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Abstract
The purpose of this paper is twofold. First, we examine convergence properties of an inexact 
proximal point method with a quasi distance as a regularization term in order to find a 
critical point (in the sense of Toland) of a DC function (difference of two convex functions). 
Global convergence of the sequence and some convergence rates are obtained with additional 
assumptions. Second, as an application and its inspiration, we study in a dynamic setting, 
the very important and difficult problem of the limit of the firm and the time it takes to reach 
it (maturation time), when increasing returns matter in the short run. Both the formalization 
of the critical size of the firm in term of a recent variational rationality approach of human 
dynamics and the speed of convergence results are new in Behavioral Sciences.

Keywords Proximal point method · DC function · Kurdyka–Łojasiewicz inequality · Limit 
of the firm · Variational rationality

1 Introduction

In this paper, we show how a generalized proximal point method applied to DC functions (a 
function which can be written as difference of two convex functions) can be a nice tool to
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solve a dynamic version of the very important and difficult problem of the limit of the firm
and the time it takes to reach it by using the recent variational rationality (VR) approach of
human dynamics; see Soubeyran (2009, 2010, 2016). To this end, we consider a proximal
point method which finds at each iteration an approximated solution of a minimization prob-
lem involving a convex approximation of the objective DC function (possible non-convex)
and a generalized regularization (possible non-symmetric) and we consider a hierarchical
firm including an entrepreneur, a profile of workers, and a succession of periods where the
entrepreneur can hire, fire or keep working workers in a changing environment. Each period,
the entrepreneur chooses how much to produce of the same final good (of a given quality)
and sells each unit of this good at the same and fixed price. Therefore, we show that a firm can
achieve an optimal size (and the time it takes to reach it) by means of a generalized proximal
method for DC functions.

It is well known that the proximal point method is one of the most studied method for
finding zeros of maximal monotone operators, and in particular, it is used to solve con-
vex optimization problems. The proximal point method was introduced into optimization
literature by Martinet (1970) and popularized by Rockafellar (1976), who showed that the
algorithm can be used for finding zeros of monotone operators, even if each subproblem
is performed inexactly, which is an important consideration in practice; see e.g. Bento and
Soubeyran (2015a, b), Burachik and Svaiter (2001), Zaslavski (2010). In particular, the fol-
lowing algorithm has been used for finding a minimizer of a convex function

xk+1 = arg min
x∈Rn

{ f (x)+ 1
2λk

||x − xk ||2}. (1)

Even the idea underlying the convergence results of (1) being based on the monotonicity of 
subdifferential operators of convex functions this procedure has been adapted to deal with 
possible non-convex functions; see Hare and Sagastizábal (2009), Kaplan and Tichatschke 
(1998), Pan and Chen (2007), Papa Quiroz and Oliveira (2012) and references therein. To 
the best of our knowledge, a proximal point method for DC function was first introduced 
by Sun et al. (2003). There is a huge literature on DC theory both from a theoretical point 
of view and for algorithmic purposes; see e.g. Bačák and Borwein (2011), Fernández Cara 
and Moreno (1988), Hartman (1959), Hiriart-Urruty (1986), Moudafi and Maingé (2006), 
Muu and Quoc (2010), Pham and Souad (1986), Pham and An (1997), Pham et al. (2005), 
Souza and Oliveira (2015), Sun et al. (2003). DC optimization algorithms have been proved 
to be particularly successful for analyzing and solving a variety of highly structured and 
practical problems; see, for instance, Pham et al. (2005) and references therein. Applications 
of DC theory in game theory can be found in Muu and Quoc (2010), plasma physics and 
fluid mechanics can be found in Fernández Cara and Moreno (1988), and examples of DC 
functions from various parts of analysis can be found in Bačák and Borwein (2011).

On the other hand, our regularization term in (1) is no longer an Euclidian norm but a quasi  
distance, where the quasi distance from a point x to an other point y can be different from 
the reverse. Soubeyran (2009, 2010, 2016) showed how such a quasi distance modelizes in 
Behavioral Sciences costs of being able to move from on position to an other one where costs 
of being able to move from x to y are usually different from costs of being able to move from 
y to x . Hence the symmetric assumption of distances must be dropped. Nevertheless, a quasi 
distance can preserve nice properties useful for the convergent analysis, such as continuity 
and coercivity. Extensions of proximal point methods by using nonlinear or generalized 
regularizations were considered, for instance, in Bento and Soubeyran (2015a), Bento and 
Soubeyran (2015b), Burachik and Svaiter (2001), Chen and Teboulle (1993), Eckstein (1993), 
Kiwiel (1997), Moreno et al. (2012), Pan and Chen (2007). The works (Bento and Soubeyran



2015a,b; Moreno et al. 2012) are devoted to study convergence properties of generalized
proximal point methods where the regularization term is a quasi distance (or quasi metric).
Bento and Soubeyran (2015a) discussed how such generalized proximal point method can
be a nice tool to modelize the dynamics of human behaviors in the context of the (VR)
variational rationality approach. Applications of quasi metric spaces to Behavioral Sciences
(Psychology, Economics, Management, Game theory, etc.) and theoretical computer science
can be found for instance inBao et al. (2016a), Brattka (2003),Künzi et al. (2006), Romaguera
and Sanchis (2003).

The goal of this paper is two-fold. Firstly, we propose an inexact generalized proximal
linearized algorithm for solving optimization problems involving a DC function which is
neither necessarily convex nor smooth. We also study global convergence of the sequence
and some convergence rate results under reasonable assumptions. As a second contribution,
we provide an application, in a dynamic context, to the very important problem of the limit
of the firm, when increasing returns (concave costs of production) prevail in the short run,
using the recent (VR) variationality approach of a lot of stay/stability and change dynamics
in Behavioral Sciences (see Soubeyran 2009, 2010, 2016). This is a difficult problem, both
for conceptual and technical reasons. Different variants of this example can be found in
Soubeyran (2009, 2010), Bento and Soubeyran (2015a, b), and Bao et al. (2015). But none
of them examines the very important case of increasing returns, which is the realistic case
for production costs, as we do here, as an application of the proximal point method for DC
optimization and its related speed of convergence.

The organization of this paper is as follows. In Sect. 2 some concepts in subdifferential
theory, DC optimization and quasi distance are presented. In Sect. 3 an inexact generalized
proximal linearized algorithm is discussed. In Sect. 4, the convergence analysis of themethod
is studied andwecompare our resultswith the existingDC literature. Finally, Sect. 5 is devoted
to determine the limit of the firm, when increasing returns matter in the short run. Future
works are mentioned in the conclusions.

2 Preliminaries

Let Γ0(Rn) denote the convex cone of all the proper (i.e. not identically equal to+∞) lower
semicontinuous convex functions from Rn to R ∪ {+∞}, let 〈·, ·〉 be the canonical inner
product, and || · || the corresponding Euclidean norm onRn . We denote byD = int(dom(h)),
where the term “int X” refers to the interior of the set X . The effective domain of a function
f , denoted by dom( f ), is defined as

dom( f ) = {x ∈ Rn : f (x) < +∞}.

Let {xk} be a sequence in Rn . We call cluster point (or accumulation point) of the sequence
{xk} every point x ∈ Rn such that there exists a subsequence {xk j } of {xk} converging to x .

2.1 Subdifferential theory

Let us recall some definitions and properties of the subdifferential theory which can be found,
for instance, in Mordukhovich and Shao (1996), Rockafellar and Wets (1998).

Definition 1 Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function.



1. The Fréchet subdifferential of f at x , denoted by ∂̂ f (x), is defined as follows

∂̂ f (x) =






{v ∈ Rn : lim inf
y→x
y (=x

f (y)− f (x)−〈v,y−x〉
||x−y|| ≥ 0}, if x ∈ dom( f );

∅, if x /∈ dom( f ).

2. The limiting-subdifferential of f at x , denoted by ∂ f (x), is defined as follows

∂ f (x)=
{
{v ∈ Rn : ∃xk → x, f (xk) → f (x), vk ∈ ∂̂ f (xk)→v}, if x ∈ dom( f );
∅, if x /∈ dom( f ).

We denote by dom ∂ f = {x ∈ Rn : ∂ f (x) (= ∅}. Recall that the limiting-subdifferential is
closed and ∂̂ f (x) ⊂ ∂ f (x). If f is a proper, lower semicontinuous and convex function, and
x ∈ dom( f ), then ∂̂ f (x) coincides with the classical subdifferential in the sense of convex
analysis and it is nonempty, closed and convex set.

2.2 Difference of convex functions

Let DC(Rn) denote the class of DC functions defined on Rn . A general DC program is of
the form

f ∗ = inf{ f (x) = g(x) − h(x) : x ∈ Rn},

with g, h ∈ Γ0(Rn). Such a function f is called a DC function while the convex functions g
and h are DC components of f . In DC programming, the convention

(+∞) − (+∞) = +∞

has been adopted to avoid the ambiguity (+∞) − (+∞) that does not present any interest
here. Note that the finiteness of f ∗ implies that dom(g) ⊆ dom(h). Such inclusion will be
assumed throughout the paper.

Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous DC function (resp.
bounded from below). Then, f has lower semicontinuous DC components g and h, with
inf x∈Rn h(x) = 0 (resp. g bounded from below); see Yassine et al. (2001, Proposition 2.4)
and Lhilali Alaoui (1996, Proposition 3.2). It is well known that a necessary condition for
x ∈ dom( f ) to be a local minimizer of f is ∂h(x) ⊂ ∂g(x). The same condition holds true
when x is a local maximum of f ; see Hiriart-Urruty (1986). We will focus our attention
on finding points such that ∂h(x) ∩ ∂g(x) (= ∅ called critical points of f . This concept
was introduced in the DC literature by Toland (1979) and has been used widely; see for
instance An et al. (2009), Moudafi and Maingé (2006), Pham and Souad (1986), Pham and
An (1997), Pham et al. (2005), Souza and Oliveira (2015), Sun et al. (2003) and references
therein. Clearly, local minimizer and local maximum are critical points.

It is worth to mention that the class of DC functions is the vector space generated by the
cone of convex functions which contains for instance the class of lower-C2 functions ( f is said
to be lower-C2 if f is locally a supremum of a family of C2 functions). In particular, DC(Rn) 
contains the space C1,1 which is the class of continuously differentiable functions whose
its gradient is locally Lipschitz. DC(Rn) is closed under the operations usually considered 
in optimization. For instance, a linear combination, a finite supremum or the product of
two DC functions remains DC. Locally DC functions on Rn are DC functions on Rn ; see  
Hiriart-Urruty (1986) and references therein for the details.



2.3 Quasi distance

Definition 2 A quasi metric space is a pair (X , q) such that X is a nonempty set, and q :
X × X → R+, called a quasi metric or quasi distance, is a mapping satisfying:

1. For all x, y ∈ X , q(x, y) = q(y, x) = 0 ⇔ x = y;
2. For all x, y, z ∈ X , q(x, z) ≤ q(x, y)+ q(y, z).

Therefore, metric spaces are quasi metric spaces satisfying the symmetric property
q(x, y) = q(y, x).Quasi distances are not necessarily convexor differentiable but it preserves
nice properties such as continuity and coercivity; see assumption A3 in Sect. 4. Examples
of quasi distances can be found in Moreno et al. (2012) and references therein. The full
justifications for using quasi distances in order to modelize costs of moving in Behavioral
Sciences are given in the presentation of the Variational Rationality approach, see Soubeyran
(2009, 2010, 2016), and more recently in Soubeyran (2018a, b). A quick justification is that
costs of moving are non symmetric, because costs of moving from x to y are not the same as
costs of moving from y to x . Furthermore, the triangle inequality comes from the fact that
detours are costly, because of some kind of fixed starting and stopping costs for each detour.
A complete answer for this justification would be too long. It requires to have in mind the
framework of the Variational Rationality approach, where resistance to change plays a major
role. For other paperswhere other generalized distances are used tomodelize costs ofmoving,
including w-distances, proximal distances, Bregman distances, and partial quasi distances
as regularization terms, see Moreno et al. (2012) for quasi distances, Bao et al. (2016b) for
w-distances and partial quasi distances, Bento et al. (2016) for proximal distances and Cruz
Neto et al. (2010) for Bregman distances.

3 A generalized proximal linearized algorithm

Let f : Rn → R∪{+∞} be a proper DC function bounded from belowwith DC components
g and h, i.e., f (x) = g(x) − h(x) with g, h ∈ Γ0(Rn). In this section, we consider a
generalized proximal linearized algorithm for finding a critical point of the DC function f .
At each iteration our algorithm linearizes the function f (x) but never directly minimize it,
while it minimizes the function g(x) in conjunction with the linearization of h(x) and a
generalized regularization. As mentioned before, this kind of linearized method has proved
to be efficient for solving a large number of problems, for instance, the convex problem of
minimizing a sum of two convex functions; see Bolte et al. (2014), Goldfarb et al. (2013),
Kiwiel et al. (1999). Our method minimizes upper-bounds of the objective function as we
will see in Remark 4. This kind of method is often called majorization-minimization (see
Lange et al. 2000) or successive upper-bound minimization (see Razaviyayn et al. 2016).
Majorizing surrogates have been used successfully in large scale problems (Mairal 2015),
signal processing literature about sparse estimation (Daubechies et al. 2004; Gasso et al.
2009), linear inverse problems in image processing (Ahn et al. 2006; Erdogan and Fessler
1999), and matrix factorization (Lee and Seung 2001; Mairal et al. 2010).

The algorithms analyzed in this paper are based on the computation of the proximity
operator popularized by Rockafellar (1976). Let f : Rn → R ∪ {+∞} be a proper, convex
and lower semicontinuous function, λ > 0 and y ∈ Rn , the proximal operator at y with
respect to λ f proxλ f : Rn → Rn is defined by



proxλ f (y) = arg min
x∈Rn

{
f (x)+ 1

2λ
||x − y||2

}
.

As remarked by Rockafellar (1976), from a practical point of view, it is essential to replace
the proximal point with an approximate version of it. Therefore, for a given ε ≥ 0, we say
that z ∈ Rn is an approximation of proxλ f (y) with ε-precision, denote by z ≈ε proxλ f (y),
if

f (z)+ 1
2λ

||z − y||2 ≤ f (x)+ 1
2λ

||x − y||2 + ε, ∀x ∈ Rn,

i.e.,

z ≈ε arg min
x∈Rn

{
f (x)+ 1

2λ
||x − y||2

}
.

This kind of inexact proximal algorithm is analyzed in Zaslavski (2010) for convex functions.
Next, we propose an inexact generalized proximal linearized algorithm for solving opti-

mization problems involving a DC function, where the term generalized stands to replace the
Euclidean distance by a quasi distance in the proximal operator.

Algorithm 1—generalized inexact method

Step 1 Given an initial point x0 ∈ D, µ > 0 and two auxiliar sequences {εk}, with εk ≥ 0
for all k ∈ N, and {λk} a bounded sequence of positive numbers such that lim infk λk > 0.
Set k = 0.

Step 2 Calculate

wk ∈ ∂h(xk). (2)

Step 3 Compute (xk+1, ξ k+1) ∈ Rn × Rn such that

xk+1 ≈εk arg min
x∈Rn

{
g(x) − 〈wk, x − xk〉 + 1

2λk
q2(xk, x)

}
, (3)

with

ξ k+1 ∈ ∂g(xk+1) (4)

where

||ξ k+1 − wk || ≤ µq(xk, xk+1). (5)

If xk+1 = xk , stop. Otherwise, set k := k + 1 and return to Step 2.

Remark 1 Thewell definition of {wk} and {xk} is guaranteed if h is a convex function, and g is
a convex and bounded from below function, respectively. It is straightforward to chech that, if
f is a DC function bounded from below, then f admits a DC decomposition with g bounded
from below. The conditions on the parameters {λk} are that it is a bounded sequence of
positive numbers such that lim infk λk > 0. These conditions are equivalent to the following:
there exist constants c1, c2 ∈ R such that

0 < c1 ≤ λk ≤ c2, ∀k ∈ N. (6)



Remark 2 If εk = 0, for all k ∈ N (called exact version of Algorithm 1), then (3) becomes
the following:

xk+1 ∈ arg min
x∈Rn

{
g(x) − 〈wk, x − xk〉 + 1

2λk
q2(xk, x)

}
, (7)

which implies that

0 ∈ ∂g(xk+1) − wk + 1
2λk

∂q2(xk, ·)(xk+1). (8)

Since, for each k ≥ 0, themap y 5→ q(xk, y) is locally Lipschitz, i.e., q is locally Lipschitz in
the second variable (see Moreno et al. 2012, Proposition 3.6) it follows from (Mordukhovich
and Shao 1996, Theorem 7.1) that ∂q2(xk, ·)(xk+1) ⊂ 2q(xk, xk+1)∂q(xk, ·)(xk+1). Thus,
from (8), we obtain that there exist ξ k+1 ∈ ∂g(xk+1) and ηk+1 ∈ ∂(q(xk, ·))(xk+1) such that

wk − ξ k+1 = ηk+1

λk
q(xk, xk+1). (9)

Therefore, (9) implies that any solution xk+1 of (7) is also a solution of (3) satisfying (5) as
long as {xk} is bounded (which implies that {ηk} is bounded; see remark below). In this con-
text, the constantµ in (5) can be taken as any upper bound of the (bounded) sequence { ηk+1

λk
}.

Remark 3 Note that we are not assuming the boundedness of the sequences {wk}, {ξ k} and
{ηk}. It comes from the fact the subdifferential of a locally Lipschitz function is locally
bounded (see Rockafellar and Wets 1998, Theorem 9.13) together with assumption that {xk}
is bounded. Recall that wk ∈ ∂h(xk), ξ k ∈ ∂g(xk) and ηk ∈ ∂(q(xk−1, ·))(xk) taking in
account that h, g are convex functions (and hence locally Lipschitz) and q(xk−1, ·) is locally
Lipchitz (see Moreno et al. 2012, Proposition 3.6).

Remark 4 Note that in (7), instead of minimize f (·) = g(·) − h(·) directly, we minimize
the linear approximation g(·) − 〈wk, · − xk〉 in addition with the proximal regularization.
Without loss of generality such an approximation can be taken as g(·)−h(xk)−〈wk, ·− xk〉
because the term h(xk) is constant. Then (7) can be viewed as

xk+1 ∈ arg min
x∈Rn

ϕk(x), (10)

whereϕk(x) = g(x)−h(xk)−〈wk, x−xk〉+ 1
2λk

q2(xk, x). In this case, for each k ≥ 0, from

the convexity of h, we have f (x) ≤ ϕk(x), for all x ∈ dom( f ). Therefore, in the problem
(10) one minimizes upper-bounds of the objective function f and each minimization step
decreases the value of the objective function, i.e., f (xk+1) < f (xk), for all k ∈ N. This will
be prove in Theorem 1.

We emphasize that our algorithm is different of the DCA algorithm considered by Pham
and Souad (1986). Our algorithm shares the same idea of DCA algorithm, namely, linearizing
some component g(·) or h(·); or both of the DC objective function f (x) = g(x) − h(x).
However, our algorithm is simpler, because linearization is done directly, and not on the dual
components, besides the fact that it is well known that subgradient method may not converge
or decrease monotonically even for (non-differentiable) convex functions; see Polyak (1978).
An example comparing the performance of a proximal point method and DCA algorithm can
be found in Moudafi and Maingé (2006). In the recent “variational rationality approach”
(Soubeyran 2009, 2010, 2016), the perturbation term of a proximal algorithm can be seen as



a crude formulation of the complex concept of resistance to change,while the utility generated
by a change in the objective function can represent a crude formulation of the motivation to
change concept; see Bento and Soubeyran (2015a, b). Algorithm 1 is closely related to the
proximal method proposed by Sun et al. (2003), but our modeling approach seems to be more
appropriate for applications in behavioral science using the “variational rationality approach”
where costs of being able to change froma current position to other one, and costs of being able
to stay in the current position are not necessarily symmetric and equal to zero, respectively;
see Bento and Soubeyran (2015a,b), Moreno et al. (2012). The fact that the inexact proximal
point algorithm is well adapted to applications in Behavioral Sciences is shown extensively
in Bento and Soubeyran (2015a, b), using the variational rationality approach of human
behaviors (Soubeyran 2009, 2010, 2016). On the contrary, the DCA method proposed by
Pham and Souad (1986) is inappropriate for direct applications in Behavioral Sciences,
because it uses, at the very beginning, a dual formulation for each component g(·) and h(·),
who have no clear behavioral meaning and would be very expensive (if not impossible) to
calculate, even for a very clever agent.

4 Convergence analysis

DCA algorithm was first introduced by Pham and Souad (1986) and the proximal point
method for DC functions was first analyzed by Sun et al. (2003). These methods have been
extensively developed since then and have the following convergence properties:

(i) The objective function f decreases through the sequence {xk}, i.e., f (xk+1) < f (xk),
for all k ∈ N;

(ii) The sequence is asymptotically regular, i.e.,
∑+∞

k=0 ||xk+1 − xk ||2 < ∞;
(iii) If the sequence {xk} is bounded, then its cluster points are critical points of f ;

see Moudafi and Maingé (2006), Pham and Souad (1986), Pham and An (1997), Pham et al.
(2005), Souza and Oliveira (2015), Sun et al. (2003). Next, we prove that our method has
the above convergence behavior and further we also prove global convergence of the method
(convergence of the whole sequence) and establish some convergence rates under additional
assumptions in Sects. 4.1 and 4.2, respectively.

Theorem 1 The sequence {xk} generated by Algorithm 1 satisfies:

1. either the algorithm stops at a critical point;
2. or f εk-decreases, i.e., f (xk+1) < f (xk)+ εk , ∀k ≥ 0.

Proof If xk+1 = xk , it follows from (5) that ξ k+1 = wk , and so, wk ∈ ∂h(xk) ∩ ∂g(xk)
which means that xk is a critical point of f . Now, suppose that xk+1 (= xk . From (2) and (3),
we have

h(xk)+ 〈wk, xk+1 − xk〉 ≤ h(xk+1),

and

g(xk+1) − 〈wk, xk+1 − xk〉 + 1
2λk

q2(xk, xk+1) ≤ g(xk)+ εk,

respectively. Adding last two inequalities, we obtain

f (xk+1)+ 1
2λk

q2(xk, xk+1) ≤ f (xk)+ εk, (11)

67which leads to f (xk+1) <  f (xk ) + εk .



Proposition 1 Consider {xk} generated by Algorithm 1. If
∑+∞

k=0 εk < ∞, then
∑∞

k=0 q
2

(xk, xk+1) < ∞ and, in particular, lim
k→+∞

q(xk, xk+1) = 0.

Proof From (11), we obtain

1
2λk

q2(xk, xk+1) ≤ f (xk) − f (xk+1)+ εk,

and therefore

1
2

n−1∑

k=0

1
λk

q2(xk, xk+1) ≤ f (x0) − f (xn)+
n−1∑

k=0

εk,∀n ∈ N. (12)

Since f is bounded from below and (6) holds, taking n goes to +∞ in (12), we
obtain

∑∞
k=0 q

2(xk, xk+1) < ∞ because
∑+∞

k=0 εk < ∞. In particular, we have
limk→+∞ q(xk, xk+1) = 0. 67

Theorem 2 Consider {xk} generated by Algorithm 1. Then, every cluster point of {xk}, if any,
is a critical point of f .

Proof Let x̂ be a cluster point of {xk}, and let {xk j } be a subsequence of {xk} converging to
x̂ . Since wk j ∈ ∂h(xk j ) and {xk j } is bounded, it follows from (Rockafellar and Wets 1998,
Theorem 9.13) that {wk j } is also bounded. So, we can suppose that {wk j } converges to a point
ŵ (one can extract other subsequences if necessary). Hence, combining (5) with Proposition
1, we have

lim
j→+∞

ξ k j+1 = lim
j→+∞

wk j = ŵ. (13)

On the other hand, it follows from definition of the algorithm that wk j ∈ ∂h(xk j ) and
ξ k j+1 ∈ ∂g(xk j+1). Thus, letting j goes to +∞ in last two inclusions, from (13), we obtain
ŵ ∈ ∂h(x̂) ∩ ∂g(x̂). This means that x̂ is a critical point of f , and the proof is completed.67

4.1 Global convergence

Dealingwith descentmethods for convex functions, we can expect that the algorithmprovides
globally convergent sequences, i.e., convergence of the whole sequence. When the functions
under consideration are neither convex nor quasiconvex, the method may provide sequences
that exhibit highly oscillatory behaviors, and partial convergence results are obtained. The
Kurdyka–Łojasiewicz property has been successfully applied to analyze various types of
asymptotic behavior, in particular, proximal point methods; see for instance Attouch et al.
(2013), Bento and Soubeyran (2015b), Frankel et al. (2015).

Global convergence of DCA algorithm (a subgradient-type algorithm) was considered by
An et al. (2009) for subanalytic DC functions. A function f : Rn → R is called subanalytic
if its graph is a subanalytic subset of Rn ×R. The set A is called subanalytic if each point of
Rn admits a neighborhood V such that

A ∩ V = {x ∈ Rn : (x, y) ∈ B},

where B is a bounded semianalytic subset of Rn ×Rm for some m ≥ 1. A subset A is called
semianalytic if each point ofRn admits a neighborhood V for which A∩V assumes the form



as follows
p⋃

i=1

q⋂

j=1

{x ∈ V : fi j (x) = 0, gi j (x) > 0},

where the functions fi j , gi j : V → R are real-analytic for all i = 1, . . . , p and j =
1, . . . , q. Readers who are unfamiliar with “subanalytic” might in a first reading replace it
by “semialgebraic”. A set A ⊂ Rn is called semialgebric if it assumes the following form:

A =
p⋃

i=1

q⋂

j=1

{x ∈ V : fi j (x) = 0, gi j (x) > 0},

where fi j , gi j : Rn → R are polynomial functions for all i = 1, . . . , p and j = 1, . . . , q.
The class of semialgebraic sets provides an important subclass of subanalytic sets; see for
instance An et al. (2009), Bolte et al. (2007).

A function f : Rn → R ∪ {+∞} is said to have the Kurdyka–Łojasiewicz property at
x∗ ∈ dom ∂ f if there exist η ∈ (0,+∞], a neighborhoodU of x∗ and a continuous concave
function ϕ : [0, η) → R+ (called desingularizing function) such that:

ϕ(0) = 0, ϕ is C1 on (0, η), ϕ′(s) > 0, ∀s ∈ (0, η); (14)

ϕ′( f (x) − f (x∗))dist(0, ∂ f (x)) ≥ 1, ∀x ∈ U ∩ [ f (x∗) < f < f (x∗)+ η], (15)

where [η1 < f < η2] = {x ∈ Rn : η1 < f (x) < η2} and C1 means differentiable with
continuous derivative; see the definition of the Kurdyka–Łojasiewicz property and other
references about this subject in Attouch et al. (2013).

Remark 5 One can easily check that the Kurdyka–Łojasiewicz property is satisfied at any
non-critical point x̂ ∈ dom ∂ f . It follows from the Kurdyka–Łojasiewicz property that the
critical points of f lying in U ∩ [ f (x∗) < f < f (x∗) + η] have the same critical value
f (x∗). If f is differentiable and f (x∗) = 0, then (15) can be rewritten as

∇(ϕ ◦ f )(x) ≥ 1,

for each convenient x ∈ Rn . This property basically expresses the fact that a function can be
made sharp by a reparameterization of its values; see Attouch et al. (2013).

From Bolte et al. (2007, Theorem 3.1), a subanalytic function f which is continuous
when restricted to its closed domain satisfies the Kurdyka–Łojasiewicz property with desin-
gularising function ϕ(t) = C

θ t
θ with C > 0 and θ ∈ (0, 1]. We prove in the sequel global

convergence and rate of convergence of the proximal point method as in An et al. (2009)
which deals with a subgradient-type method involving subanalytic DC functions. However,
we go further proving the global convergence of the proximal sequence for DC functions
that satisfy the Kurdyka–Łojasiewicz property which include the subanalytic DC functions.

From now on in this section, in order to obtain global convergence results, we consider the
exact version of Algorithm 1 which means to set εk = 0, for all k ≥ 0, under the following
assumptions:

A1. f is continuous;
A2. h is continuously differentiable with its gradient Lipschitz with constant L > 0;
A3. There exist real numbers α > 0 and β > 0 such that

α||x − y|| ≤ q(x, y) ≤ β||x − y||, ∀x, y ∈ Rn . (16)



Last condition was used to prove convergence of the proximal point algorithm for non-
convex and non-smooth functions that verify the Kurdyka–Łojasiewicz property, see Bento
andSoubeyran (2015a, b),Moreno et al. (2012).Moreno et al. (2012) present several examples
of quasi distances highlighting two that satisfy (16).

Theorem 3 Let {xk} be the sequence generated by the exact version of Algorithm 1. Assume
that conditions A1–A3 hold, {xk} is bounded and f satisfies the Kurdyka–Łojasiewicz prop-
erty at a cluster point x̂ of {xk}. Then {xk} converges to x̂ which is a critical point of f .

Proof It is straightforward to check the assertion just applying (Attouch et al. 2013, Theorem
2.9) together with the following facts:

1. It follows from (6) that 0 < c1 ≤ λk ≤ c2, for all k ≥ 0. Hence, for each k, combining
(11) with (16), we obtain

f (xk+1)+ a||xk+1 − xk ||2 ≤ f (xk), (17)

where a := α2

2c2
> 0;

2. From definition of Algorithm 1 there exists ξ k+1 ∈ ∂g(xk+1) such that (5) holds. Note
that

ξ k+1 − ∇h(xk+1) = ξ k+1 − ∇h(xk)+ ∇h(xk) − ∇h(xk+1),

where ξ k+1 − ∇h(xk+1) ∈ ∂ f (xk+1). Thus, from triangular inequality, we have

||ξ k+1 − ∇h(xk+1)|| ≤ ||ξ k+1 − ∇h(xk)|| + ||∇h(xk+1) − ∇h(xk)||
≤ µq(xk, xk+1)+ L||xk+1 − xk ||
≤ µβ||xk+1 − xk || + L||xk+1 − xk ||
= b||xk+1 − xk ||, (18)

for b = (µβ+ L), where the second inequality is due to (5) and assumption A2, the third
inequality comes from (16);

3. Let {xk j } be a subsequence of {xk} converging to x̂ . Since f is bounded from below
it follows from Theorem 1 that { f (xk)} is convergent. Thus, from A1, we have that
{ f (xk j )} converges to f (x̂), and so { f (xk)} converges to f (x̂).

This complete the proof. 67

4.2 Convergence rates

Next, we study the convergence rate of the sequence { f (xk)} depending on the nature of the
desingularizing function ϕ. We prove a similar rates of convergence of the sequence { f (xk)}
generated by our proximal method as the ones obtained by An et al. (2009, Theorem 3.3) for
the sequence {xk} generated by DCA algorithm. Denote by rk := f (xk)− f (x∗), where x∗

is the limit point of {xk}.
Theorem 4 Let {xk} be the sequence generated by the exact version of the Algorithm 1.
Assume that conditions A1–A3 hold, {xk} is bounded and f satisfies the Kurdyka–Łojasiewicz
property at the limit point x∗ of {xk} with desingularizing function ϕ(t) = C

θ t
θ with C > 0

and θ ∈ (0, 1]. Then, the following estimations hold:

1. If θ = 1, the sequence {xk} converges in a finite number of steps;



2. If θ ∈ [ 12 , 1), then there exist constants c > 0 and k0 ∈ N such that

f (xk) − f (x∗) = O [exp(−c(k − k0))] ;
3. If θ ∈ (0, 1

2 ), then there exists c > 0 such that

f (xk) − f (x∗) = O
[
c(k − 1)

−1
1−2θ

]
.

Proof Since f is bounded from below from Theorem 1 (with εk = 0), we have that { f (xk)}
converges and, from A1, it converges to f (x∗) because xk converges to x∗. Hence, we obtain
that {rk} is convergent sequence such that rk ≥ 0, for all k ∈ N, and there exist k0 ∈ N and a
neighborhoodN (x∗) such that xk ∈ N (x∗), for all k ≥ k0, where the Kurdyka–Łojasiewicz
property holds. Combining (15) with (17) and (18), we obtain

(ϕ′)2(rk+1)(rk − rk+1) ≥ a
b2

(ϕ′)2(rk+1)||ξ k+1 − ∇h(xk+1)|| ≥ a
b2

, (19)

taking in account that ξ k+1 − ∇h(xk+1) ∈ ∂ f (xk+1). If θ = 1, from (19), we have C2(rk −
rk+1) ≥ a

b2 > 0 which contradicts the fact that {rk} converges. Therefore, there exists some
k ∈ N such that rk = 0, and the algorithm terminates in a finite number of steps. Now, assume
that rk > 0, for all k ∈ N. For θ ∈ (0, 1), (19) gives

C2r2θ−2
k+1 (rk − rk+1) ≥ a

b2
. (20)

Since rk → 0, if θ ∈ [1/2, 1), then 0 < 2 − 2θ ≤ 1 and we have (enlarging k0 if necessary)
that r2−2θ

k+1 ≥ rk+1, for all k ≥ k0. Thus, (20) implies that rk+1 ≤ ( 1
1+d )rk , where d = a

b2 .
Using last inequality successively one has

rk+1 ≤ rk0

(
1

1+ d

)k−k0+1

= rk0 exp
[
− log(1+ d)(k − k0 + 1)

]
,

and the second statement is proved. Now, assume that θ ∈ (0, 1/2). Set γ (t) := C
1−2θ t

2θ−1.
Then,

γ (rk+1) − γ (rk) =
∫ rk+1

rk
γ ′(t)dt = C

∫ rk

rk+1

t2θ−2dt ≥ C(rk − rk+1)r
2θ−2
k . (21)

Weconsider two cases: if r2θ−2
k+1 ≤ 2r2θ−2

k , combining (21)with (20),weobtain thatγ (rk+1)−
γ (rk) ≥ a

2b2 . On the other hand, if r2θ−2
k+1 > 2r2θ−2

k , since 2θ − 2 < 2θ − 1 < 0, we obtain
2θ−1
2θ−2 > 0, and thus, r2θ−1

k+1 > qr2θ−1
k , where q = 2

2θ−1
2θ−2 . Therefore,

γ (rk+1) − γ (rk) = C
∫ rk

rk+1

t2θ−2dt >
C

1 − 2θ
(q − 1)r2θ−1

k ≥ C
1 − 2θ

(q − 1)r2θ−1
k0

. (22)

Set ĉ := min{ a
2b2 ,

C
1−2θ (q − 1)r2θ−1

k0
}. Then

γ (rk+1) − γ (rk) ≥ ĉ, ∀k ≥ k0.

This implies

γ (rk+1) ≥ γ (rk+1) − γ (rk0) ≥
k∑

n=k0

γ (rn+1) − γ (rn) ≥ ĉ(k − k0).

Then, rk+1 ≤
[
(1−2θ)

C ĉ(k − k0)
] 1
2θ−1 and the desired result is proved. 67



Next, we study the rate of convergence of the sequence {xk}. Besides the fact that our
method is different to the one considered in An et al. (2009) our next result differs to Theorem
3.3 by An et al. (2009) mainly because it does not depend on the nature of the desingularizing
function ϕ.

Theorem 5 Let {xk} be the sequence generated by the exact version of Algorithm 1. Assume
that conditions A1–A3 hold, {xk} is bounded and f satisfies the Kurdyka–Łojasiewicz prop-
erty at the limit point x∗ of {xk} with desingularising function ϕ. Set ϕ̃(t) = max{ϕ(t),√t}.
Then, ||xk − x∗|| = O

[
ϕ̃( f (xk−1) − f (x∗))

]
.

Proof By assumption xk converges to x∗, then there exist K ∈ N and a neighborhoodN (x∗)
such that xk ∈ N (x∗), for all k ≥ K , where the Kurdyka–Łojasiewicz property holds. We
may suppose that rk > 0, for all k ∈ N, because otherwise the algorithm terminates in a
finite number of steps. Taking in account fact on the proof of Theorem 3, it is straightforward
to adapt the ideas in the proof of Attouch et al. (2013, Lemma 2.6) to obtain the following
estimation:

2||xk+1 − xk || ≤ ||xk − xk−1|| + M[ϕ( f (xk) − f (x∗)) − ϕ( f (xk+1) − f (x∗))],
for some constant M > 0. Summing up this inequality for k = K , . . . , n, we have

n∑

k=K

||xk+1 − xk || ≤ ||xK − xK−1|| + Mϕ(rK ).

Using the triangular inequality and letting n → +∞, we obtain

||xK − x∗|| ≤
+∞∑

k=K

||xk+1 − xk || ≤ ||xK − xK−1|| + Mϕ(rK )

≤
√

f (xK−1) − f (xK ))
a

+ Mϕ(rK )

by (17). Then, using that {rk} is decreasing together with the fact that rK ≥ 0, we obtain

||xK − x∗|| ≤ 1√
a

√
rK−1 + Mϕ(rK−1)

which gives the desired result. 67
Remark 6 Note that combining last two theorems, we obtain to the proximal point method
the convergence rate result proved by An et al. (2009, Theorem 3.3) for DCA algorithm.

4.3 Numerical illustration

In this section we present some numerical results to verify the practical efficiency of the
proposed algorithm. We especially analyze the exact case, i.e., εk = 0 for all k ∈ N. It is
well known that the proximal point method is indeed a conceptual scheme for optimization
which has been the starting point for other methods. The performance of the method depends
essentially on the algorithm used to solve the subproblems. In this situation, it makes little
sense to compare the proximal method with other methods in terms of computational effi-
ciency and hence, we skip a discussion of comparison with other algorithms. In this section,
algorithm 1 is coded in SCILAB 5.5.2 on a machine with a Intel(R) Core(TM) i5, 1.0 GHz
CPU and 6GB memory. The subproblems are solved using the subroutine “fminsearch”.



Example 1 Let f : R → R be a (non-convex) DC function given by

f (x) = x4

4
− x2

2
+ 1

which satisfies the Kurdyka–Łojasiewicz property at x = 1 with desingularising function
ϕ(t) = t1/2. The critical points of f are x̂1 = −1 and x̂2 = 1 (global minimum), and x̂3 = 0
(local maximum). Set λk = 1/2 for all k ∈ N. Consider the (non-symmetric) quasi distance

q(x, y) =
{

y − x, if x < y,
2(x − y), if x ≥ y.

Thus, Algorithm 1 becomes the following: find xk+1 ∈ R
such that

0 ∈ x3k+1 − xk + ∂q2(·, xk)(xk+1).

Since the algorithm stops if xk+1 = xk , we can assume that xk+1 (= xk , for all k ∈ N. Then,

∂q2(·, xk)(xk+1) =
{−2(xk − xk+1), if xk+1 < xk,

8(xk+1 − xk), if xk+1 > xk .

Thus, given xk ∈ R the iterative step of Algorithm 1 is the real number solution of one of the
following equations:

x3k+1 + 8xk+1 − 9xk = 0 and x3k+1 + 2xk+1 − 3xk = 0.

If x0 ∈ (0, 1), then we have that {xk} is increasing and xk ∈ (0, 1), for all k ∈ N. Hence
xk converges to 1 as k → +∞. From Theorems 4 and 5, there exists k0 ∈ N such that
|xk − 1| = O [exp(−c(k − k0 − 1))] and f (xk) − f (1) = O [exp(−c(k − k0))], where
c = log

( 10
9

)
comes from the constants c1 = c2 = 1/2, a = α = µ = L = 1, β = 2 and

b = 3 taken in this example. A similar analysis can be done for different initial and critical
points.

Example 2 In this example we consider the 2-dimensional case of last example, i.e., let
f : R2 → R be a (non-convex) DC function given by

f (x, y) = 1
4
(x4 + y4) − 1

2
(x2 + y2).

The critical points of f are x̂1 = (−1,−1), x̂2 = (−1, 1), x̂3 = (1,−1) and x̂4 = (1, 1)
(global minimum), and x̂5 = (0, 0) (local maximum).

For this problem, we consider 10 randomly generated starting points with coordinates
belonging to the box [−10, 10] × [−10, 10] and λk = 5 for all k ∈ N. Moreover, we adopt
the stopping criteria ||xk+1 − xk || < 10−8.

Table 1 summurizes the results. Column x0 provides the starting point generated, column
iter.(k) refers to iteration which the algorithm stopped, column L-time gives the longest time
(in seconds) to solve the subproblems of the algorithm, column xk represents the limit point
found by the algorithm and ||xk − x̂ || is the distance of the end-point of the algorithm to the 
corresponding (shortest) critical point.

In Fig. 1 are plotted the starting points and the iterations of the algorithm. Figure 2 shows 
the time to obtain the limit point in each of 10 times that the algorithm was performed.
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Fig. 1 Algorithm running with 10 randomly starting points

Fig. 2 Time of convergence

5 Application: the optimal size of the firm problem

One of themain topic in Economic andManagement Sciences is to determine the optimal size
of an organization. This is a difficult problem, both for conceptual and technical reasons. This
optimal size can refer to the quantity of the final good produced, the range of different final
goods that the multi-product firm produces, the number and quality of workers of different
types employed, the amount of means used in the production process, as well as the number
of intermediate stages in the production process and their different locations in different
countries in the globalization process. A huge literature exists and a lot of aspects must be
examined. This literature separates two cases:

(i) the easy and rather irrealistic case of decreasing returns, when costs of production of the
firm are convex;



(ii) the much more difficult but realistic case of increasing returns, when costs of production
are concave.

Because the reader can be either not fully trained in Behavioral Sciences or in Variational
Analysis and Optimizing Algorithms, we start to make clear in the easy case of convex costs
of production what is the problem of the optimal size of a firm and build a simple connection
between this application and a standard proximal algorithm. A next example will consider
the much more interesting case of concave costs of production which is fully adapted to the
present DC proximal algorithm. Consider the simplest linear-quadratic static formulation of
this problem (decreasing returns). In this case the revenue function r = px of the firm grows
linearly with the quantity produced of a final good x (sold at the given price p > 0)while the
cost of production function c(x) = wx + µx2 grows quadratically in the quantity produced
x . The first term wx refer to the sum of each given individual wage w > 0 paid to each
employed worker, where each employed worker produces one unit of the final good. Hence
the number of employed workers is equal to the number of units of the final good produced x .
The second term µx2, µ > 0, of the cost function refer to costs of using means. In this very
simple case the optimal size of employed workers and the optimal quantity produced of the
final good exist trivially. The neoclassical theory of the firm supposes that the entrepreneur,
knowing his linear/quadratic revenue and cost functions, can calculate this optimal size
x∗ = (p−w)/2µ > 0, via the maximization of his profit function π(x) = px −c(x). When
this is not the case (in a bounded rationality context, Simon 1955), the firm can be initially at
x (= x∗, out of its optimal size. Then, its initial size x (number of hired workers, or units of the
final good produced) can be too big x > x∗ (or too low, x < x∗ ), the entrepreneur hiring too
much (not enough) workers in the initial period. The (VR) variational rationality approach
(Soubeyran 2009, 2010), considers this out of equilibrium starting case as the starting point
of a possibly convergent process x = xk ! y = xk+1 towards the optimal size, where, each
current period k+ 1, the entrepreneur hires y− x > 0, fires x − y < 0 workers, or continues
using y = x workers, with hiring/firing costsC(x, y) ≥ 0 of being able to change the number
of employed workers (the size of the firm). Hence the proximal payoff of the entrepreneur
becomes Pξ (y/x) = π(y) − ξC(x, y), where ξ > 0 weights the relative importance of per
period costs of being able to changeC(x, y) relative to the per period static profit. This crude
example shows very succinctly how the (VR) approach makes the connection between the
problem of convergence to the optimal size of the firm and the exact proximal point algorithm,
which solves, at each period the subproblem sup

{
Pξk+1(y/x), y ∈ X = R+

}
, where x = xk ,

y = xk+1 and ξ = ξk+1.

In this last sectionwewill consider, in a dynamic setting, themost realistic but difficult case
where the firm is supposed to exhibit increasing returns, when (execution) costs of production
are concave. Its size refers to the production level, i.e, the number of units of the final good
the firm produces. Then, using the recent variational rationality approach (Soubeyran 2009,
2010, 2016), we will determine the long run optimal size of this firm, when it can, each
period, hire, fire and keep again workers. This offers an original and dynamic theory of the
limit of the firm.

5.1 A simple model of the firmwith increasing returns in the short run

5.1.1 An example of “to be increased” and “to be decreased” payoffs

To better see how DC optimization works in applications, let us examine the simplest case
we can imagine, which can be generalized to the multidimensional setting. Different variants



of this example can be found in Soubeyran (2009), Soubeyran (2010), Bento and Soubeyran
(2015a, b) andBao et al. (2015). But none of them examine the very important case of increas-
ing returns, which is the realistic case for production costs, as we do here, as an application
of the proximal point method for DC optimization. Consider a hierarchical firm including an
entrepreneur, a profile of workers, and a succession of periods where the entrepreneur can
hire, fire or keep working workers in a changing environment. Each period, the entrepreneur
chooses how much to produce of the same final good (of a given quality) and sells each unit
of this good at the same and fixed price p > 0. In the current period, the firm produces
x ∈ R+ units of a final good and employs l(x) ∈ R+ workers. In this simple model the size
of the firm refers to x . For simplification, each worker is asked to produce one unit of the
final good. Then, l(x) = x . The current profit of the entrepreneur, π(x) = r(x) − c(x), is
the difference between the revenue of the firm r(x) = px ≥ 0 and the cost of production
c(x) ≥ 0. To produce one unit of the final good, each employed worker must use a given
bundle of individual means (tools and ingredients) and a fixed collective mean (say, some
given piece of land, a given infrastructure). The entrepreneur rents the durable tools and buys
the non-durable ingredients. Let π = sup {π(y), y ∈ X} < +∞ be the highest profit the
entrepreneur can hope to achieve. Then, f (x) = π − π(x) ≥ 0 is the current unrealized
profit he can hope to carry out in the current period, or later. The profit function π(·) is a “to
be increased” payoff, while the unrealized profit function f (·) is a “to be decreased” payoff.

In the mathematical part of the paper, the objective function f (x) = g(x) − h(x) is the
difference between two convex functions, g(x) and h(x). In our behavioral example, f (x)
represents the unrealized profit the entrepreneur can hope to achieve, i.e, f (x) = π −π(x) =
π + c(x) − r(x), where g(x) = π + c(x) and h(x) = r(x). Then, the cost and the revenue
functions r(·) and c(·) must be concave to fit with the mathematical part of the paper.

Clearly, in a perfectly competitive market where the price p of the final good is a given, the
reve
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in the short run. But, to escape to mathematical difficulties, textbooks in Economics focus
the attention on the less usual case of convex costs of production in the short run. Costs of 
production are concave when the technology of the firm exhibits increasing returns, coming
from economies of scale, economies of specialization, learning by doing several times the 
same thing, limited capacities, lack of time to be able to change fixed costs in the short run, 
which become variable costs in the long run. In our standard model of the firm, costs of
production c(x) = wx + hx  + K are the sum of three different costs, where, (i) w > 0 is the  
given wage paid to each employed worker, (ii) h > 0 is the price paid to suppliers to acquire
each bundle of means used by each employed worker to produce one unit of the final good, 
and, (iii) K > 0 is the cost to rent a durable, fixed, collective and indivisible mean.

This cost of production exhibits increasing returns to scale because, in the current period, 
before production takes place, the fixed costs K > 0 must be paid even if, later, no worker
are required to work, i.e, c(0) = K > 0. This implies that the unit cost of production 
c(x)/x = w + h + K /x decreases when the production level x increases. The cost of 
production will be strictly concave if, for example, the price h = h(x) of each bundle of 
means used by each employed worker decreases with the number x of bundles of means the
entrepreneur must buy to produce x units of the final good (when suppliers offer discounts).



5.2 The variational rationality approach: the simplest formulation

5.2.1 Stay/stability and change dynamics

The (VR) variational rationality approach (Soubeyran 2009, 2010) modelizes and unifies a
lot of different models of stay and change dynamics which appeared in Behavioral Sciences
(Economics, Management Sciences, Psychology, Sociology, Political Sciences, Decision
theory, Game theory, Artificial Intelligence, etc.); see Georgeff et al. (1998), Wooldridge
(2000). Stays refer to exploitation phases, temporary repetitions of the same action, temporary
habits, routines, rules and norms, etc. while changes refer to exploration phases, learning and
innovations processes, forming and breaking habits and routines, changing doings (actions),
havings and beings, etc. This dynamical approach considers entities (an agent, an organization
or several interacting agents), which are, at the beginning of the story, in an undesirable
initial position, and are unable to reach immediately a final desired position. The goal of this
approach is to examine the transition problem: how such entities can find, build and use an
acceptable and feasible transition which is able to overcome a lot of intermediate obstacles,
difficulties and resistance to change, with not too much intermediate sacrifices and enough
intermediate satisfactions to sustain motivation to change and persevere until reaching the
final desired position. This (VR) approach admits a lot of variants, based on the same short
list of general principles and concepts. The four main concepts refer to changes and stays,
worthwhile changes and stays, worthwhile transitions and variational traps, worthwhile to
approach and reach but not worthwhile to leave. A stay and change dynamic refers to a
succession of periods, where k + 1 is the current period and k is the past period, where
x = xk ∈ X can be a past action (doing), having or being and y = xk+1 ∈ X can be a
current action (doing), having or being. A single change from x = xk ∈ X to y = xk+1 ∈ X
is x ! y, y (= x . A single stay at x is x ! y, y = x .

Let us give, starting from our previous example, the simplest prototype of the (VR) varia-
tional rationality approach, to finally show how, at the end of a worthwhile transition, a firm
can achieve an optimal size.

5.2.2 Worthwhile changes

The (VR) approach starts with the following broad definition of a worthwhile change: a
change is worthwhile if motivation to change rather than to stay is “high enough” with
respect to resistance to change rather than to stay. This definition allows a lot of variants, as
much variants as the definitions ofmotivation (more than one hundred theories ofmotivations
exist in Psychology), resistance (which includes a lot of different aspects) and “high enough”
(see Soubeyran 2009, 2010). Let us give a very simple formulation of the worthwhile to
change concept.

In the previous example a change refers to a move from having produced x ∈ X = R+
units of a final good in the previous period to produce y ∈ R+ units of this final good in the
current period. A stay is a particular move, from having produced a given quantity x = xk

of the final good in the previous period to produce again the same quantity y = xk+1 = xk

of this final good in the current period. The previous and current “to be increased” payoffs
of the entrepreneur are the profit π(x) and π(y). His previous and current “to be decreased”
payoffs are his unrealized profits f (x) = π − π(x) ≥ 0 and f (y) = π − π(y) ≥ 0.

Advantages to change from x to y, if they exist, represent the difference in profits or
unrealized profits, A(x, y) = π(y) − π(x) = f (x) − f (y) ≥ 0.



Inconveniences to change from x to y refer to the difference I (x, y) = C(x, y) −
C(x, x) ≥ 0.

C(x, y) ≥ 0 modelizes the costs of being able to change from x to y. In the present
model C(x, y) modelizes costs of hiring, firing and keeping working workers to be able
to move from producing x units of the final good, to produce y units of the final good,
where y can be higher, lower or the same than x . Costs of hiring y − x > 0 workers are
C(x, y) = ρ+(y − x), where ρ+ > 0 is the cost of hiring one worker. Costs of firing
x − y > 0 workers are C(x, y) = ρ−(x − y), where ρ− > 0 is the cost of firing one worker.
Costs of keeping working y = x workers are C(x, x) = ρ=x, where ρ= ≥ 0 is the cost of
keeping working one period more one worker. For simplification (this will require a too long
discussion), we will suppose that ρ= = 0. Then, C(x, x) = 0, and inconveniences to change
are

I (x, y) = C(x, y) =
{

ρ+(y − x) if y ≥ x
ρ−(x − y) if y ≤ x

}
≥ 0.

Motivation to change M(x, y) = U [A(x, y)] is the utilityU [A] of advantages to change
A = A(x, y) ≥ 0.

Resistance to change R(x, y) = D [I (x, y)] is the disutility D [I ] of inconveniences to
change I = I (x, y) ≥ 0, where the utility function U [·] : A ∈ R+ 5−→ U [A] ∈ R+ and
the disutility function D [·] : I ∈ R+ 5−→ D [I ] ∈ R+ are strictly increasing and zero at
zero.

A worthwhile change from x to y is such that motivation to change M(x, y) ∈ R+ from
x to y is higher than resistance to change R(x, y) from x to y, up to a chosen worthwhile to
change satisfaction ratio ξ > 0, i.e., such that M(x, y) ≥ ξ R(x, y).

In the example, the utility U [A] of advantages to change and the disutility D [I ] of
inconveniences to change are linear-quadratic, i.e., M = U [A] = A, R = D [I ] = I 2

(see Soubeyran 2009, 2010 for more general cases). In this context, a change x ! y from
producing again the quantity x of the final good to produce a different quantity y of this
final good is worthwhile if advantages to change are high enough with respect to resistances
to change, i.e., A(x, y) = π(y) − π(x) = f (x) − f (y) ≥ ξ R(x, y) = ξC(x, y)2, where
C(x, x) = 0. What is “high enough” is defined by the size of ξ > 0.

5.2.3 Worthwhile transitions

A transition is a succession of single stays and changes x0 ! x1 ! ....xk ! xk+1 ! ....

where xk+1 (= xk or xk+1 = xk for each k ∈ N.
A worthwhile transition is a transition such that each stay or change is worthwhile, i.e.,

xk+1 ∈ Wξk+1(x
k), k ∈ N, that is,

A(xk, xk+1) = π(xk+1) − π(xk)

= f (xk) − f (xk+1)

≥ ξk+1R(xk, xk+1)

= ξk+1C(xk, xk+1)2, k ∈ N.

5.2.4 Ends as variational traps

A (strong) variational trap x∗ ∈ X is both, (i) an aspiration point x∗ ∈ Wξk+1 (x
k ), k ∈ N, 

worthwhile to reach from any position of the transition, (ii) a stationary trap Wξ∗ (x
∗) = {x∗},



where it is not worthwhile to move to any other position y (= x∗, given that the worthwhile
to change ratio tends to a limit, ξk+1 → ξ∗ > 0, k → +∞, and finally (iii) worthwhile to
approach, i.e., which converges to the aspiration point. More explicitly, x∗ is a variational
trap if,

(i) A(xk, x∗) = π(x∗) − π(xk) = f (xk) − f (x∗) ≥ ξk+1R(xk, x∗) = ξk+1C(xk, x∗)2,
k ∈ N;

(ii) A(x∗, y) = π(y) − π(x∗) = f (x∗) − f (y) < ξ∗R(x∗, y) = ξ∗C(x∗, y)2, for all
y (= x∗;

(iii) It is a limit point of the worthwhile transition, i.e., xk → x∗, k → +∞.

A weak variational trap does not require to be an aspiration point.

5.3 Proximal algorithms as worthwhile transitions

To show how an exact or inexact proximal algorithm can be seen as a leading example of a
worthwhile transition, the present paper uses a specific formulation of the (VR) approach,
where the utility of advantages to change and the disutility of inconveniences to change are
linear quadratic, i.e., M = U [A] = A and R = D [I ] = I 2 = C2, where C(x, y) =
q(x, y) ≥ 0 is a quasi distance (see Moreno et al. (2012) for this linear quadratic case, and
Bento and Soubeyran (2015a, b) for more general cases).

5.3.1 The proximal formulation of a worthwhile change

In a linear quadratic setting, motivation and resistance to change are M(x, y) = A(x, y) =
π(y)−π(x) = f (x)− f (y) and R(x, y) = q(x, y)2. These simplifications allow to define,

(1) a proximal “to be increased” payoff Pξ (y/x) = π(y)−ξ R(x, y),which is the difference
between the current “to be increased” payoff π(y) and the weighted current resistance
to change R(x, y), where the weight ξ > 0 balances the importance of the current ‘to
be increased” payoff and the current resistance to change.

(2) a proximal “to be decreased” payoff Qξ (y/x) = f (y)+ ξ R(x, y), which is the sum of
the current ‘to be decreased” payoff f (y) and the weighted current resistance to change
R(x, y).

Then, a change x ! y ∈ Wξ (x) is worthwhile if moving from x to y, the proximal ‘to be
increased” payoff increases, Pξ (y/x) ≥ Pξ (x/x), and the proximal “to be decreased” payoff
decreases, Qξ (y/x) ≤ Qξ (x/x). This comes from the following equivalences

y ∈ Wξ (x) ⇐⇒ M(x, y) ≥ ξ R(x, y)

⇐⇒ π(y) − π(x) = f (x) − f (y) ≥ ξ R(x, y)

⇐⇒ Pξ (y/x) ≥ Pξ (x/x)

⇐⇒ Qξ (y/x) ≤ Qξ (x/x).

5.3.2 Exact and inexact proximal algorithms as examples of worthwhile transitions

A transition is a succession of single stays and changes x0 ! x1 ! ....xk ! xk+1 ! ....

where xk+1 (= xk or xk+1 = xk for each k ∈ N.



A worthwhile transition is a transition such that each stay or change is worthwhile, i.e.,
in term of proximal payoffs to change,

xk+1 ∈ Wξk+1(x
k) =






y ∈ X , such that
Pξk+1(y/x

k) ≥ Pξk+1(x
k/xk), i.e.,

π(y) − ξk+1R(xn, y) ≥ π(xk), or,
Qξk+1(y/x

k) ≤ Qξk+1(x
k/xk), i.e.,

f (y)+ ξk+1R(xk, y) ≤ f (xk)






,

where each ξk+1 > 0, k ∈ N can be chosen and R(xk, y) = q(xk, y)2.
In the context of this paper,

xk+1 ∈ Wξk+1(x
k) ⇐⇒ f (xk+1)+ ξk+1q(xk, xk+1)2 ≤ f (xk),

where ξk+1 = 1/2λk > 0.
A worthwhile change is exact if xk+1 ∈ argmax

{
Pξk+1(y/xn), y ∈ X

}
.

An inexact worthwhile change is any worthwhile change “close enough” to an exact
worthwhile change, where the term “close enough” can have several different interpretations,
depending of chosen reference points and frames. In this paper “close enough” is given by
condition (3) and (5) given (2) and (4). The explicit justifications followBento and Soubeyran
(2015a).

5.4 Surrogate proximal algorithms as worthwhile transitions

Usually the entrepreneur does not know thewhole profit functionπ(·).Then, hemust perform,
each current period k+ 1, an approximate evaluation of this function π̃(·/x), where x = xk .
This requires to consider a more complex formulation of the (VR) approach, where past
experience and current evaluations π̃(·/x) of the payoff functions π(·) are included in the
worthwhile to change process (see Soubeyran 2016). In the present paper, we will discard
the role of past experience to focus our attention on the current evaluation process, when the
entrepreneur knows from the very beginning the whole revenue function r(·) = −g(·), but
does not knowverywell the execution cost function c(·). Then, he needs, each period, tomake
an approximate evaluation of the execution cost function c(·), in term of a simple function
c̃(·/xk), which over-estimates globally this cost function c(·) = −h(·), , i.e., c̃(y/xk) ≥ c(y),
for all y ∈ X with c̃(xk/xk) = c(xk). Then, the surrogate evaluation function π̃(./x) : y ∈
X 5−→ π̃(y/x) = r(x) − c̃(y/xk) under-estimates the “to be increased” profit function
π(·) = r(·) − c(·), because π̃(y/x) ≤ π(y) for all y ∈ X and π̃(x/x) = π(x).

Similarly, the surrogate evaluation function f̃ (·/x) : y ∈ X 5−→ f̃ (y/x) = g(y)−h̃(y/x)
over-estimates the “to be decreased” profit function f (·) = g(·) − h(·), because f̃ (y/x) ≥
f (y), for all y ∈ X , with f̃ (x/x) = f (x), where h̃(y/x) ≤ h(y), for all y ∈ X , with
h̃(x/x) = h(x).

To fit with the mathematical part of the paper, we will suppose that, in the current period
k + 1, the entrepreneur knows the resistance to change function R(x, y). Then, given this
knowledge structure, where, each period, the entrepreneur is allowed to make an under-
estimation of his profit function π̃(·/x), a change x = xk ! y is worthwhile if Ã(x, y) =
π̃(y/x) − π(x) = f (x) − f̃ (y/x) ≥ ξ R(x, y).

The proximal version of this worthwhile to change condition is

P̃ξ (y/x) = π̃(y/x) − ξ R(x, y) ≥ π(x) = P̃ξ (x/x),



or

Q̃ξ (y/x) = f̃ (y/x)+ ξ R(x, y) ≤ f (x) = Q̃ξ (x/x).

This behavioral evaluation process fits with the mathematical part of the paper, which
uses a convex-concave procedure (see Yuille and Rangarajan 2003) in the context of DC
programming (see also Horst and Thoai 1999).

5.5 Ends

5.5.1 When critical points are variational traps

A weak variational trap is both a limit point of a worthwhile transition, and a stationary trap
not worthwhile to leave. This modelizes the approach, and the end of a worthwhile stay and
change process. Usually, a critical point is not a stationary trap. Then, the last question of
this paper is: when critical points of the exact and inexact proximal algorithm are variational
traps?

Definition 3 A function f : Rn → R ∪ {+∞} is said to be weakly convex if there exists
ρ > 0 such that for all x, y ∈ Rn and t ∈ [0, 1]

f (t x + (1 − t)y) ≤ t f (x)+ (1 − t) f (y)+ ρt(1 − t)||x − y||2. (23)

The function f is said to be locally weakly convex at x if there exists ε > 0 such that f is
weakly convex on B(x, ε). It is locally weakly convex if it is locally weakly convex at every
point of its domain.

Proposition 2 Let f be a weakly convex function. If x∗ is a critical point of f , then

f (x∗) ≤ f (y)+ ρ

α2 q
2(x∗, y) ∀y ∈ Rn, (24)

where α > 0 satisfies (16).

Proof It follows from Vial (1983, Proposition 4.8) together with (16). 67
Proposition 3 Let f be a weakly convex function. If x∗ is a critical point of f and λ > ρ

α2 ,
then Wλ(x∗) = {x∗}.
Proof From (24) and λ > ρ

α2 , we have

f (x∗) ≤ f (y)+ ρ

α2 q
2(x∗, y) < f (y)+ λq2(x∗, y) ∀y (= x∗.

The result follows from last inequality and definition of Wλ(x). 67
Remark 7 It is obvious that convex functions are weakly convex. Moreover, C1,1 functions
and lower-C2 functions are locally weakly convex and locally Lipschitz weakly convex,
respectively. It is known that C1,1 functions and lower-C2 functions are DC functions.

5.5.2 The optimal size of the firm

In the example a variational trap x∗ ∈ X defines an optimal size of the firm where the
entrepreneur hires and fires less and less workers to finally stops to hire and fire workers,
when resistance to change wins motivation to change. This offers an original theory of the
limit of the firm in term of the VR approach, where the entrepreneur optimizes at the end,
and satisfies with not too much sacrifices during the transition.



5.6 Speed of convergence

Let x̂ be a Fréchet critical point of f , i.e., 0 ∈ ∂̂ f (̂x). Assume that f has a closed domain
and restricted to its domain f is continuous. The Kurdyka–Łojasiewicz inequality for a
subanalytic function f at x̂ becomes

| f (x) − f (̂x)|1−θ ≤ L ‖s‖ , (25)

for all x ∈ V , and s ∈ ∂̂ f (x); see Bolte et al. (2007, Theorem 3.1). It shows that convergence
of the norm of the marginal profit ‖s‖ to zero, s ∈ ∂̂ f (x) , implies convergence of the profit
f (x) to the critical one f (̂x). Then, Theorems 4 and 5 are very important for applications
because they give us informations on the speed of convergence. In our specific example, they
tell us how quickly the firm approach its optimal size x̂ . Indeed, (25) means that, for a given
x ∈ V , the larger the distance from f (x) to f (̂x), the larger is the norm of the subgradient
‖s‖ , for s ∈ ∂̂ f (x). This is a curvature hypothesis. This means that function f is sharp
enough close to the critical point. Even more, the higher θ is (moving from θ ∈ (0, 1/2) to
θ ∈ [1/2, 1) to θ = 1), the sharper is this function. Intuition shows that, the higher θ is, the
higher is the speed of convergence. Theorem 4 confirms very precisely this intuition. The
sharper is the profit function close to its critical size, the speedy is convergence to its critical
size: when θ = 1, convergence in a finite number of periods is a very nice and realistic result.
When θ ∈ [1/2, 1), convergence is of the exponential form. Hence speed of convergence is
high. The higher the constant d = a/b2, the speedy is the convergence. This is the case when
a = α2/(2c2) is high. That is, when resistance to change R(x, y) = q(x, y) ) is high enough
(α high in (16), namely, α ‖y − x‖ ≤ q(x, y) ≤ β ‖y − x‖) and, for a given advantage to
change f (x)− f (y) ≥ 0, motivation to change Mk(x, y) = λk [ f (x) − f (y)] is low enough
(c2 low requires λk low, from c1 ≤ λk ≤ c2). This is also the case when b = µβ + L is
low. That is, for example, when β is low (a not too high resistance to change). The last case
θ ∈ (0, 1/2) works as well.

6 Conclusions

We presented a generalized proximal linearized algorithm for finding critical points of a
DC function (difference of two convex functions) and some convergence rate results. We
also provided an application, in a dynamic setting, to determine the limit of the firm, when
increasing returns matter in the short run. Future research will examine the case where the
concave revenue function is not well known, while the concave execution cost function is
perfectly known to the entrepreneur. The case of a more changing environment can also be
considered. Finally multi-objective DC programming must be examined to consider the limit
of firms which produce different final products. This is the main realistic case.
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