A. Zumla, P. Nahid, and S. T. Cole, Advances in the development of new tuberculosis drugs and treatment regimens, Nat. Rev. Drug Discov, vol.12, pp.388-404, 2013.

Y. Zhang and W. W. Yew, Mechanisms of drug resistance in Mycobacterium tuberculosis, Int. J. Tuberc. Lung Dis, vol.13, pp.1320-1330, 2009.

Y. Zhang and W. W. Yew, Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015, Int. J. Tuberc. Lung Dis, vol.19, pp.1276-1289, 2015.

A. A. Velayati, M. R. Masjedi, P. Farnia, P. Tabarsi, J. Ghanavi et al., Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran, Chest, vol.136, pp.420-425, 2009.

M. Daffe and P. Draper, The envelope layers of mycobacteria with reference to their pathogenicity, Adv. Microb. Physiol, vol.39, pp.131-203, 1998.

M. Daffe, The cell envelope of tubercle bacilli, Tuberculosis (Edinb.), vol.95, pp.155-158, 2015.

H. Marrakchi, M. A. Laneelle, and M. Daffe, Mycolic acids: structures, biosynthesis, and beyond, Chem. Biol, vol.21, pp.67-85, 2014.

O. Neyrolles and C. Guilhot, Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis, Tuberculosis (Edinb.), vol.91, pp.187-195, 2011.

A. Banerjee, E. Dubnau, A. Quemard, V. Balasubramanian, K. S. Um et al., inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis, Science, vol.263, pp.227-230, 1994.

C. Vilcheze, F. Wang, M. Arai, M. H. Hazbon, R. Colangeli et al., Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid, Nat. Med, vol.12, pp.1027-1029, 2006.

E. J. North, M. Jackson, and R. E. Lee, New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics, Curr. Pharm. Des, vol.20, pp.4357-4378, 2014.

K. Takayama, C. Wang, and G. S. Besra, Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis, Clin. Microbiol. Rev, vol.18, pp.81-101, 2005.

J. Pawelczyk and L. Kremer, The molecular genetics of mycolic acid biosynthesis, Microbiol. Spectr, vol.2, pp.2-0003, 2014.

P. J. Brennan and H. Nikaido, The envelope of mycobacteria, Annu. Rev. Biochem, vol.64, pp.29-63, 1995.

R. Veyron-churlet, O. Guerrini, L. Mourey, M. Daffe, and D. Zerbib, Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability, Mol. Microbiol, vol.54, pp.1161-1172, 2004.

R. Veyron-churlet, S. Bigot, O. Guerrini, S. Verdoux, W. Malaga et al., The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions, J. Mol. Biol, vol.353, pp.847-858, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078724

S. Cantaloube, R. Veyron-churlet, N. Haddache, M. Daffe, and D. Zerbib, The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes, PLoS ONE, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01883511

S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

E. Dubnau, J. Chan, C. Raynaud, V. P. Mohan, M. A. Laneelle et al., Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice, Mol. Microbiol, vol.36, pp.630-637, 2000.

R. Rastogi, A. Kumar, J. Kaur, V. Saini, and A. Bhatnagar, Rv0646c, an esterase from M. tuberculosis, up-regulates the host immune response in THP-1 macrophages cells, Mol. Cell. Biochem, 2018.

J. C. Camus, M. J. Pryor, C. Medigue, and S. T. Cole, Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv, Microbiology, vol.148, pp.2967-2973, 2002.

V. Delorme, S. V. Diomande, L. Dedieu, J. F. Cavalier, F. Carriere et al., MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth, PLoS ONE, vol.7, 2012.

L. Dedieu, C. Serveau-avesque, L. Kremer, and S. Canaan, Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research, Biochimie, vol.95, pp.66-73, 2013.

C. Deb, J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey et al., A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J. Biol. Chem, vol.281, pp.3866-3875, 2006.

J. Rengarajan, B. R. Bloom, and E. J. Rubin, Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.8327-8332, 2005.

P. C. Nguyen, V. Delorme, A. Bénarouche, A. Guy, V. Landry et al., Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis, vol.81, pp.414-424, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875577

P. C. Nguyen, V. Delorme, A. Benarouche, B. P. Martin, R. Paudel et al., Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis, Sci. Rep, vol.7, p.11751, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791688

P. C. Nguyen, A. Madani, P. Santucci, B. P. Martin, R. R. Paudel et al., Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases, Int. J. Antimicrob. Agents, vol.51, pp.651-654, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770054

, This is an open access, 2018.

A. Viljoen, M. Richard, P. C. Nguyen, P. Fourquet, L. Camoin et al., Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo, J. Biol. Chem, vol.293, pp.2755-2769, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770061

E. E. Noens, C. Williams, M. Anandhakrishnan, C. Poulsen, M. T. Ehebauer et al., Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1DeltaC expression strain, BMC Biotechnol, vol.11, 2011.

A. Kapopoulou, J. M. Lew, and S. T. Cole, The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes, Tuberculosis (Edinb.), vol.91, pp.8-13, 2011.

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Res, vol.16, pp.10881-10890, 1988.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, 2008.

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc, vol.5, pp.725-738, 2010.

T. J. Dolinsky, J. E. Nielsen, J. A. Mccammon, and N. A. Baker, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res, vol.32, pp.665-667, 2004.

T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen et al., PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations, Nucleic Acids Res, vol.35, pp.522-525, 2007.

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.10037-10041, 2001.

L. Dedieu, C. Serveau-avesque, and S. Canaan, Identification of residues involved in substrate specificity and cytotoxicity of two closely related cutinases from Mycobacterium tuberculosis, PLoS ONE, vol.8, 2013.

N. Flaugnatti, T. T. Le, S. Canaan, M. S. Aschtgen, V. S. Nguyen et al., A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery, Mol. Microbiol, vol.99, pp.1099-1118, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01778571

P. C. Nyguen, V. S. Nguyen, B. P. Martin, P. Fourquet, L. Camoin et al., Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis, J Mol Biol, vol.430, issue.24, pp.5120-5136, 2018.

B. Brust, M. Lecoufle, E. Tuaillon, L. Dedieu, S. Canaan et al., Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis, PLoS ONE, vol.6, 2011.

V. Point, R. K. Malla, S. Diomande, B. P. Martin, V. Delorme et al., Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases, J. Med. Chem, vol.55, pp.10204-10219, 2012.

E. Vasilieva, S. Dutta, R. K. Malla, B. P. Martin, C. D. Spilling et al., Rat hormone sensitive lipase inhibition by cyclipostins and their analogs, Bioorg. Med. Chem, vol.23, pp.944-952, 2015.

B. P. Martin, E. Vasilieva, C. M. Dupureur, and C. D. Spilling, Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin, Bioorg. Med. Chem, vol.23, pp.7529-7534, 2015.

V. Point, R. K. Malla, S. Diomande, B. P. Martin, V. Delorme et al., Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases, J. Med. Chem, vol.55, pp.10204-10219, 2012.

S. Ulker, C. Placidi, V. Point, B. Gadenne, C. Serveau-avesque et al., New lipase assay using Pomegranate oil coating in microtiter plates, Biochimie, vol.120, pp.110-118, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01472891

J. C. Kessel and G. F. Hatfull, Recombineering in Mycobacterium tuberculosis, Nat. Methods, vol.4, pp.147-152, 2007.

R. Goude, D. M. Roberts, and T. Parish, Electroporation of mycobacteria, Methods Mol. Biol, vol.1285, pp.117-130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134392

M. Rezwan, M. A. Laneelle, P. Sander, and M. Daffe, Breaking down the wall: fractionation of mycobacteria, J. Microbiol. Methods, vol.68, pp.32-39, 2007.

K. Cotes, R. Dhouib, I. Douchet, H. Chahinian, A. De-caro et al., Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids, Biochem. J, vol.408, pp.417-427, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478817

R. Dhouib, F. Laval, F. Carriere, M. Daffe, and S. Canaan, A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction, J. Bacteriol, vol.192, pp.4776-4785, 2010.

A. Cascioferro, G. Delogu, M. Colone, M. Sali, A. Stringaro et al., PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall, Mol. Microbiol, vol.66, pp.1536-1547, 2007.

M. H. Daleke, A. Cascioferro, K. De-punder, R. Ummels, A. M. Abdallah et al., Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway, J. Biol. Chem, vol.286, 2011.

R. A. Slayden, . Barry, and C. E. Iii, Analysis of the lipids of Mycobacterium tuberculosis, Methods Mol. Med, vol.54, pp.229-245, 2001.

C. M. Dupont and L. Kremer, Extraction and purification of mycobacterial mycolic acids, Bio-Protocol, vol.4, p.1265, 1920.

X. Meniche, C. Labarre, C. De-sousa-d'auria, E. Huc, F. Laval et al., Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition, J. Bacteriol, vol.191, pp.7323-7332, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00529742

, Bioscience Reports, vol.38, p.20181953, 2018.

,

J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings et al., Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother, vol.46, pp.2720-2722, 2002.

A. Walzl, N. Kramer, M. R. Mazza, D. Falkenhagen, M. Hengstschläger et al., A simple and cost efficient method to avoid unequal evaporation in cellular screening assays, which restores cellular metabolic activity, Int. J. Appl. Sci. Technol, vol.2, pp.17-25, 2012.

H. Chahinian, L. Nini, E. Boitard, J. P. Dubes, L. C. Comeau et al., Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG, Lipids, vol.37, pp.653-662, 2002.

S. K. Parker, R. M. Barkley, J. G. Rino, and M. L. Vasil, Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin, PLoS ONE, vol.4, 2009.

M. S. Ravindran, S. P. Rao, X. Cheng, A. Shukla, A. Cazenave-gassiot et al., Targeting lipid esterases in mycobacteria grown under different physiological conditions using activity-based profiling with tetrahydrolipstatin (THL), Mol. Cell. Proteomics, vol.13, pp.435-448, 2014.

S. Gu, J. Chen, K. M. Dobos, E. M. Bradbury, J. T. Belisle et al., Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain, Mol. Cell. Proteomics, vol.2, pp.1284-1296, 2003.

H. Nielsen, Predicting secretory proteins with SignalP, Methods Mol. Biol, vol.1611, pp.59-73, 2017.

J. M. Belardinelli and M. Jackson, Green Fluorescent Protein as a protein localization and topological reporter in mycobacteria, Tuberculosis (Edinb.), vol.105, pp.13-17, 2017.

J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo, Engineering and characterization of a superfolder green fluorescent protein, Nat. Biotechnol, vol.24, pp.79-88, 2006.

A. Jansson, J. Niemi, P. Mantsala, and G. Schneider, Crystal structure of aclacinomycin methylesterase with bound product analogues: implications for anthracycline recognition and mechanism, J. Biol. Chem, vol.278, pp.39006-39013, 2003.

A. Whited and A. Johs, The interactions of peripheral membrane proteins with biological membranes, Chem. Phys. Lipids, vol.192, pp.51-59, 2015.

D. Murray, A. Arbuzova, B. Honig, and S. Mclaughlint, The role of electrostatic and nonpolar interactions in the association of peripheral proteins with membranes, Curr. Top. Membr, vol.52, pp.277-307, 2002.

J. Lehmann, T. Y. Cheng, A. Aggarwal, A. S. Park, E. Zeiler et al., An Antibacterial beta-lactone kills Mycobacterium tuberculosis by disrupting mycolic acid biosynthesis, Angew. Chem. Int. Ed. Engl, vol.57, pp.348-353, 2018.

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Mol. Microbiol, vol.48, pp.77-84, 2003.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism, PLoS Pathog, vol.7, p.1002251, 2011.

S. T. Cole, K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson et al., Massive gene decay in the leprosy bacillus, Nature, vol.409, pp.1007-1011, 2001.

G. Kaur and J. Kaur, Multifaceted role of lipids in Mycobacterium leprae, Future Microbiol, vol.12, pp.315-335, 2017.

C. S. Andersson, C. A. Lundgren, A. Magnusdottir, C. Ge, A. Wieslander et al., The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: structural basis for housing lipid substrates longer than the enzyme, Structure, vol.20, pp.1062-1070, 2012.

N. P. West, F. M. Chow, E. J. Randall, J. Wu, J. Chen et al., Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification, FASEB J, vol.23, pp.1694-1704, 2009.

J. P. Sarathy, V. Dartois, and E. J. Lee, The role of transport mechanisms in Mycobacterium tuberculosis drug resistance and tolerance, Pharmaceuticals (Basel), vol.5, pp.1210-1235, 2012.

K. H. Khoo, E. Jarboe, A. Barker, J. Torrelles, C. W. Kuo et al., Altered expression profile of the surface glycopeptidolipids in drug-resistant clinical isolates of Mycobacterium avium complex, J. Biol. Chem, vol.274, pp.9778-9785, 1999.

P. Jiang, J. Cronan, and J. E. , Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action, J. Bacteriol, vol.176, pp.2814-2821, 1994.

Z. Zhuang, F. Song, B. M. Martin, and D. Dunaway-mariano, The YbgC protein encoded by the ybgC gene of the tol-pal gene cluster of Haemophilus influenzae catalyzes acyl-coenzyme A thioester hydrolysis, FEBS Lett, vol.516, pp.161-163, 2002.

D. Gully and E. Bouveret, A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli, Proteomics, vol.6, pp.282-293, 2006.

R. Masilamani, M. B. Cian, and Z. D. Dalebroux, Salmonella Tol-Pal reduces outer membrane glycerophospholipid levels for envelope homeostasis and survival during bacteremia, Infect. Immun, vol.86, pp.173-191, 2018.

V. Z. Wall, S. Barnhart, F. Kramer, J. E. Kanter, A. Vivekanandan-giri et al., Inflammatory stimuli induce acyl-CoA thioesterase 7 and remodeling of phospholipids containing unsaturated long (>/ = C20)-acyl chains in macrophages, J. Lipid Res, vol.58, pp.1174-1185, 2017.

M. Jackson, D. C. Crick, and P. J. Brennan, Phosphatidylinositol is an essential phospholipid of mycobacteria, J. Biol. Chem, vol.275, pp.30092-30099, 2000.

R. E. Haites, Y. S. Morita, M. J. Mcconville, and H. Billman-jacobe, Function of phosphatidylinositol in mycobacteria, J. Biol. Chem, vol.280, pp.10981-10987, 2005.

P. K. Crellin, C. Luo, and Y. S. Morita, Metabolism of plasma membrane lipids in Mycobacteria and Corynebacteria, Lipid Metabolism, InTech, 2013.