G. Kenanakis, Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications, Appl. Phys. A, vol.123, p.77, 2017.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum, J. Phys. Appl. Phys, vol.49, p.55104, 2016.

Y. Jen, W. Liu, T. Chen, S. Lin, and Y. Jhang, Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber, Sci. Rep, vol.7, 2017.

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks, Sci. Rep, vol.7, p.14872, 2017.

I. Azad, M. K. Ram, D. Y. Goswami, and E. Stefanakos, Design and fabrication of metal-insulator-metal diode for high frequency applications, Infrared Technology and Applications XLIII 10177, International Society for Optics and Photonics, p.101772, 2017.

C. Wu, N. Burton, I. , J. John, A. Milder et al., Metamaterial-based Integrated Plasmonic Absorber/emitter for Solar Thermo-Photovoltaic systems, Journal of Optics, vol.14, issue.2, 2012.

A. Tittl, U. Ann-katrin, S. Michel, X. Martin, B. Yin et al., A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability, Adv. Mater, vol.27, issue.31, pp.4597-4603, 2015.

B. Zhang, Y. Zhao, H. Qingzhen, B. Kiraly, . Iam-choon et al., Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optic Express, vol.19, issue.16, pp.15221-15228, 2011.

K. Abul, J. Azad, M. Wilton, M. Kort-kamp, N. R. Sykora et al., Metasurface broadband solar absorber, Sci. Rep, vol.6, p.20347, 2016.

Z. Li, S. Butun, and K. Aydin, Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films, ACS Photonics, vol.2, issue.2, pp.183-188, 2015.

D. Wu, Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region, Nanoscale Res. Lett, vol.12, p.427, 2017.

R. L. Bailey, J. Eng. Power, vol.94, issue.2, p.73, 1972.

X. Chen, Nature Nanotechnology, 2007.

E. Hutter and J. H. Fendler, Exploitation of Localized Surface Plasmon Resonance, Adv. Mater, vol.16, pp.1685-1706, 2004.

K. A. Willets and R. P. Van-duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem, vol.58, pp.267-297, 2007.

H. Atwater and A. Polman, Plasmonic for improved photovoltaic devices, Nat. Mater, vol.9, issue.3, pp.205-213, 2010.

Z. Sina-abedini-dereshgi, T. Sisman, and . Kagan, Ali Kemal Okyay, Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications, Sci. Rep, vol.7, p.42349, 2017.

J. Kim, H. Yang, and P. F. Green, Langmuir, vol.28, pp.9735-9741, 2012.

F. Huang, S. Drakeley, M. G. Millyard, A. Murphy, R. White et al., J. Adv. Opt. Mater, vol.4, pp.328-335, 2016.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh et al., Adv. Mater, vol.23, pp.5410-5414, 2011.

D. Prezgot and A. Ianoul, J. Phys. Chem. C, vol.119, pp.3293-3296, 2015.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang et al., Nature, vol.492, pp.86-89, 2012.

L. D. Sio, Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics, Prog. Quant. Electron, vol.41, pp.23-70, 2015.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su et al., Adv. Mater, pp.1-7, 2015.

J. Wei, N. Schaeffer, P. A. Albouy, and M. P. Pileni, Chem. Mater, vol.27, pp.5614-5621, 2015.

B. Gao, G. Arya, and A. R. Tao, Nat. Nanotechnol, vol.7, pp.433-437, 2012.

A. Bottomley, D. Prezgot, J. P. Coyle, and A. Ianoul, Nanoscale, vol.8, pp.11168-11176, 2016.

H. Li, Y. He, Z. Liu, B. Jiang, and Y. Huang, Rapid synthesis of broadband Ag@ TiO 2 core-shell nanoparticles for solar energy conversion, Sol. Energy Mater. Sol. Cells, vol.166, pp.52-60, 2017.

V. K. Pustovalov, L. G. Astafyeva, and W. Fritzsche, Light-absorption selection of nanoparticles and nanofluids containing nanoparticles for their effective heating by solar radiation, Nanotechnol. Environ. Eng, vol.2, p.7, 2017.

J. M. Luther, P. K. Jain, T. Ewers, and A. Paul-alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots, Nat. Mater, vol.10, pp.361-366, 2011.

S. Eliezer, Synthesis of nanoparticles with femtosecond laser pulses, Phys. Rev. B, vol.69, p.144119, 2004.

D. C. Tien, Novel technique for preparing a nano-silver water suspension by the arc-discharge method, Rev. Adv. Mater. Sci, vol.18, pp.750-756, 2008.

A. Tavakoli, M. Sohrabi, and A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds, Chem. Pap, vol.61, pp.151-170, 2007.

L. Guo, Y. L. Ji, H. Xu, P. Simon, and Z. Wu, Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure, J. Am. Chem. Soc, vol.124, pp.14864-14865, 2002.

Y. Wang and Y. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals, Nano Lett, vol.4, pp.2047-2050, 2004.

W. Lu, F. Liao, Y. Luo, G. Chang, and X. Sun, Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection, Electrochim. Acta, vol.56, pp.2295-2298, 2011.

B. Liu and H. C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc, vol.125, pp.4430-4431, 2003.

I. A. Rahman and V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review, J. Nanomater, vol.8, 2012.

H. Xu, B. W. Zeiger, and K. S. Suslick, Sonochemical synthesis of nanomaterials, Chem. Soc. Rev, vol.42, pp.2555-2567, 2013.

S. S. Joshi, S. F. Patil, V. Iyer, and S. Mahumuni, Radiation induced synthesis and characterization of copper nanoparticles, Nanostruct. Mater, vol.10, pp.1135-1144, 1998.

E. Abbasi, Silver nanoparticles: synthesis methods, bio-applications and properties, Crit. Rev. Microbiol, vol.42, pp.173-180, 2016.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver, Chem. Eur J, vol.11, pp.454-463, 2005.

T. K. Sau and A. L. Rogach, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control, Adv. Mater, vol.22, pp.1781-1804, 2010.

K. Victor, R. H. Lamer, and . Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc, vol.72, issue.11, pp.4847-4854, 1950.

U. N-c-o-r-r-e-c-t-e-d-p-r-o-o-f,

L. Escoubas, Progress in Quantum Electronics, 2019.

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, Recent developments in shape-controlled synthesis of silver nanocrystals, J. Phys. Chem. C, vol.116, issue.41, pp.21647-21656, 2012.

L. Mulfinger, Synthesis and study of silver nanoparticles, J Chem. Educ, vol.84, p.322, 2007.

E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schatz, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc, vol.124, pp.15182-15183, 2002.

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature, Adv. Funct. Mater, vol.18, pp.2005-2016, 2008.

M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, Optical properties of Au/Ag core/shell nanoshuttles, Optic Express, vol.16, pp.14288-14293, 2008.

C. Huang, P. Chiu, Y. Wang, and C. Yang, Synthesis of the gold nanodumbbells by electrochemical method, J. Colloid Interface Sci, vol.303, pp.430-436, 2006.

J. Burgin, M. Liu, and P. Guyot-sionnest, Dielectric sensing with deposited gold bipyramids, J. Phys. Chem. C, vol.112, pp.19279-19282, 2008.

B. K. Jena and C. R. Raj, Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity, Chem. Mater, vol.20, pp.3546-3548, 2008.

B. K. Jena, B. K. Mishra, and S. Bohidar, Synthesis of branched Ag nanoflowers based on a bioinspired technique: their surface enhanced Raman scattering and antibacterial activity, J. Phys. Chem. C, vol.113, pp.14753-14758, 2009.

Z. Wang, J. Zhang, J. M. Ekman, P. J. Kenis, and Y. Lu, DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers, Nano Lett, vol.10, pp.1886-1891, 2010.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. Wang, The synthesis of SERS-active gold nanoflower tags for in vivo applications, ACS Nano, vol.2, pp.2473-2480, 2008.

J. Xu, Synthesis and catalytic properties of Au-Pd nanoflowers, ACS Nano, vol.5, pp.6119-6127, 2011.

A. Guerrero-martínez, S. Barbosa, I. Pastoriza-santos, and L. M. Liz-marzán, Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles, Curr. Opin. Colloid Interface Sci, vol.16, pp.118-127, 2011.

T. K. Sau and C. J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution, J. Am. Chem. Soc, vol.126, pp.8648-8649, 2004.

A. Henglein and M. Giersig, Formation of colloidal silver nanoparticles: capping action of citrate, J. Phys. Chem. B, vol.103, pp.9533-9539, 1999.

Y. Lee, J. Choi, K. J. Lee, N. E. Stott, and D. Kim, Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics, Nanotechnology, vol.19, p.415604, 2008.

F. Fievet, J. P. Lagier, and M. Figlarz, Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process, MRS Bull, vol.14, pp.29-34, 1989.

L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer et al., Nanoparticles in medicine: therapeutic applications and development, Clin. Pharmacol. Ther, vol.83, issue.5, pp.761-769, 2008.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys, vol.330, pp.377-445, 1908.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: beyond gold and silver, Adv. Mater, vol.25, pp.3264-3294, 2013.

P. R. West, Searching for better plasmonic materials, Laser Photon. Rev, vol.4, pp.795-808, 2010.

K. Clément-barrière, V. Piettre, . Latour, . Olivier-margeat, B. Cédric-olivier-turrin et al., Ligand effects on the air stability of copper nanoparticles obtained from organometallic synthesis, J. Mater. Chem, vol.22, pp.2279-2285, 2012.

G. V. Naik, J. Kim, and A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range, Opt. Mater. Express, vol.1, pp.1090-1099, 2011.

V. K. Lamer and R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc, vol.72, pp.4847-4854, 1950.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci, vol.30, pp.545-610, 2000.

N. D. Burrows, Anisotropic nanoparticles and anisotropic surface chemistry, J. Phys. Chem. Lett, vol.7, pp.632-641, 2016.

P. B. Johnson and R. Christy, Optical constants of the noble metals, Phys. Rev. B, vol.6, p.4370, 1972.

E. D. Palik, Handbook of Optical Constants of Solids, vol.429, 1998.

C. C. Katsidis and D. I. Siapkas, General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference, Appl. Opt, vol.41, issue.19, pp.3978-3987, 2002.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, 2013.

J. M. Jin, The Finite Element Method in Electromagnetics, 2015.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys, vol.330, pp.377-445, 1908.

L. D. Sio, T. Placido, R. Comparelli, M. L. Curri, M. Striccoli et al., Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics, Prog. Quant. Electron, vol.41, pp.23-70, 2015.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. , Schatz, others, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B-Condens. Phase, vol.107, pp.668-677, 2003.

W. Yang, G. C. Schatz, and R. P. Van-duyne, Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes, J. Chem. Phys, vol.103, pp.869-875, 1995.

L. A. Golovan, V. Y. Timoshenko, and P. K. Kashkarov, Optical properties of porous-system-based nanocomposites, Phys.-Uspekhi, vol.50, p.595, 2007.

H. Devoe, Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction, J. Chem. Phys, vol.41, pp.393-400, 1964.

E. M. Purcell and C. R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J, vol.186, pp.705-714, 1973.

B. T. Draine and P. J. Flatau, Discrete-dipole approximation for scattering calculations, JOSA A, vol.11, pp.1491-1499, 1994.

J. R. Dunklin, C. Bodinger, G. T. Forcherio, and D. K. Roper, Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength, J. Nanophotonics, vol.11, p.16002, 2017.

F. Zhou, Z. Li, Y. Liu, and Y. Xia, Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles, J. Phys. Chem. C, vol.112, pp.20233-20240, 2008.

, Lumerical solutions, inc, 2017.

C. A. Downing, E. Mariani, and G. Weick, Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains, J. Phys. Condens. Matter, vol.30, issue.2, p.25301, 2017.

I. O. Sosa, C. Noguez, and R. G. Barrera, Optical properties of metal nanoparticles with arbitrary shapes, J. Phys. Chem. B, vol.107, pp.6269-6275, 2003.

A. A. Ashkarran and S. Daemi, Tuning the plasmon of metallic nanostructures: from silver nanocubes toward gold Nanoboxes, Plasmonics, vol.11, pp.1011-1017, 2016.

N. E. Christensen, The band structure of silver and optical interband transitions, Phys. Status Solidi B, vol.54, pp.551-563, 1972.

L. Long, Localized surface plasmon resonance improved lasing performance of Ag nanoparticles/organic dye random laser, J. Alloy. Comp, vol.693, pp.876-881, 2017.

J. Sun, Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@ Ag nanorod arrays, Nano Res, vol.11, pp.953-965, 2018.

B. X. Wang and C. Y. Zhao, Achieving a strongly negative scattering asymmetry factor in random media composed of dual-dipolar particles, Phys. Rev, vol.97, 2018.

F. Wooten, Optical Properties of Solids, 2013.

T. C. Choy, Effective Medium Theory: Principles and Applications, vol.165, 2015.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, 2007.

J. A. Woollam, Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications, Optical Metrology, pp.3-28, 1999.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, 2007.

L. Escoubas, Progress in Quantum Electronics, 2019.

M. Voué, N. Dahmouchene, and J. D. Coninck, Annealing of polymer films with embedded silver nanoparticles: effect on optical properties, Thin Solid Films, vol.519, pp.2963-2967, 2011.

M. Lon?ari?, J. Sancho-parramon, and H. Zorc, Optical properties of gold island films-a spectroscopic ellipsometry study, Thin Solid Films, vol.519, pp.2946-2950, 2011.

H. Zhang, S. D. Evans, and J. R. Henderson, Spectroscopic ellipsometric evaluation of gold nanoparticle thin films fabricated using layer-by-layer self-assembly, Adv. Mater, vol.15, pp.531-534, 2003.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972361.

O. Levy and D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers, Phys. Rev. B, vol.56, p.8035, 1997.

S. G. Moiseev, Active Maxwell-Garnett composite with the unit refractive index, Phys. B Condens. Matter, vol.405, pp.3042-3045, 2010.

G. Berginc, Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering, Quant. Electron, vol.43, p.1055, 2013.

I. L. Skryabin, A. V. Radchik, P. Moses, and G. B. Smith, The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites, Appl. Phys. Lett, vol.70, pp.2221-2223, 1997.

V. P. Drachev, The Ag dielectric function in plasmonic metamaterials, Optic Express, vol.16, pp.1186-1195, 2008.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix, Phys. Rev. B, vol.81, p.165401, 2010.

T. W. Oates, M. Ranjan, S. Facsko, and H. Arwin, Highly anisotropic effective dielectric functions of silver nanoparticle arrays, Optic Express, vol.19, pp.2014-2028, 2011.

M. Perera, D. Schmidt, W. E. Gibbs, S. Juodkazis, and P. R. Stoddart, Effective optical constants of anisotropic silver nanoparticle films with plasmonic properties, Opt. Lett, vol.41, pp.5495-5498, 2016.

R. R. Bhat and J. Genzer, Using spectroscopic ellipsometry for quick prediction of number density of nanoparticles bound to non-transparent solid surfaces, Surf. Sci, vol.596, pp.187-196, 2005.

G. K. Laxminarayana, M. Rozin, S. Smith, and A. R. Tao, Modular, polymer-directed nanoparticle assembly for fabricating metamaterials, Faraday Discuss, vol.186, pp.489-502, 2016.

T. A. König, P. A. Ledin, M. Russell, J. A. Geldmeier, M. A. Mahmoud et al., Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity, Nanoscale, vol.7, pp.5230-5239, 2015.

M. Carlberg, Spectroscopic ellipsometry study of silver nanospheres and nanocubes in thin film layers, Opt. Mater. Express, vol.7, issue.12, pp.4241-4248, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788960

S. Makarov, Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma, Nano Lett, vol.15, issue.9, pp.6187-6192, 2015.

B. García-cámara, All-optical nanometric switch based on the directional scattering of semiconductor nanoparticles, J. Phys. Chem. C, vol.119, pp.19558-19564, 2015.

J. M. Geffrin, Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere, Nat. Commun, vol.3, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00939074

M. Kerker, D. S. Wang, and C. L. Gilles, Electromagnetic scattering by magnetic spheres, J. Opt. Soc. Am, vol.73, issue.6, pp.765-767, 1983.

I. Staude, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano, vol.7, issue.9, pp.7824-7832, 2013.

B. García-cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-pena et al., Size dependence of the directional scattering conditions on semiconductor nanoparticles, IEEE Photon. Technol. Lett, vol.27, pp.2059-2062, 2015.

R. Vergaz, J. F. Algorri, A. Cuadrado, J. M. Sánchez-pena, and B. García-cámara, Control of the light interaction in a semiconductor nanoparticle dimer through scattering directionality, IEEE Photonics Journal, vol.8, issue.3, p.4501410, 2016.

K. Gurunatha, M. Laxminarayana, S. Rozin, A. R. Smith, and . Tao, Modular, polymer-directed nanoparticle assembly for fabricating metamaterials, Faraday Discuss, vol.186, p.489, 2016.

Y. Qin, Near-infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering, ACS Photonics, 2017.

L. V. Besteiro, Plasmonic glasses and films based on alternative inexpensive materials for blocking infrared radiation, Nano Lett, vol.18, issue.5, pp.3147-3156, 2018.

T. Maier and H. Brueckl, Multispectral microbolometers for the midinfrared, Opt. Lett, vol.35, issue.22, pp.3766-3768, 2010.

C. A. Reynaud, D. Duché, J. Le-rouzo, A. Nasser, L. Nony et al., Enhancing reproducibility and Nonlocal effects in film-coupled nanoantennas, Adv. Optical Mater, p.1801177, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02135960

W. Li and J. Valentine, Metamaterial perfect absorber based hot electron photodetection, Nano Lett, vol.14, pp.3510-3514, 2014.