A. H. Al-timemy, G. Bugmann, J. Escudero, and N. Outram, Classification of finger movements for the dexterous hand prosthesis control with surface electromyography, IEEE J. Biomed. Health Inform, vol.17, pp.608-618, 2013.

J. André, P. , and J. , Les amputés en chiffres: épidémiologie. Module de MPR et Appareillage, co. fe mer avril, 2006.

D. J. Atkins, D. C. Heard, D. , and W. H. , Epidemiologic overview of individuals with upper-limb loss and their reported research priorities, J. Prosthet. Orthot, vol.8, pp.2-11, 1996.

M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A. Mittaz-hager et al., Clinical parameter effect on the capability to control myoelectric robotic prosthetic hands, J. Rehabil. Res. Dev, vol.53, pp.345-358, 2016.

J. T. Belter and A. M. Dollar, Performance characteristics of anthropomorphic prosthetic hands, Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, pp.1-7, 2011.

E. Biddiss, C. , and T. , , 2007.

, Upper-limb prosthetics: critical factors in device abandonment, Am. J. Phys. Med. Rehabil, vol.86, pp.977-987

C. Castellini, P. Artemiadis, M. Wininger, A. Ajoudani, M. Alimusaj et al., Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography, vol.8, p.22, 2014.

J. B. De-graaf, N. Jarrassé, C. Nicol, A. Touillet, T. Coyle et al., Phantom hand and wrist movements in upper limb amputees are slow but naturally controlled movements, Neuroscience, vol.312, pp.48-57, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01457353

K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, Classification of the myoelectric signal using time-frequency based representations, Med. Eng. Phys, vol.21, pp.431-438, 1999.

D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann et al., The extraction of neural information from the surface emg for the control of upper-limb prostheses: emerging avenues and challenges, IEEE Trans. Neural Syst. Rehabil. Eng, vol.22, pp.797-809, 2014.

J. P. Farthing and P. D. Chilibeck, The effects of eccentric and concentric training at different velocities on muscle hypertrophy, Eur. J. Appl. Physiol, vol.89, pp.578-586, 2003.

F. R. Finley and R. W. Wirta, Myocoder studies of multiple myopotential response, Arch. Phys. Med. Rehabil, vol.48, p.598, 1967.

M. Gagné, S. Hétu, K. Reilly, and C. Mercier, The map is not the territory: motor system reorganization in upper limb amputees, Hum. Brain Mapp, vol.32, pp.509-519, 2011.

F. Garbarini, A. Bisio, M. Biggio, L. Pia, and M. Bove, Motor sequence learning and intermanual transfer with a phantom limb, Cortex, vol.101, pp.181-191, 2018.

G. Gaudet, M. Raison, A. , and S. , Classification of upper limb phantom movements in transhumeral amputees using electromyographic and kinematic features, Eng. Appl. Artif. Intell, vol.68, pp.153-164, 2018.

L. J. Hargrove, L. A. Miller, K. Turner, and T. A. Kuiken, Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: a randomized clinical trial, Sci. Rep, vol.7, p.13840, 2017.

J. He and X. Zhu, Combining improved gray-level co-occurrence matrix with high density grid for myoelectric control robustness to electrode shift, IEEE Trans. Neural Syst. Rehabil. Eng, vol.25, pp.1539-1548, 2017.

P. Herberts, C. Almström, R. Kadefors, L. , and P. D. , Hand prosthesis control via myoelectric patterns, Acta Orthopaed. Scand, vol.44, pp.389-409, 1973.

H. J. Hermens, B. Freriks, C. Disselhorst-klug, and G. Rau, Development of recommendations for semg sensors and sensor placement procedures, J. Electromyogr. Kinesiol, vol.10, pp.361-374, 2000.

N. Jarrasse, C. Nicol, F. Richer, A. Touillet, N. Martinet et al., Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses, 2017 International Conference on, pp.1239-1245, 2017.

N. Jarrasse, C. Nicol, A. Touillet, F. Richer, N. Martinet et al., Classification of phantom finger, hand, wrist, and elbow voluntary gestures in transhumeral amputees with semg, IEEE Trans. Neural Syst. Rehabil. Eng, vol.25, pp.71-80, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01455035

T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield et al., Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study, Lancet, vol.369, pp.371-380, 2007.

G. Kvas and R. Velik, A filter approach for myoelectric channel selection, 6th IEEE International Conference on Industrial Informatics, pp.1437-1440, 2008.

C. Lauretti, A. Davalli, R. Sacchetti, E. Guglielmelli, and L. Zollo, Fusion of m-imu and emg signals for the control of trans-humeral prostheses, Biomedical Robotics and Biomechatronics (BioRob), pp.1123-1128, 2016.

P. Lawrence, P. Herberts, K. , and R. , Experiences with a multifunctional hand prosthesis controlled by myoelectric patterns, Adv. Ext. Control Hum. Extremit, pp.47-65, 1973.

C. M. Light, P. H. Chappell, and P. J. Kyberd, Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity, Arch. Phys. Med. Rehabil, vol.83, pp.776-783, 2002.

G. Magenes, F. Passaglia, and E. L. Secco, A new approach of multi-dof prosthetic control, 30th Annual International Conference of the IEEE, pp.3443-3446, 2008.

E. Mastinu, P. Doguet, Y. Botquin, B. Håkansson, and M. Ortiz-catalan, Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an osseointegrated implant, IEEE Trans. Biomed. Circuits Syst, vol.11, pp.867-877, 2017.

G. C. Matrone, C. Cipriani, E. L. Secco, G. Magenes, and M. C. Carrozza, Principal components analysis based control of a multi-dof underactuated prosthetic hand, J. Neuroeng. Rehabil, vol.7, p.16, 2010.

S. Muceli, N. Jiang, and D. Farina, Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms, IEEE Trans. Neural Syst. Rehabil. Eng, vol.22, pp.623-633, 2014.

N. Scotland, The Amputee Statistical Database for the United Kingdom, 2006.

M. Ortiz-catalan, R. A. Gudhmundsdóttir, M. B. Kristoffersen, A. Zepedaechavarria, K. Caine-winterberger et al., Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain, Lancet, vol.388, issue.16, pp.31598-31605, 2016.

M. Ortiz-catalan, B. Håkansson, and R. Brånemark, An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs, Sci. Transl. Med, vol.6, pp.257-263, 2014.

L. E. Osborn, A. Dragomir, J. L. Betthauser, C. L. Hunt, H. H. Nguyen et al., Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain, Sci. Robot, vol.3, p.3818, 2018.

M. A. Oskoei and H. Hu, Support vector machine-based classification scheme for myoelectric control applied to upper limb, IEEE Trans. Biomed. Eng, vol.55, pp.1956-1965, 2008.

K. Ostlie, R. J. Franklin, O. H. Skjeldal, A. Skrondal, M. et al., Musculoskeletal pain and overuse syndromes in adult acquired major upper-limb amputees, Arch. Phys. Med. Rehabil, vol.92, pp.1967-1973, 2011.

A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-bernard et al., EMG feature evaluation for improving myoelectric pattern recognition robustness, Exp. Syst. Appl, vol.40, pp.4832-4840, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831643

M. A. Powell, R. R. Kaliki, and N. V. Thakor, User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability, IEEE Trans. Neural Syst. Rehabil. Eng, vol.22, pp.522-532, 2014.

H. X. Qi, W. Stewart-phillips, and J. H. Kaas, Connections of neurons in the lumbar ventral horn of spinal cord are altered after longstanding limb loss in a macaque monkey, Somatosens. Mot. Res, vol.21, pp.229-239, 2004.

E. Raffin, P. Giraux, R. , and K. T. , The moving phantom: motor execution or motor imagery?, Cortex, vol.48, pp.746-757, 2012.

E. Raffin, J. Mattout, K. T. Reilly, G. , and P. , Disentangling motor execution from motor imagery with the phantom limb, Brain, vol.135, issue.2, pp.582-595, 2012.

K. T. Reilly, C. Mercier, M. H. Schieber, and A. Sirigu, Persistent hand motor commands in the amputees' brain, Brain, vol.129, pp.2211-2223, 2006.

L. Resnik, S. L. Klinger, and K. Etter, The deka arm: its features, functionality, and evolution during the veterans affairs study to optimize the deka arm, Prosthet. Orthot. Int, vol.38, pp.492-504, 2014.

J. S. Richman and J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circul. Physiol, vol.278, pp.2039-2049, 2000.

D. Tkach, H. Huang, and T. Kuiken, Research study of stability of time-domain features for electromyographic pattern recognition, J. Neuroeng. Rehabil, vol.7, p.21, 2010.

D. C. Tkach, A. J. Young, L. H. Smith, E. J. Rouse, and L. J. Hargrove, Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients, IEEE Trans. Neural Syst. Rehabil. Eng, vol.22, pp.727-734, 2014.

A. Touillet, L. Peultier-celli, C. Nicol, N. Jarrassé, I. Loiret et al., Characteristics of phantom upper limb mobility encourage phantom-mobility-based prosthesis control, Nat. Sci. Rep, vol.8, p.15459, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913708

P. Viviani and T. Flash, Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning, J. Exp. Psychol. Hum. Percept. Perform, vol.21, p.32, 1995.

R. W. Wirta, D. R. Taylor, F. , and F. R. , Pattern-recognition arm prosthesis: a historical perspective-a final report, Bull. Prosthet. Res, vol.10, pp.8-35, 1978.

T. W. Wright, A. D. Hagen, and M. B. Wood, Prosthetic usage in major upper extremity amputations, J. Hand Surg, vol.20, pp.619-622, 1995.

C. W. Wu and J. H. Kaas, Spinal cord atrophy and reorganization of motoneuron connections following long-standing limb loss in primates, Neuron, vol.28, pp.967-978, 2000.

M. Zardoshti-kermani, B. Wheeler, K. Badie, and R. Hashemi, Emg feature evaluation for movement control of upper extremity prostheses, 1995.