J. D. Aber, J. M. Melillo, and C. A. Mcclaugherty, Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems, Canadian Journal of Botany, vol.68, pp.2201-2208, 1990.

R. Aerts, Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship, Oikos, vol.79, pp.439-449, 1997.

K. Alef and P. Nannipieri, Methods in applied soil microbiology and biochemistry, 1995.

S. Anslan, M. Bahram, and L. Tedersoo, Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and highthroughput sequencing, Soil Biology and Biochemistry, vol.96, pp.152-159, 2016.

J. Asplund, S. Bokhorst, P. Kardol, and D. A. Wardle, Removal of secondary compounds increases invertebrate abundance in lichens, Fungal Ecology, vol.18, pp.18-25, 2015.

G. Aubert, Méthodes d'analyses des sols. Centre National de Documentation Pédagogique, 1978.

D. Baize and M. C. Girard, A sound reference base for soils: the 'référentiel pédologique, 1998.

R. D. Bardgett, The biology of soil: a community and ecosystem approach, 2005.

B. Berg and R. Laskowski, Decomposers: soil microorganisms and animals, Advances in Ecological Research, vol.38, pp.38003-38005, 2005.

O. Berndt, R. Meyhöfer, and H. M. Poehling, Propensity towards cannibalism among Hypoaspis aculeifer and H. miles, two soil-dwelling predatory mite species. Experimental and applied acarology 31, vol.1, 2003.

T. Buse and J. Filser, Mucilaginous seeds and algal diets attract soil Collembola in preference tests, European Journal of Soil Biology, vol.65, pp.1-6, 2014.

M. Chahartaghi, R. Langel, S. Scheu, and L. Ruess, Feeding guilds in Collembola based on nitrogen stable isotope ratios, Soil Biology and Biochemistry, vol.37, pp.1718-1725, 2005.

F. S. Chapin, P. A. Matson, and P. Vitousek, Principles of terrestrial ecosystem ecology, 2002.

M. Chomel, C. Fernandez, A. Bousquet-mélou, C. Gers, Y. Monnier et al., Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones, Journal of Ecology, vol.102, pp.411-424, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01756425

R. G. Cragg and R. D. Bardgett, How changes in soil faunal diversity and composition within a trophic group influence decomposition processes, Soil Biology and Biochemistry, vol.33, pp.2073-2081, 2001.

H. Ellenberg, Vegetation ecology of Central Europe. Vegetation ecology of Central Europe, 2009.

S. Enríquez, C. M. Duarte, and K. Sand-jensen, Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content, vol.94, pp.457-471, 1993.

C. Fernandez, M. Santonja, R. Gros, Y. Monnier, M. Chomel et al., Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession, Journal of Chemical Ecology, vol.39, pp.298-311, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01756322

J. Filser, The role of Collembola in carbon and nitrogen cycling in soil, Pedobiologia, vol.46, pp.234-245, 2002.

O. Folin and W. Denis, A colorimetric method for the determination of phenols (and phenol derivatives) in urine, Journal of Biological Chemistry, vol.22, pp.305-308, 1915.

M. T. Fountain and S. P. Hopkin, Folsomia candida (Collembola): a 'standard' soil arthropod, Annual Review of Entomology, vol.50, pp.201-222, 2005.

C. Gaucherel, J. Guiot, and L. Misson, Changes of the potential distribution area of French Mediterranean forests under global warming, Biogeosciences, vol.5, pp.1493-1504, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01457681

M. O. Gessner and E. Chauvet, Ergosterol-to-biomass conversion factors for aquatic hyphomycetes, Applied and Environmental Microbiology, vol.59, pp.502-507, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01494940

M. O. Gessner and A. L. Schmitt, Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi, Applied and Environmental Microbiology, vol.62, pp.415-419, 1996.

J. M. Gobat, M. Aragno, and W. Matthey, Le sol vivant: Bases de pédologie, biologie des sols, Presses Polytechniques et Universitaires Romandes, 2013.

H. M. Grimshaw, S. E. Allen, and J. A. Parkinson, Nutrient elements, Chemical analysis of ecological materials, pp.81-159, 1989.

S. Hättenschwiler and P. M. Vitousek, The role of polyphenols in terrestrial ecosystem nutrient cycling, Trends in Ecology and Evolution, vol.15, pp.1861-1870, 2000.

G. Kalinkat, U. Brose, and B. C. Rall, Habitat structure alters top-down control in litter communities, Oecologia, vol.172, pp.877-887, 2013.

E. Kandeler, C. Kampichler, R. G. Joergensen, and K. Mölter, Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms, Soil Biology and Biochemistry, vol.31, pp.96-102, 1999.

W. Karg, Räuberisch lebende milben als teil des antiphytopathogenen potentials im boden, Arch Phytopathology Plant Protect, vol.31, pp.341-347, 1998.

M. Kaspari and S. P. Yanoviak, Biogeochemistry and the structure of tropical brown food webs, Ecology, vol.90, pp.3342-3351, 2009.

J. N. Klironomos and W. B. Kendrick, Stimulative effects of arthropods on endomycorrhizas of sugar maple in the presence of decaying litter, Functional Ecology, vol.9, pp.528-536, 1995.

H. H. Koehler, Predatory mites (Gamasina, Mesostigmata), Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes, pp.395-410, 1999.
DOI : 10.1016/s0167-8809(99)00045-6

J. Laakso and H. Setälä, Population-and ecosystem-level effects of predation on microbialfeeding nematodes, Oecologia, vol.120, pp.279-286, 1999.

A. B. Lloyd, Lysis of fungal hyphae in soil and its possible relation to autolysis, Phytopathology, vol.56, pp.595-602, 1966.

J. Lussenhop, Mechanisms of microarthropod-microbial interactions in soil, Advances in Ecological Research, vol.23, pp.1-33, 1992.

M. A. Mclean, N. Kaneko, and D. Parkinson, Does selective grazing by mites and collembola affect litter fungal community structure?, Pedobiologia, vol.40, pp.97-105, 1996.

V. Meentemeyer, Macroclimate and lignin control of litter decomposition rates, Ecology, vol.59, pp.465-472, 1978.

S. Meidute, F. Demoling, and E. Baath, Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources, Soil Biology and Biochemistry, vol.40, pp.2334-2343, 2008.

J. Mikola and H. Setälä, No evidence of trophic cascades in an experimental microbialbased soil food web, Ecology, vol.79, pp.153-164, 1998.

J. Mikola and H. Setälä, Productivity and trophic-level biomasses in a microbial-based soil food web, Oikos, vol.82, pp.158-168, 1998.

D. L. Moorhead and R. L. Sinsabaugh, A theoretical model of litter decay and microbial interaction, Ecol Monogr, vol.76, p.76, 2006.

J. Peñuelas, M. Estiarte, B. A. Kimball, S. B. Idso, P. J. Pinter et al., Variety of responses of plant phenolic concentration to CO2 enrichment, Journal of Experimental Botany, vol.47, pp.1463-1467, 1996.

T. Persson, Role of soil animals in C and N mineralization, Ecology of arable land: perspectives and challenges, pp.185-189, 1989.

N. Poinsot-balaguer and M. Kabakibi, Contribution à l'étude des collemboles des Maures, Ecologia mediterranea, vol.13, issue.3, pp.115-120, 1987.

G. A. Polis, The evolution and dynamics of intraspecific predation, Annual Review of Ecology and Systematics, vol.12, pp.225-251, 1981.

J. Poll, S. Marhan, S. Haase, J. Hallmann, E. Kandeler et al., Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere, FEMS Microbiology Ecology, vol.62, pp.268-279, 2007.

S. Ponsard, R. Arditi, and C. Jost, Assessing top-down and bottom-up control in a litterbased soil macroinvertebrate food chain, Oikos, vol.89, pp.524-540, 2000.

K. Poveda, I. Steffan-dewenter, S. Scheu, and T. Tscharntke, Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions, Oikos, vol.108, pp.503-510, 2005.

P. Quézel and F. Médail, Ecologie et biogéographie des forêts du bassin méditerranéen, 2003.

M. Rihani, J. P. Cancela-da-fonseca, and E. Kiffer, Decomposition of beech leaf litter by microflora and mesofauna. II. Food preferences and action of oribatid mites on different substrates, European Journal of Soil Biology, vol.31, pp.67-79, 1995.

A. M. Romani, H. Fischer, C. Mille-lindblom, and L. J. Tranvik, Interactions of Bacteria and Fungi on Decomposing Litter: Differential Extracellular Enzyme Activities, Ecology, vol.87, pp.2559-2569, 2006.

S. Ruzicka, D. Edgerton, M. Norman, and T. Hill, The utility of ergosterol as a bioindicator of fungi in temperate soils, Soil Biology and Biochemistry, vol.32, pp.989-1005, 2000.

T. E. Sackett, A. T. Classen, and N. J. Sanders, Linking soil food web structure to above-and belowground ecosystem processes: a meta-analysis, Oikos, vol.119, 1984.

M. Santonja, V. Baldy, C. Fernandez, J. Balesdent, and T. Gauquelin, Potential shift in plant communities with climate change in a Mediterranean oak forest : consequence on nutrients and secondary metabolites release during litter decomposition, Ecosystems, vol.18, pp.1253-1268, 2015.

M. Santonja, C. Fernandez, T. Gauquelin, and V. Baldy, Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions, Plant and Soil, vol.393, pp.69-82, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01359609

M. Santonja, C. Fernandez, M. Proffit, C. Gers, T. Gauquelin et al., Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest, Journal of Ecology, vol.105, pp.801-815, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01520649

M. Santonja, A. Aupic-samain, E. Forey, and M. Chauvat, Increasing temperature and decreasing specific leaf area amplify centipede predation impact on Collembola, European Journal of Soil Biology, vol.89, pp.9-13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904532

S. Scheu, L. Ruess, and M. Bonkowski, Interactions between microorganisms and soil micro-and mesofauna, Microorganisms in soils: roles in genesis and functions, pp.253-275, 2005.
DOI : 10.1007/3-540-26609-7_12

O. J. Schmitz, D. Hawlena, and G. C. Trussell, Predator control of ecosystem nutrient dynamics, Ecology Letters, vol.13, pp.1199-1209, 2010.

K. Schneider and M. Maraun, Top-down control of soil microarthropods: evidence from a laboratory experiment, Soil Biology and Biochemistry, vol.41, pp.170-175, 2009.

B. Schröder, N. Steiner, I. Merbach, M. Schädler, and J. Filser, Collembolan reproduction in soils from a long-term fertilisation experiment opposes the Growth Rate Hypothesis, 2015.

, European Journal of Soil Biology, vol.68, pp.56-60

S. Staaden, A. Milcu, M. Rohlfs, and S. Scheu, Olfactory cues associated with fungal grazing intensity and secondary metabolite pathway modulate Collembola foraging behaviour, Soil Biology and Biochemistry, vol.43, pp.1411-1416, 2011.

M. P. Thakur and N. Eisenhauer, Plant community composition determines the strength of top-down control in a soil food web motif, Scientific Reports, vol.5, 2015.

M. P. Thakur, M. Herrmann, K. Steinauer, S. Rennoch, S. Cesarz et al., Cascading effects of belowground predators on plant communities are density-dependent, Ecology and Evolution, vol.5, pp.4300-4314, 2015.

M. P. Thakur, T. Künne, J. N. Griffin, and N. Eisenhauer, Warming magnifies predation and reduces prey coexistence in a model litter arthropod system, Proc. R. Soc. B, vol.284, 2017.

J. M. Thibaud, Catalogue des collemboles de France, Zoosystema, vol.39, pp.297-436, 2017.
DOI : 10.5252/z2017n3a1

J. T. Trevors, Sterilization and inhibition of microbial activity in soil, Journal of Microbiological Methods, vol.26, pp.53-59, 1996.

P. U. Van-soest and R. H. Wine, Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents, Journal of the Association of Official Analytical Chemists, vol.50, pp.50-55, 1967.

L. Vivanco and A. T. Austin, Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology, vol.96, pp.727-736, 2008.

S. Visser, Role of the soil invertebrates in determining the composition of soil microbial communities. Ecological Interactions in Soil, pp.297-317, 1985.

O. Vucic-pestic, K. Birkhofer, B. C. Rall, S. Scheu, and U. Brose, Habitat structure and prey aggregation determine the functional response in a soil predator-prey interaction, Pedobiologia, vol.53, pp.307-312, 2010.

D. A. Wardle and P. Lavelle, Linkages between soil biota, plant litter quality and decomposition, Driven by nature: plant litter quality and decomposition. CAB international, pp.107-124, 1997.

D. A. Wardle, Communities and ecosystems: linking the aboveground and belowground components, 2002.

D. A. Wardle, L. R. Walker, and R. D. Bardgett, Ecosystem properties and forest decline in contrasting long-term chronosequences, Science, vol.305, pp.509-513, 2004.

D. Weller, Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annual Review Phytopathology, vol.26, pp.379-407, 1988.

J. Wissuwa, J. A. Salamon, and T. Frank, Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria, Soil Biology and Biochemistry, vol.50, pp.96-107, 2012.

V. Wolters, Soil invertebrates-Effects on nutrient turnover and soil structure-A Review, Zeitschrift für Pflanzenernährung und Bodenkunde, vol.154, pp.389-402, 1991.