

Notation. Numbers are written in lower case, matrices (in-
cluding vectors) in block letters and in boldface. We denote by
1 the n-dimensional vector of ones. We let superscript T stand
for the transpose operator. For instance, we write vector X =

(x1, . . . , xn)T , with xi as its ith entry, and x = 1TX denotes the sum
of entries of vector X.

Network. We let N = {1, 2, . . . , n} be the set of agents or-
ganized in a network of bilateral relationships. The network is
formally represented by a symmetric adjacency matrix G = [gij],
with binary element gij ∈ {0, 1}. The link between agents i and j
exists whenever gij = 1, in which case wewill say that agents i and
j are neighbors. By convention, gii = 0 for all i. By abuse of language

wewill speak of network G. The network is undirected, i.e. GT
= G.

We let µ(G) denote the largest eigenvalue of the adjacency matrix
G by symmetry. A walk of length p connecting i and j in network G
is a set of agents i0 = i, i1, . . . , ip = j such that gj,j+1 = 1 for all
j = {0, 1, . . . , p − 1}. A closed walk of length p originating at i is a
walk of length p such that i0 = ip = i.

Agents’ utilities.Agents exert effort andderive utility fromown
effort as well as from aggregate neighbors’ effort. We let vector
X = (xi)i∈N ∈ Rn

+
be a given profile of effort, and we define for

convenience the vector Y = GX as the vector of aggregate neigh-
bors’ effort. Individual utilities are homogeneous across agents and
generate linear interaction between neighbors in a context of local
positive externalities and local complementarities. Formally, agent
i’s utility is expressed as the function u(xi, yi) and is quasi-concave
in the first argument, increasing in the second argument. Defining
xBRi (yi) as agent i’s best-response effort when aggregate neighbors
effort is equal to yi, we impose the following assumption:

Assumption 1. The utility function generates a linear best-
response of the form

xBRi (yi) = 1 + δyi (1)

where parameter δ > 0 measures the strength of complementari-
ties, or intensity of interaction, between neighbors. This system of
linear best-responses generates a unique and interior equilibrium
effort profile if and only if δµ(G) < 1,whichwe assume throughout
the article (otherwise there is no equilibrium and effort would
escalate to infinity — see Ballester et al. (2006) in the context of
linear quadratic utilities).

Example 1. Under linear quadratic utilities (see Ballester et al.,
2006), agent i’s utility is given by

u(xi, yi) = xi −
1
2
x2i + δxiyi

Parameter δ measures the strength of complementarities or inten-
sity of interaction between neighbors, and agent i’s best-response
is identical to Eq. (1).

Example 2. Agent i’s utility function is

u(xi, yi) = xi − f (xi − δyi)

where function f is twice continuously differentiable, increasing,
convex and satisfies f ′−1(1) = 1. Function f represents the cost of
effort. Effort cost is lowered by neighbors’ effort, higher δ meaning
higher impact on own effort cost. Then agent i’s best-response is
identical to Eq. (1).

Centralities and equilibrium. We let I denote the n-
dimensional identity matrix. We set the n-square matrix M =

(I − δG)−1. The condition δµ(G) < 1 guarantees M ≥ 0. In that
case, the entrymij of matrixM represents the weighted number of
walks from agent i to agent j in the network, where walks of length
k are decayed by the factor δk. In particular, the index mii, which
measures the closed walks originating from agent i, will be called
self-loop centrality thereafter. For any vector Z ≥ 0, we let BZ = MZ
denote the Bonacich centrality of the network weighted by Z (we
avoid references to network G and parameter δ for convenience).
The quantity bZ,i is the number of walks from agent i to others,
wherewalks areweighted as follows: theweight of awalk of length
k from agent i to agent j is δkzj. In particular, we let B = M1 denote
the vector of un-weighted Bonacich centralities. By construction
the Bonacich centrality of agent i is expressed as bi = mii +

∑
j̸=i

mij.

LetX0
= (x0i )i∈N be theNash equilibriumplayed by agentswhen

there is no policymaker’s intervention:
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Result 1 (Ballester et al., 2006). When there is no policymaker’s
intervention, X0

= B.

Equilibrium effort can be interpreted in terms of Bonacich cen-
trality. By linearity of best-responses, the aggregate play of neigh-
bors depends on Bonacich centralities,2 so that the utility of agent
i at the Nash equilibriumX0 is given by u(bi,

bi−1
δ

), and is a function
solely of the centrality of agent i.

The policymaker’s intervention. The policymaker’s objective
is to either minimize or maximize aggregate effort subject to a
limited budget constraint.3 We define the variable ø ∈ {−1, 1}.
The policymaker’s objective function is given by the quantity ø1TX,
with ø = −1 (resp. ø = 1) when the policymaker wants to min-
imize (resp. maximize) aggregate effort. The policymaker offers a
contract to a single agent on the network. A contract between the
policymaker and agent i specifies an effort xi ∈ R+ and amonetary
transfer t ∈ R from the policymaker to agent i. We assume that
in the case of effort minimization, the budget is so low that the
policymaker cannot compensate any agent for exerting a null ef-
fort4 (this will be formalized by Assumption 3 in the next section).
We let X∗

−i(xi) be the Nash equilibrium played by agents in N \ {i},
given xi, and we let X∗(xi) = (x∗

1, x
∗

2, . . . , x
∗

i−1, xi, x
∗

i+1, . . . , x
∗
n)

T be
the profile of effort such that all other agents but i play the Nash
equilibrium given effort xi. We also define Y∗(xi) = GX∗(xi).

Wewill study the optimal contract, i.e. the contractmaximizing
the policymaker’s objective under individual participation con-
straint. The contract is assumed to be enforceable (we relax this
assumption in Section 4). The optimal contract maximizes the pol-
icymaker’s objective under the agent’s participation constraint. As
a basic observation, the agent’s participation constraint is binding
at optimum, otherwise the policymaker could trade effort change
against saved budget. So, recalling that ø = 1 (resp. ø = −1) when
the policymaker wants to maximize (resp. minimize) aggregate
effort, the optimal enforceable bilateral contract solves program
(P1):

max
i∈N,xi

s.t. u(xi, y∗

i (xi)) + t = u(bi,
bi−1

δ
)

ø 1TX∗(xi) (2)

3. Contracting with key players

An optimal policy consists in identifying the best agent and the
best deal with this agent. In this section, we examine the optimal
contract. We characterize the key-player contract as a function of
network structure, intensity of interaction, and available budget.

3.1. General insights

In the absence of policymaker intervention, agents exert their
Nash equilibriumeffort, equal to their Bonacich centrality. Suppose
that a policy targets one agent, and induces an effort change equal
to ø · α, with α > 0 by convention. The next proposition indicates
how the network reacts to this change:

Proposition 1. Consider ø ∈ {−1, 1}. Suppose that, from the initial
equilibrium bi, agent i’s effort varies by an amount ø · α. Then for

2 Indeed, by definition (I − δG)B = 1, so at equilibrium Y = GB =
B−1

δ
.

3 This program can be part of a more general programwith endogenous budget,
where policymaker’s payoff is a function of the sumof agents’ effort net of transfers.
We abstract from optimal budget selection considerations and assume that the
budget is not larger than the optimal budget.
4 Otherwise the key player would be the agent maximizing the inter-centrality

index, as in Ballester et al. (2006).

all utility functions with linear best-responses, the aggregate effort
change is equal to

bi
mii

· ø · α (3)

By Proposition 1, an effort change of one unit by agent i induces
a final aggregate effort change of magnitude bi

mii
, where bi repre-

sents the Bonacich centrality of agent i, andmii the weighted num-
ber of loops originating from agent i (recall that bi = mii +

∑
j̸=i

mij).

This ratio therefore captures agent i’s network effect, measuring the
influence of the agent on aggregate behavior. This result is useful to
understand the impact of any key-player policy intervention. The
message is that for a given effort change α, the agent with largest
impact on aggregate effort maximizes the index bi

mii
. Enhancing

this ratio means having a great influence on others. Moreover,
measuring the impact of agent i on others only takes a pair of
measures (bi,mii).

Note that in Ballester et al. (2006), removing an agent from the
network is equivalent to decreasing her effort by an amount equal
to her effort bi (so that she exerts no effort in the end); replacing α

with the value bi we get the inter-centrality index ci =
b2i
mii

. Now,
what is crucial in the following analysis is that modifying agent i’s
effort is costly, and, with a limited budget, it is not always possible
to induce zero effort from the key player. In general, the efficiency
of a given policy will depend not only on the agent’s impact on
others, but also on the policy capacity to induce a large change in
the agent’s effort. We will see now how the nature of the contract,
the budget level, and the position of the agent in the network all
affect the maximal amount of effort change that the policymaker
can obtain from any agent. This will be useful to identify the key
player.

To assess how much effort the policymaker can demand from
the agent, her participation constraint is key. To evaluate this,
we need to quantify how much neighbors’ best-responding effort
changes when an agent’s effort changes by ø · α. This is what the
next lemma does, exploiting linear best-responses:

Lemma 1. Consider ø ∈ {−1, 1}. Suppose that, from the initial
equilibrium bi, agent i’s effort changes by ø · α. Then the aggregate
Nash effort of agent i’s neighbors is given by

y∗

i (bi + φα) =
(bi − 1)mii + φα(mii − 1)

δmii
(4)

This simple lemma states that, with linear best-responses, the
aggregate response of agent i’s neighbors to effort change only
depends on the statistics bi and mii. This result will simplify the
key-player analysis. Knowing neighbors’ response to own effort
change, we can examine the incidence of the participation con-
straint on key-player selection. In particular, the next theorem
indicates which network statistics need to be used by the poli-
cymaker to find the key player for all utilities with linear best-
responses. To proceed, we first impose two assumptions. Define

h(α) = u
(
bi + α,

(bi − 1)mii + α(mii − 1)
δmii

)
Assumption 2 (Effort Maximization).

lim
α→+∞

h′(α) < 0

Assumption 2 guarantees, under effort maximization, the exis-
tence of an optimal contract. Note that this assumption imposes
conditions both on utility and on the intensity of interaction.
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Fig. 1. Key player as a function of the budget t and the principal’s objective φ. The upper table presents self-loop centrality, Bonacich centrality and inter-centrality; the
highest centrality is in bold notation. The lower table presents the index Xi(t, ø), the key-player is in bold notation.

Assumption 3 (Effort Minimization). The condition

u(0,
bi − mii

δmii
) + t ≤ u

(
bi,

bi − 1
δ

)
holds for all i ∈ N .

Assumption 3 guarantees that, under effort minimization, the
budget is so small that the policymaker cannot offer a contractwith
null effort to any agent. We get the following theorem:

Theorem 1. There exists a positive function α() such that the key
player maximizes the index
bi
mii

· α(bi,mii, t, ø) (5)

Note that function α in Theorem 1 is defined by the agent’s par-
ticipation constraint. A sharpmessage from Theorem 1 is that, for a
given budget and a given policymaker objective, the Bonacich cen-
trality and the self-loop centrality are sufficient network statistics
to identify the key player for all contracts and all utility functions
with linear best-responses. In particular, when agreeing to con-
tract, agent i’s effort change only depends on these two network
statistics for all utilities. Of course, the way of combining these
two statistics, together with other statistics such as the budget and
principal’s objective, is highly dependent on the shape of utilities.

It is important to note that when agent i rejects the offer, she
still exerts effort and interacts with her neighbors. This interaction
aspect determines the cost of changing agent i’s effort. In total,
interaction matters twice: it determines the magnitude of effort
change that agent i can accept for a given budget, contractual
arrangement and policymaker objective (the term α(bi,mii, t, ø)),
what we call the individual component of the key-player policy;
and it shapes the impact of that change on the aggregate effort
change (the term bi

mii
), what we call the network component of

the key-player policy. The performance of the key-player pol-
icy depends on individual component and network component
combined. This is grasped by Eq. (5), which characterizes policy
efficiency as the product of the agent network effect multiplied
by the maximal amount of effort change she can accept given the
available budget.

It is interesting to note that, for utilities given by Example 2, the
individual component depends on the sole self-loop centralitymii;

i.e., Bonacich centrality bi does not affect the effort change of the
key player.5 It follows that the key player maximizes an index of
the type bi ·

α(mii,t,ø)
mii

. This result holds for all budget levels and every
function f .

3.2. Key players under linear quadratic utilities

So far, we have seen that the effort variation of the targeted
agent is a function of twonetwork statistics. This function is shaped
by the agent’s utility, the budget and the policymaker’s objective.
We will now characterize the key player under the widely studied
case of linear quadratic utilities (see Ballester et al., 2006), as
presented in Example 1.

To guarantee the existence of an optimal contract under effort
maximization, we need to assume max

i∈N
mii < 2 (equivalent to

Assumption 2 with linear quadratic utility). We define δc as the
smallest value of δ such that max

i∈N
mii = 2, and we assume

that δ < δc throughout the section. We obtain the following
characterization for the optimal bilateral contract:

Proposition 2. Consider linear quadratic utilities. For the optimal
bilateral contract, the key player maximizes the index Xi(t, ø) defined
as

Xi(t, ø) =
bi
mii

·

√
(mii − 1)2b2i + 2mii(2 − mii) t + ø · (mii − 1)bi

2 − mii

(6)

The aggregate effort change is ø · Xi(t, ø).

The key player maximizes an index which is a sophisticated
function of the position. In particular, the index is by no means
reducible to a simple centralitymeasure. FromProposition 2weget
twomainmessages. First, the key player can vary with the amount
of available budget. To illustrate, Fig. 1 depicts how the identity of

5 Applying the participation constraint given in program (P1) with utility func-
tion given in Example 2, and taking care of Eq. (4) in Lemma 1, few computation
shows that α solves f (1 + φ ·

α
mii

) − φ · α = t + f (1). The value of α solving this
equation is therefore independent from bi .
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the key player varies as a function of the budget under both effort
minimization and effort maximization in a seven-agent network
with fixed intensity of interaction. For instance, under effort min-
imization and for a low budget, agent 4 is the key player, whereas
for a higher budget, the key player is agent 1. Agent 4 is more
peripheral than agent 1, which shows how the budget constraint
can affect the position of the optimal target. Second, for the same
budget, the key player under effort maximization is in general
different from the key player under effort minimization: on Fig. 1,
for t = 0.01 the key player is agent 3 under effort maximization
but agent 4 under effort minimization. This is illustrated further in
the limit cases of low budget and low intensity of interaction for
any network. When t is close to zero, the key player maximizes
the index 1

(mii−1) under effort minimization, whereas it maximizes

the index b2i
mii

·
mii−1
2−mii

under effort maximization. Moreover, when δ

tends to zero, the key player is maximized for high-degree agents
under both effort minimization and effort maximization. In more
detail, we have bi ≃ 1+ δdi + o(δ) whilemii ≃ 1+ δ2di + o(δ2), so
the network component is approximately bi

mii
≃ 1+ δdi +o(δ). The

individual component is close to α ≃
√
2t + (ø+

√
2t)diδ2 +o(δ2).

Hence, as the intensity of interaction tends to zero, the individual
component outweighs (≃

√
2t) the network component (≃1) as

soon as t > 1
2 . We summarize the index under various limits in

the next corollary. Recall that ci =
b2i
mii

:

Corollary 1. When t, δ tend to their limits, the key player maximizes
the following index:

• t → 0, ø = −1: Xi →
t

mii−1 so the key-player minimizes mii

• t → 0, ø = 1: Xi → 2Li, where Li =
mii−1
2−mii

ci is the key-player
index defined in Zhou and Chen (2015).

• t → ∞, ø ∈ {−1, 1}: Xi →

√
2cit

2−mii
so the key-player

maximizes ci
2−mii

• δ → 0, ø ∈ {−1, 1}: Xi → (1 + δdi)
√
2t (for t > 0) so the

key-player maximizes the degree di.

Under effort minimization, the policymaker cannot reduce ef-
fort with a null budget. Indeed, reducing own effort below best-
response effort is costly for the agent, and by complementarities
this effort reduction induces a decrease in others’ effort too, which
by positive externalities further penalizes the agent’s utility. Over-
all, to obtain the agent’s consent, the policymaker needs to com-
pensate her with a positive transfer. In contrast, the policymaker
with a null budget can enhance effort under effort maximization.
Interestingly, the key player under null budget coincideswith Zhou
and Chen (2015), where a policymaker with zero budget exploits
the benefits of sequential play (so Xi(0) = Li where Li is their
key player in their notation — see equation (13) in Proposition
2 in their paper). Note however that contracts do (twice) better
than sequential move. Indeed, by the commitment aspect of the
contract, the agent accepts to increase effort up to a utility level
equal to theNash utility b2i

2 . In contrast, the utility of the firstmover
in Zhou and Chen is higher than initial utility. The resulting change
in aggregate effort is twice that of sequential play.6

6 To be more precise, in the approach by sequential move of Zhou and Chen, the

effort selected by the first mover is bi
2−mii

, the first mover’s utility is b2i
2 ·

1
mii(2−mii)

,

and the induced change of the aggregate effort is b2i (mii−1)
mii(2−mii)

. Applying the approach

by contracts with null budget, the effort of the contracting agent is 2(mii−1)bi
2−mii

and

her utility is given by b2i
2 (note that the utility of the first mover as in Zhou and Chen

exceed b2i
2 ). The change of the aggregate effort is 2 b2i (mii−1)

mii(2−mii)
.

4. Discussion

In this section, we discuss three aspects of the model. First,
we discuss the nature of the environment in which the contract
is established, by assuming that the contract is not enforceable.
Second, we present the excess-effort linear contract. Finally we
discuss other related policies.

4.1. Non-enforceable contract under linear quadratic utilities

In many economic environments, the contract may not be en-
forceable, i.e. after signing the contract, the agent may behave
opportunistically. When the contract is not enforceable, the prin-
cipal should take care of an incentive-compatibility constraint
guaranteeing that the agent finds it not profitable to behave op-
portunistically once the contract is accepted. In our setup, op-
portunism can be captured by assuming that the agent considers
the opportunity to deviate from the prescribed contracted effort
given the current effort choice of other agents. In this case, the
incentive-compatibility constraint stipulates that the agent plays a
best-response to others’ effort, who are currently best-responding
to the effort prescribed by the contract. Note that, in this simple
formulation, the opportunistic agent does not take care of the pos-
sible counter-reactions of other agents, which may reduce incen-
tives to deviate.7 The optimal non-enforceable contractmaximizes
program (P2):

max
i∈N,xi

s.t.

⎧⎨⎩ u(xi, y∗

i (xi)) + t ≥ u(bi,
bi−1

δ
)

u(xi, y∗

−i(xi)) + t ≥ u(xBRi (y∗

i (xi)), y
∗

i (xi))

ø 1TX∗(xi)

Which constraint is binding at optimum depends on the policy-
maker’s objective. Under effort maximization, the binding
constraint is the incentive constraint, because other agents best-
respond to increased effort by increasing effort too, which ensures
a higher utility level under opportunistic behavior. In contrast,
enforceability is not an issue under effort minimization. This is
because other agents best-respond to decreased effort by decreas-
ing effort too, which entails a utility under opportunistic behavior
lower than the utility without policy intervention. Hence, under
effort minimization, whether or not the contract is enforced, pro-
gram (P2) is equivalent to program (P1). We thus focus on effort
maximization:

Proposition 3 (Non-enforceable Contract). Suppose that the policy-
maker maximizes aggregate effort (i.e., ø = 1) and assume linear
quadratic utilities. For the optimal non-enforceable contract, the key
player maximizes the index bi and the aggregate effort change is√
2t bi.

Hence, the relevant centrality measure is the Bonacich central-
ity. This may be good news for the policymaker: observing effort
is all it takes to identify the key player. It is worth mentioning
that, as opposed to the case where the contract is enforceable, the
key player does not depend on the budget. As suggested at the
end of the previous section, this means agent i’s effort change is
the product of a function of network statistics by a function of
the budget. This result, tied to the linear quadratic specification
of utilities, is explained because the optimal aggregate effort is a

7 To take these considerations into account, a natural extension would be to
introduce a dynamic version of themodel where the short-run benefits of behaving
opportunistically would be challenged by the long-run negative consequences
generated by the counter-moves of other agents. In principle, such dynamics would
induce further sequential decrease of agents’ effort. In the extreme case of infinitely
patient agents, such a dynamics would converge to the initial Nash equilibrium,
deterring opportunism.
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separable function of budget and network statistics.8 Of course, the
aggregate effort change is increasing in the budget level.

It is possible to evaluate the efficiency loss due to non-
enforceability in case of effort maximization. The ratio of the
contract performance under non-enforceability over contract per-

formance under enforceability is equal to
√
2t maxj bj
maxi Xi(t)

.9 In the net-
work depicted in Fig. 1, this ratio is roughly equal to 0.70 for
t = 0.01, and 0.96 for t = 1.

4.2. Effort-change linear contract under linear quadratic utilities

We study the payment scheme that is linear in effort change.
This contract is interesting not only because of its simplicity, but
also, as we will see, because the effort-change linear contract puts
the spotlight on the inter-centrality index, itself familiar to the key
player literature. Such a contract with agent i is a transfer function
ti(xi) = γi·ø·(xi−bi), with γi ∈ R+, so agent i is rewardedwhenever
effort increases (resp. decreases) under effort maximization (resp.
minimization).10 The participation constraint is an issue under
effort minimization but not under effort maximization (see the
proof of Proposition 4 for more details). Indeed, when effort is
lowered agents’ utilities decrease, so the transfer should cover the
difference. But given the structure of the payment and the shape of
utilities, the transfer covers the difference only when the budget is
sufficiently large. Recalling that ci =

b2i
mii

represents agent i’s inter-
centrality index, we obtain the following proposition:

Proposition 4 (Effort-change Linear Contract). When ø = 1, the
optimal excess linear contract selects the agent with maximal inter-
centrality index ci. When ø = −1, the optimal excess linear contract
selects the agent with maximal inter-centrality index ci among the set
of agents satisfying

(mii−1
mii

)2ci ≤
t
4 .

At least two messages emerge for the effort-change linear con-
tract. First, this contract highlights the inter-centrality index fa-
miliar in standard key-player policies à la Ballester et al. (2006),
consisting in a costless removal of an agent from the network.
However, the key player depends on the policymaker’s objective.
Under effort minimization, the participation constraint matters
and determines the key player. Conversely, participation is not an
issue under effort maximization, so the policymaker can always
improve on the outcomewith any positive budget. Second, the key
player is budget-dependent under effort minimization.

4.3. Other policies

So far,wehave identified keyplayers under contracting policies.
However, our approach can be used under other policies, and we
can compare the results in terms of key player identification. For
instance, in contexts where the principal wishes to modify effort,
suppose that a policymaker has a technology able to modify agent
i’s private return on effort by ø · ai within the limits of her budget
t , so that ai = f (t) with f increasing in the budget.11 Proposition 1

8 More generally, an immediate implication from Theorem 1 is that the key
player is independent from the budget level whenever the function α() is separable
in the budget and network statistics, i.e. when there are two functions hi, h such
that α(bi,mii, t, ø) = hi(bi,mii, ø) · h(t).
9 Here we abuse the notation and write Xi(t) rather than Xi(t, 1).

10 Imposing a non-negative return is without loss of generality; as we will see,
this constraint is never binding at optimum under both effort maximization and
effort minimization.
11 In Demange (2017), a principal injects cash into a financial system, which
corresponds to increasing the agent’s best-response by a fixed amount. In the same
vein, contextual effects can significantly affect key-player policies (Ballester and
Zenou, 2014).

helps identifying the key player. The agent’s induced effort change
is given by f (t)mii and, by Proposition 1, the aggregate effort change
is given by f (t)bi. That is, the key player maximizes Bonacich
centrality, i.e. is the agent with highest effort.

In other contexts, the policymaker is able to modify agents’
effort by using a costly technology. For example, the cost may be
an increasing function of the difference between modified effort
and initial effort, t = f (|xi − x0i |).

12 Applying Proposition 1 again,
we deduce that the key player maximizes the index bi

mii
. It is worth

mentioning that, in both examples, the key player depends neither
on budget level nor on policymaker’s objective.

The performance of all these alternative policies can be directly
compared to the incentive-based policy examined in this article,
and given by Theorem 1, by focusing their impact on the targeted
agent.

5. Conclusion

This article explored a key-player policy inwhich a policymaker
contracts with a single agent on the network to induce effort
change. Principally,we showed that for all utilitieswith linear best-
responses and all budgets, it only takes two network-related statis-
tics to identify the performance of a given target: the Bonacich
centrality and the self-loop centrality.

This analysis leaves interesting issues open. First, it would be
challenging to generalize the study to the case of group-player
analysis. One difficulty is that not only the group depends on
utilities and network structure, but also the sharing of the budget
among contracting agents. Second, it would be interesting to study
how the agents on the network could protect themselves against
the policymaker’s intervention, and how this would affect the
efficiency of the policy.13 Third, as pointed out in Ballester et al.
(2010), there may be complementarities between key-player poli-
cies and other policies affecting incentives to stay on the network,
like a policy consisting in increasing wages in the formal market.
It would thus be natural to incorporate such complementarities in
the comparative analysis of key-player policies.

6. Proofs

Throughout the proofs, we define the vector 1i = (0, . . . , 0, 1,
0, . . . , 0)T where value 1 is set at the ith entry.

Proof of Proposition 1. Consider ø ∈ {−1, 1}. Suppose that agent
i’s effort varies to the level xi = bi + ø · α, where α ≥ 0 by
convention. Taking into account that other agents play their best-
response, we observe that X solves the following system:

(I − δG)X = 1 + ø ·
α

mii
1i (7)

We indeed argue that the solution to this system satisfies xi =

bi + ø · α. To see why, note that System (7) can also be written

X = B + ø ·
α

mii
M1i

or equivalently, for all j ∈ N:

xj = bj + ø · α
mji

mii
(8)

12 For example, in Galeotti et al. (2017), the adjustment cost of changing initial
effort X0 to X is equal to

∑
i∈N

(xi − x0i )
2 . Focusing on single targets, the corresponding

policy cost of changing agent i’s effort from x0i to xi would be equal to (xi − x0i )
2 .

13 The literature on defense networks may be a natural starting point in this re-
spect. For instance, in the context of criminal activities, Baccara andBar-Isaac (2008)
examine alternative organizations as optimal reaction to investigation policies. See
also Acemoglu et al. (2016) for a model in which nodes invest in defense against a
(possibly strategic) single-node attack in presence of contagion, aswell as theworks
of Dziubiński and Goyal (2013, 2017).
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and in particular, applying Eq. (8) to agent i, we get xi = bi + ø · α.
Hence, to obtain a change in agent i’s effort of φ · α, it is sufficient
to consider a linear system of best-responses with an adequately
chosen modified constant to agent i’s best-response.

Crucially, the interaction pattern between agents in System (7)
is identical to the interaction pattern of the model when agent i
accepts a contract that entails a change of her effort of φ · α. This
means that, to evaluate the consequence of a change in agent i’s
effort of φ · α on aggregate effort when agent i accepts a contract,
it is sufficient to examine System (7): summing over agents’ effort
as given in Eq. (8), and remembering that b represents the initial
aggregate effort, we get

x = b + ø · α
bi
mii

□

Proof of Lemma 1. We have Y = G X = G M(1 +
φα

mii
1i). Taking

care that G M =
1
δ
(M− I), we obtain Y =

1
δ
(M− I)(1+

φα

mii
1i). That

is, yi =
1
δ

(
bi − 1 +

φα

mii
(mii − 1)

)
. □

Proof of Theorem 1. Consider ø ∈ {−1, 1}. Suppose that the
policymaker contracts with agent i. Eq. (3) provides the aggregate
effort change stemming from agent i’s effort change. The change of
agent effort, ø · α, is given by the binding participation constraint
of agent i. Basically, α solves

u
(
bi + ø · α, y∗

i (bi + ø · α)
)
+ t = uR

i

with uR
i being agent i’s reservation utility, which can take two val-

ues over all contracts examined in this article: it is equal to either
the initial utility u(bi,

bi−1
δ

) or, in the case of the non-enforceable
contract with effort maximization (i.e. ø = 1), the utility level
given by u(1 + δy∗

i (bi + α), y∗

i (bi + α)). Exploiting Eq. (4), we
deduce agent i’s participation constraint in all programs. In the
case of the optimal non-enforceable bilateral contract under effort
maximization, agent i’s participation constraint is given by

u
(
bi + α,

(bi − 1)mii + α(mii − 1)
δmii

)
+ t

= u
(
bi + α

mii − 1
mii

,
(bi − 1)mii + α(mii − 1)

δmii

)
(9)

For all other cases presented in this article, agent i’s participation
constraint is written

u
(
bi + ø · α,

(bi − 1)mii + ø · α(mii − 1)
δmii

)
+ t = u

(
bi,

bi − 1
δ

)
(10)

The optimal value of α is found by inverting the relevant par-
ticipation constraint: when ø = 1, Assumption 2 guarantees the
existence of a solution for Eq. (10), and the existence of a solution
for Eq. (9) follows because the best-response utility – the RHS
– is positive. When ø = −1, we need to impose Assumption 3.
It is transparent that all participation constraints only depend on
bi,mii, t , and of course on the policymaker’s objective. □

Proof of Proposition 2. Assume that the policymaker contracts
with agent i. Agent i’s participation constraint is written

xi −
x2i
2

+ δxiyi + t =
1
2
b2i (11)

with xi = bi + ø · α and yi =
(bi−1)mii+ø·α(mii−1)

δmii
. Plugging xi and yi

into Eq. (11), α solves the second-order equation

(2 − mii) α2
− 2ø(mii − 1)bi α − 2mii t = 0

Sincemii < 2, there is a unique positive root. It is given by

α =
1

2 − mii

[
ø · (mii − 1)bi +

√
(mii − 1)2b2i + 2mii(2 − mii)t

]
The contract performance being equal to α

bi
mii

, the key-player
maximizes the index

bi
mii

(ø · (mii − 1)bi +
√
(mii − 1)2b2i + 2mii(2 − mii)t

2 − mii

)
□

Proof of Proposition 3. Consider ø = 1. Suppose that agent i is
proposed the contract by the principal (xi, t). Let 1i = (0, 0, . . . , 0,
1, 0, . . . , 0) with 1 at entry i. When the contract is not enforceable,
agent i’s participation constraint is written

xi −
x2i
2

+ δxiyi + t =
1
2
(1 + δyi)2

with xi = bi +α and yi =
(bi−1)mii+α(mii−1)

δmii
. Substituting xi and yi by

their respective values, we get after some developmentα2
= 2tm2

ii,
that is:

α =
√
2t mii (12)

Substituting Eq. (12) into Eq. (3), we find

x = b +
√
2t bi □

Proof of Proposition 4. We first present the policymaker’s pro-
gram, and then we proceed to the proof of the proposition.

• The policymaker’s program. Under contract γi, all agents
playNash including agent i.We letX∗(γi) denote the corresponding
equilibrium effort vector,14 and we set Y∗(γi) = GX∗(γi). The
principal has to identify the best target and the best reward un-
der limited budget t . The optimal linear contract maximizes the
program

max
i∈N,γi

s.t.

⎧⎨⎩ u(x∗

i (γi), y∗

i (γi)) + t ≥ u(bi,
bi−1

δ
)

t = γi · ø(xi − bi)

ø 1TX∗(γi)

When the policymaker wants to maximize effort, the participa-
tion constraint is not an issue. Indeed, the agent is rewarded for
increasing effort, and by complementarities at optimum all efforts
are larger than the effort at the initial equilibrium. And by positive
externalities, utilities are mechanically increased. So, under effort
maximization, the optimal excess-effort linear contract solves

max
i∈N,γi

s.t. t = γi (xi − bi)

1TX∗(γi)

In contrast, when the policymakerwants tominimize effort, the
participation constraint is an issue. Indeed, when effort is lowered,
agents’ utilities decrease, so the transfer should cover the differ-
ence. But by linearity of the reward and because of linear quadratic
utilities, the transfer covers the cost only with a sufficiently large
budget. This means that with a low enough budget, the agent
will always be better off rejecting the offer. In total, under effort
minimization, the optimal linear contract is given by

min
i∈N,γi

s.t.

⎧⎨⎩ u(x∗

i (γi), y∗

i (γi)) + t = u(bi,
bi−1

δ
)

t = γi (bi − xi)

1TX∗(γi)

14 Contract execution does not affect the condition of existence and uniqueness
of Nash equilibrium.
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Table 1
Key player with enforceable contract under linear quadratic utilities as a function of policymaker’s objective.
Enforceable contract:
Attribute \ objective ø = −1 ø = 1

Key player bi
mii

·

√
(mii−1)2b2i +2mii(2−mii) t−(mii−1)bi

2−mii

bi
mii

·

√
(mii−1)2b2i +2mii(2−mii) t+(mii−1)bi

2−mii

Aggr. effort change −
bi
mii

·

√
(mii−1)2b2i +2mii(2−mii) t−(mii−1)bi

2−mii

bi
mii

·

√
(mii−1)2b2i +2mii(2−mii) t+(mii−1)bi

2−mii

• The proof of Proposition 4. We consider ø ∈ {−1, 1}.
Suppose that agent i is proposed a contract γi and suppose for
now that her participation constraint is satisfied. We let 1i =

(0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith entry. The Nash effort
profile is written15

X∗(γi) = M(1 + ø · γi1i) (13)

Noting thatM1i = bi, the variation of aggregate effort is written:

x∗
− b = ø · γibi (14)

Also, plugging Nash effort into the budget constraint, we get

x∗

i − bi = ø · miiγ̆i (15)

Plugging Eq. (15) into the budget constraint, we find

γ̆i =

√
t
mii

(16)

Plugging Eq. (16) into Eq. (15), we obtain

x∗

i − bi = ø ·
√
t mii

while plugging Eq. (16) into Eq. (14), we obtain

x∗
− b = ø ·

√
t ·

bi
√
mii

= ø ·
√
t ci

Hence, conditional on contract participation, the agent with the
highest inter-centrality index should be selected.

We turn to the participation constraint, which is an issue only
under effort minimization. Suppose then ø = −1. Basically, agent
i’s participation constraint is given by

1
2

(
bi −

√
miit

)2
+ bi

√
t
mii

−
b2i
2

≥ 0

i.e.,

t ≥ 4
(mii − 1

mii

)2
ci

Hence, when t < 4 · min
i∈N

{(mii−1
mii

)2ci}, there is no contract under

effort minimization. □

Appendix. Tables

Tables 1–3 present the key player under linear quadratic utili-
ties, according to the nature of the contract, the available budget
and the policymaker’s objective.

15 The existence of the contract does not affect the conditions of equilibrium
existence and uniqueness, the condition still being δµ(G) < 1.

Table 2
Key player with non-enforceable contract under linear quadratic utilities as a
function of policymaker’s objective.
Non-enforceable contract:
Attribute \ objective ø = −1 ø = 1

Key player bi
mii

·

√
(mii−1)2b2i +2mii(2−mii) t−(mii−1)bi

2−mii
bi

Aggr. effort change −
bi
mii

·

√
(mii−1)2b2i +2mii(2−mii) t−(mii−1)bi

2−mii

√
2t bi

Table 3
Key player with effort-change linear contract under linear quadratic utilities as a
function of policymaker’s objective.
Effort-change linear contract:
Attribute \ objective ø = −1 ø = 1

Key player ci such that
(mii−1

mii

)2ci ≤
t
4 ci

Aggr. effort change −
√
t ci

√
t ci
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