P. J. Stambrook, J. Maher, and F. Farzaneh, Cancer Immunotherapy: Whence and Whither. Mol. Cancer Res, vol.15, pp.635-650, 2017.

A. W. Hahn, D. M. Gill, S. K. Pal, and N. Agarwal, The future of immune checkpoint cancer therapy after PD-1 and CTLA-4, vol.9, pp.681-692, 2017.

M. Reck, D. Rodríguez-abreu, A. G. Robinson, R. Hui, T. Cs?-oszi et al., Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer, N. Engl. J. Med, vol.375, pp.1823-1833, 2016.
DOI : 10.1056/nejmoa1606774

J. Larkin, V. Chiarion-sileni, R. Gonzalez, J. J. Grob, C. L. Cowey et al., Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma, N. Engl. J. Med, vol.373, pp.23-34, 2015.
DOI : 10.1056/nejmoa1504030

URL : https://cronfa.swan.ac.uk/Record/cronfa25005/Download/0025005-20072017114154.pdf

V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone et al., The Immune Landscape of Cancer. Immunity, vol.48, pp.812-830, 2018.

D. Bano, J. Chames, P. Baty, D. Kerfelec, and B. , Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward? Antibodies, vol.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02115515

U. Brinkmann and R. E. Kontermann, The making of bispecific antibodies, vol.9, pp.182-212, 2017.

C. Hamers-casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers et al., Naturally occurring antibodies devoid of light chains, Nature, vol.363, pp.446-448, 1993.
DOI : 10.1038/363446a0

C. Vincke, R. Loris, D. Saerens, S. Martinez-rodriguez, S. Muyldermans et al., General Strategy to Humanize a Camelid Single-domain Antibody and Identification of a Universal Humanized Nanobody Scaffold, J. Biol. Chem, vol.284, pp.3273-3284, 2009.

S. Duggan and . Caplacizumab, First Global Approval. Drugs, vol.78, pp.1639-1642, 2018.

E. D. Genst, K. Silence, K. Decanniere, K. Conrath, R. Loris et al., Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies, Proc. Natl. Acad. Sci, vol.103, pp.4586-4591, 2006.

L. S. Mitchell and L. J. Colwell, Analysis of nanobody paratopes reveals greater diversity than classical antibodies, Protein Eng. Des. Sel, vol.31, pp.267-275, 2018.

A. N. Cartwright, J. Griggs, and D. M. Davis, The immune synapse clears and excludes molecules above a size threshold, Nat. Commun, vol.5, 2014.

M. Van-roy, C. Ververken, E. Beirnaert, S. Hoefman, J. Kolkman et al., The preclinical pharmacology of the high affinity anti-IL-6R Nanobody®ALX-0061 supports its clinical development in rheumatoid arthritis, Arthritis Res. Ther, vol.17, 2015.

J. S. O'donnell, M. W. Teng, and M. J. Smyth, Cancer immunoediting and resistance to T cell-based immunotherapy, Nat. Rev. Clin. Oncol, 2018.

A. M. Huehls, T. A. Coupet, and C. L. Sentman, Bispecific T-cell engagers for cancer immunotherapy, Immunol. Cell Biol, vol.93, pp.290-296, 2015.
DOI : 10.1038/icb.2014.93

URL : http://europepmc.org/articles/pmc4445461?pdf=render

V. Martin, F. Cappuzzo, L. Mazzucchelli, and M. Frattini, HER2 in solid tumors: More than 10 years under the microscope; where are we now?, Future Oncol, vol.10, pp.1469-1486, 2014.

L. Lin, L. Li, C. Zhou, J. Li, J. Liu et al., A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity, Oncol. Lett, vol.16, pp.1259-1266, 2018.
DOI : 10.3892/ol.2018.8698

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019972

J. B. Ridgway, L. G. Presta, and P. Carter, Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization, Protein Eng. Des. Sel, vol.9, pp.617-621, 1996.

J. Xing, L. Lin, J. Li, J. Liu, C. Zhou et al., Engaging Bispecific Recombinant Antibody, Has Potent Cytotoxic Activity Against Her2 Tumor Cells, vol.10, pp.780-785, 2017.
DOI : 10.1016/j.tranon.2017.07.003

URL : https://doi.org/10.1016/j.tranon.2017.07.003

S. Hammarström, The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues, Semin. Cancer Biol, vol.9, pp.67-81, 1999.

L. Li, P. He, C. Zhou, L. Jing, B. Dong et al., A novel bispecific antibody, S-Fab, induces potent cancer cell killing, J. Immunother, vol.38, pp.350-356, 2015.
DOI : 10.1097/cji.0000000000000099

H. Pan, J. Liu, W. Deng, J. Xing, Q. Li et al., Site-specific PEGylation of an anti-CEA/CD3 bispecific antibody improves its antitumor efficacy, Int. J. Nanomed, vol.13, pp.3189-3201, 2018.
DOI : 10.2147/ijn.s164542

URL : https://www.dovepress.com/getfile.php?fileID=42369

K. Mølgaard, S. L. Harwood, M. Compte, N. Merino, J. Bonet et al., Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies, Cancer Immunol. Immunother, vol.67, pp.1251-1260, 2018.

S. L. Harwood, A. Alvarez-cienfuegos, N. Nuñez-prado, M. Compte, S. Hernández-pérez et al., ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy
DOI : 10.1080/2162402x.2017.1377874

URL : http://europepmc.org/articles/pmc5739562?pdf=render

M. Compte, S. L. Harwood, I. G. Muñoz, R. Navarro, M. Zonca et al., A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity, Nat. Commun, vol.9, 2018.
DOI : 10.1038/s41467-018-07195-w

URL : https://www.nature.com/articles/s41467-018-07195-w.pdf

F. Lozupone, D. Pende, V. L. Burgio, C. Castelli, M. Spada et al., Effect of human natural killer and gammadelta T cells on the growth of human autologous melanoma xenografts in SCID mice, Cancer Res, vol.64, pp.378-385, 2004.

C. Duault, D. Betous, C. Bezombes, S. Roga, C. Cayrol et al., IL-33-expanded human V?9V?2 T cells have anti-lymphoma effect in a mouse tumor model, Eur. J. Immunol, vol.47, pp.2137-2141, 2017.

B. H. Beck, H. Kim, H. Kim, S. Samuel, Z. Liu et al., Adoptively-transferred ex vivo expanded ??-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer, Breast Cancer Res. Treat, vol.122, pp.135-144, 2010.

C. D. Pauza, M. Liou, T. Lahusen, L. Xiao, R. G. Lapidus et al., Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local, Front. Immunol, vol.9, p.1305, 2018.

R. C. De-bruin, S. M. Lougheed, L. Van-der-kruk, A. G. Stam, E. Hooijberg et al., Highly specific and potently activating V?9V?2-T cell specific nanobodies for diagnostic and therapeutic applications, Clin. Immunol, vol.169, pp.128-138, 2016.

R. C. De-bruin, J. P. Veluchamy, S. M. Lougheed, F. L. Schneiders, S. Lopez-lastra et al., A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of V?9V?2-T cells

C. H. June, R. S. Connor, O. U. Kawalekar, S. Ghassemi, M. C. Milone et al., cell immunotherapy for human cancer. Science, vol.359, pp.1361-1365, 2018.

F. J. Iri-sofla, F. Rahbarizadeh, D. Ahmadvand, and M. J. Rasaee, Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase, Exp. Cell Res, vol.317, pp.2630-2641, 2011.
DOI : 10.1016/j.yexcr.2011.08.015

S. Khaleghi, F. Rahbarizadeh, D. Ahmadvand, M. J. Rasaee, and P. Pognonec, A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells, Int. J. Hematol, vol.95, pp.434-444, 2012.

M. Cartellieri, A. Feldmann, S. Koristka, C. Arndt, S. Loff et al., Switching CAR T cells on and off: A novel modular platform for retargeting of T cells to AML blasts, Blood Cancer J, vol.6, 2016.

S. Albert, C. Arndt, A. Feldmann, R. Bergmann, D. Bachmann et al., A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform, vol.6, 2017.

S. Albert, C. Arndt, S. Koristka, N. Berndt, R. Bergmann et al., From mono-to bivalent: Improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells in vitro and in vivo, Oncotarget, vol.9, pp.25597-25616, 2018.

D. Munter, S. Ingels, J. Goetgeluk, G. Bonte, S. Pille et al., Nanobody Based Dual Specific CARs, Int. J. Mol. Sci, vol.19, p.403, 2018.

F. R. Jamnani, F. Rahbarizadeh, M. A. Shokrgozar, F. Mahboudi, D. Ahmadvand et al., T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: Towards tumor-directed oligoclonal T cell therapy, Biochim. Biophys. Acta, vol.1840, pp.378-386, 2014.
DOI : 10.1016/j.bbagen.2013.09.029

N. Li, H. Fu, S. M. Hewitt, D. S. Dimitrov, and M. Ho, Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma, Proc. Natl. Acad. Sci, vol.114, pp.6623-6631, 2017.

N. An, Y. N. Hou, Q. X. Zhang, T. Li, Q. L. Zhang et al., Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells, Mol. Pharm, vol.15, pp.4577-4588, 2018.

K. M. Hargadon, C. E. Johnson, and C. J. Williams, Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors, Int. Immunopharmacol, vol.62, pp.29-39, 2018.

J. R. Ingram, O. S. Blomberg, M. Rashidian, L. Ali, S. Garforth et al., Anti-CTLA-4 therapy requires an Fc domain for efficacy, Proc. Natl. Acad. Sci, vol.115, pp.3912-3917, 2018.

R. Wan, A. Liu, X. Hou, Z. Lai, J. Li et al., Screening and antitumor effect of an anti-CTLA-4 nanobody, Oncol. Rep, vol.39, pp.511-518, 2018.

F. Zhang, H. Wei, X. Wang, Y. Bai, P. Wang et al., Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade

R. Dahan, E. Sega, J. Engelhardt, M. Selby, A. J. Korman et al., Fc?Rs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis, Cancer Cell, vol.28, pp.285-295, 2015.

V. Homayouni, M. Ganjalikhani-hakemi, A. Rezaei, H. Khanahmad, M. Behdani et al., Preparation and characterization of a novel nanobody against T-cell immunoglobulin

, Iran. J. Basic Med. Sci, vol.19, pp.1201-1208, 2016.

K. Imai, S. Matsuyama, S. Miyake, K. Suga, and K. Nakachi, Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population, Lancet, vol.356, pp.1795-1799, 2000.

S. Rusakiewicz, M. Semeraro, M. Sarabi, M. Desbois, C. Locher et al., Immune Infiltrates Are Prognostic Factors in Localized Gastrointestinal Stromal Tumors, Cancer Res, vol.73, pp.3499-3510, 2013.

J. P. Böttcher, E. Bonavita, P. Chakravarty, H. Blees, M. Cabeza-cabrerizo et al., NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control, Cell, vol.172, pp.1022-1037, 2018.

P. Krebs, M. J. Barnes, K. Lampe, K. Whitley, K. S. Bahjat et al., NK cell-mediated killing of target cells triggers robust antigen-specific T cell-mediated and humoral responses, Blood, vol.113, pp.6593-6602, 2009.

J. M. Kelly, P. K. Darcy, J. L. Markby, D. I. Godfrey, K. Takeda et al., Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection, Nat. Immunol, vol.3, pp.83-90, 2002.

G. Cartron, L. Dacheux, G. Salles, P. Solal-celigny, P. Bardos et al., Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc?RIIIa gene, Blood, vol.99, pp.754-758, 2002.

L. Arnould, M. Gelly, F. Penault-llorca, L. Benoit, F. Bonnetain et al., Trastuzumab-based treatment of HER2-positive breast cancer: An antibodydependent cellular cytotoxicity mechanism?, Br. J. Cancer, vol.94, pp.259-267, 2006.

R. Maréchal, . ;-de, J. Schutter, N. Nagy, P. Demetter et al., Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients, BMC Cancer, vol.10, p.340, 2010.

S. Veeramani, S. Wang, C. Dahle, S. Blackwell, L. Jacobus et al., Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism, Blood, vol.118, pp.3347-3349, 2011.

P. Sondermann and D. E. Szymkowski, Harnessing Fc receptor biology in the design of therapeutic antibodies, Curr. Opin. Immunol, vol.40, pp.78-87, 2016.

R. Trotta, P. Kanakaraj, and B. Perussia, Fc gamma R-dependent mitogen-activated protein kinase activation in leukocytes: A common signal transduction event necessary for expression of TNF-alpha and early activation genes, J. Exp. Med, vol.184, pp.1027-1035, 1996.

H. Lee, C. Son, E. Koh, J. Bae, C. Kang et al., Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody

G. Behar, S. Sibéril, A. Groulet, P. Chames, M. Pugnière et al., Isolation and characterization of anti-Fc?RIII (CD16) llama single-domain antibodies that activate natural killer cells, Protein Eng. Des. Sel, vol.21, pp.1-10, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258940

Y. Li, C. Zhou, J. Li, J. Liu, L. Lin et al., Single domain based bispecific antibody, Muc1-Bi-1, and its humanized form, Muc1-Bi-2, induce potent cancer cell killing in muc1 positive tumor cells, PLoS ONE, vol.13, 2018.

B. Dong, C. Zhou, P. He, J. Li, S. Chen et al., A novel bispecific antibody, BiSS, with potent anti-cancer activities, Cancer Biol. Ther, vol.17, pp.364-370, 2016.
DOI : 10.1080/15384047.2016.1139266

URL : https://www.tandfonline.com/doi/pdf/10.1080/15384047.2016.1139266?needAccess=true

C. Rozan, A. Cornillon, C. Pétiard, M. Chartier, G. Behar et al., Single-Domain Antibody-Based and Linker-Free Bispecific Antibodies Targeting Fc?RIII Induce Potent Antitumor Activity without Recruiting Regulatory T Cells, Mol. Cancer Ther, vol.12, pp.1481-1491, 2013.
DOI : 10.1158/1535-7163.mct-12-1012

URL : https://hal.archives-ouvertes.fr/hal-02115468

M. Turini, P. Chames, P. Bruhns, D. Baty, and B. Kerfelec, A Fc?RIII-engaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy, Oncotarget, vol.5, pp.5304-5319, 2014.

J. Li, C. Zhou, B. Dong, H. Zhong, S. Chen et al., Single domain antibody-based bispecific antibody induces potent specific anti-tumor activity, Cancer Biol. Ther, vol.17, pp.1231-1239, 2016.
DOI : 10.1080/15384047.2016.1235659

URL : http://europepmc.org/articles/pmc5199164?pdf=render

A. Li, J. Xing, L. Li, C. Zhou, B. Dong et al., A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells, vol.6, 2016.
DOI : 10.1186/s13568-016-0201-4

URL : https://amb-express.springeropen.com/track/pdf/10.1186/s13568-016-0201-4

W. Deng, J. Liu, H. Pan, L. Li, C. Zhou et al., A Bispecific Antibody Based on Pertuzumab Fab Has Potent Antitumor Activity, J. Immunother, vol.41, pp.1-8, 2018.
DOI : 10.1097/cji.0000000000000200

Y. Wang, J. Liu, H. Pan, J. Xing, X. Wu et al., A GPC3-targeting Bispecific Antibody, GPC3-S-Fab, with Potent Cytotoxicity, J. Vis. Exp, vol.137, 2018.
DOI : 10.3791/57588

M. A. Gray, R. N. Tao, S. M. Deporter, D. A. Spiegel, and B. R. Mcnaughton, A Nanobody Activation Immunotherapeutic that Selectively Destroys HER2-Positive Breast Cancer Cells, Chembiochem, vol.17, pp.155-158, 2016.
DOI : 10.1002/cbic.201500591

URL : http://europepmc.org/articles/pmc5199233?pdf=render

S. Ostrand-rosenberg and C. Fenselau, Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment, J. Immunol, pp.422-431, 0200.
DOI : 10.4049/jimmunol.1701019

URL : http://www.jimmunol.org/content/jimmunol/200/2/422.full.pdf

C. Engblom, C. Pfirschke, and M. J. Pittet, The role of myeloid cells in cancer therapies, Nat. Rev. Cancer, vol.16, pp.447-462, 2016.

J. P. Böttcher and C. R. Sousa, The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity, Trends Cancer, vol.4, pp.784-792, 2018.

R. Majeti, M. P. Chao, A. A. Alizadeh, W. W. Pang, S. Jaiswal et al., CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells, Cell, vol.138, pp.286-299, 2009.
DOI : 10.1016/j.cell.2009.05.045

URL : https://doi.org/10.1016/j.cell.2009.05.045

J. T. Sockolosky, M. Dougan, J. R. Ingram, C. C. Ho, M. J. Kauke et al., Durable antitumor responses to CD47 blockade require adaptive immune stimulation, Proc. Natl. Acad. Sci, vol.113, pp.2646-2654, 2016.
DOI : 10.1073/pnas.1604268113

URL : http://www.pnas.org/content/113/19/E2646.full.pdf

J. R. Ingram, O. S. Blomberg, J. T. Sockolosky, L. Ali, F. I. Schmidt et al., Localized CD47 blockade enhances immunotherapy for murine melanoma, Proc. Natl. Acad. Sci, vol.114, pp.10184-10189, 2017.
DOI : 10.1073/pnas.1710776114

URL : https://www.pnas.org/content/pnas/114/38/10184.full.pdf

C. Tang, X. Wang, Z. Li, Q. Yue, Z. Yang et al., A Systemic Review of Clinical Trials on Dendritic-Cells Based Vaccine Against Malignant Glioma, J. Carcinog. Mutagen, vol.6, 2015.

A. D. Garg, M. V. Perez, M. Schaaf, P. Agostinis, L. Zitvogel et al., Trial watch: Dendritic cell-based anticancer immunotherapy, vol.6, 2017.
DOI : 10.1080/2162402x.2017.1328341

URL : http://europepmc.org/articles/pmc5543823?pdf=render

J. N. Duarte, J. J. Cragnolini, L. K. Swee, A. M. Bilate, J. Bader et al., Generation of Immunity against Pathogens via Single-Domain Antibody-Antigen Constructs, J. Immunol, vol.197, pp.4838-4847, 2016.
DOI : 10.4049/jimmunol.1600692

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806123

T. Fang, C. H. Van-elssen, J. N. Duarte, J. S. Guzman, J. S. Chahal et al., Targeted antigen delivery by an anti-class II MHC VHH elicits focused ?MUC1(Tn) immunity ?Electronic supplementary information (ESI) available, Chem. Sci, vol.8, pp.5591-5597, 2017.

S. Kwon, J. N. Duarte, Z. Li, J. J. Ling, O. Cheneval et al., Targeted Delivery of Cyclotides via Conjugation to a Nanobody, ACS Chem. Biol, vol.13, pp.2973-2980, 2018.

X. Sun, D. Gao, L. Gao, C. Zhang, X. Yu et al., Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer, Theranostics, vol.5, pp.597-608, 2015.

P. Dong, L. Ma, L. Liu, G. Zhao, S. Zhang et al., Diametrically Polarized Tumor-Associated Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis, Int. J. Mol. Sci, vol.17, 2016.

L. Nuhn, E. Bolli, S. Massa, I. Vandenberghe, K. Movahedi et al., Targeting Protumoral Tumor-Associated Macrophages with Nanobody-Functionalized Nanogels through Strain Promoted Azide Alkyne Cycloaddition Ligation, Bioconjug. Chem, vol.29, pp.2394-2405, 2018.

T. Fang, J. N. Duarte, J. Ling, Z. Li, J. S. Guzman et al., Structurally Defined ?MHC-II Nanobody-Drug Conjugates: A Therapeutic and Imaging System for B-Cell Lymphoma, Angew. Chem. Int. Ed, vol.55, pp.2416-2420, 2016.

A. Georgoudaki, K. E. Prokopec, V. F. Boura, E. Hellqvist, S. Sohn et al., Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis, Cell Rep, vol.15, 2000.

M. Tariq, J. Zhang, G. Liang, Q. He, L. Ding et al., Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway, Acta Pharmacol. Sin, vol.38, pp.1501-1511, 2017.

M. C. Alupei, E. Licarete, L. Patras, and M. Banciu, Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress, Cancer Lett, vol.356, pp.946-952, 2015.

W. Yin, X. Yu, X. Kang, Y. Zhao, P. Zhao et al., Remodeling Tumor-Associated Macrophages and Neovascularization Overcomes EGFRT790M-Associated Drug Resistance by PD-L1 Nanobody-Mediated Codelivery, Small, vol.14, p.1802372, 2018.

R. M. Mcewen-smith, M. Salio, and V. Cerundolo, The Regulatory Role of Invariant NKT Cells in Tumor Immunity, Cancer Immunol. Res, vol.3, pp.425-435, 2015.

R. Lameris, R. C. De-bruin, P. M. Van-bergen-en-henegouwen, H. M. Verheul, S. Zweegman et al., Generation and characterization of CD1d-specific single-domain antibodies with distinct functional features, Immunology, vol.149, pp.111-121, 2016.

C. Goyvaerts, K. De-groeve, J. Dingemans, S. Van-lint, L. Robays et al., Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells, Gene Ther, vol.19, pp.1133-1140, 2012.

C. Goyvaerts, Y. De-vlaeminck, D. Escors, S. Lienenklaus, M. Keyaerts et al., Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: Implications for in vivo targeted vaccine delivery, Gene Ther, vol.24, pp.370-375, 2017.

X. Wang and Y. Lin, Tumor necrosis factor and cancer, buddies or foes?, Acta Pharmacol. Sin, vol.29, pp.1275-1288, 2008.

X. Zhao, L. Rong, X. Zhao, X. Li, X. Liu et al., TNF signaling drives myeloid-derived suppressor cell accumulation, J. Clin. Investig, vol.122, pp.4094-4104, 2012.

Y. Okubo, T. Mera, L. Wang, and D. L. Faustman, Homogeneous Expansion of Human T-Regulatory Cells Via Tumor Necrosis Factor Receptor 2

F. Bertrand, A. Montfort, E. Marcheteau, C. Imbert, J. Gilhodes et al., TNF? blockade overcomes resistance to anti-PD-1 in experimental melanoma, Nat. Commun, 2017.

X. Ji, Z. Peng, X. Li, Z. Yan, Y. Yang et al., Neutralization of TNF? in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer, Cancer Lett, vol.386, pp.24-34, 2017.

H. Bakherad, S. L. Gargari, Z. Sepehrizadeh, H. Aghamollaei, R. A. Taheri et al., Identification and in vitro characterization of novel nanobodies against human granulocyte colony-stimulating factor receptor to provide inhibition of G-CSF function, Biomed. Pharmacother, vol.93, pp.245-254, 2017.

Z. Fan, Y. Li, Q. Zhao, L. Fan, B. Tan et al., Highly Expressed Granulocyte Colony-Stimulating Factor (G-CSF) and Granulocyte Colony-Stimulating Factor Receptor (G-CSFR) in Human Gastric Cancer Leads to Poor Survival, Med. Sci. Monit, vol.24, pp.1701-1711, 2018.

K. T. Morris, H. Khan, A. Ahmad, L. L. Weston, R. A. Nofchissey et al., are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration, Br. J. Cancer, vol.110, pp.1211-1220, 2014.

S. Agarwal, A. Lakoma, Z. Chen, J. Hicks, L. S. Metelitsa et al., G-CSF promotes neuroblastoma tumorigenicity and metastasis via STAT3-dependent cancer stem cell activation, Cancer Res, vol.75, pp.2566-2579, 2015.

R. Sackstein, T. Schatton, and S. R. Barthel, An underappreciated yet critical hurdle for successful cancer immunotherapy, vol.97, pp.669-697, 2017.

Y. X. Liao, C. H. Zhou, H. Zeng, D. Q. Zuo, Z. Y. Wang et al., The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review), Int. J. Mol. Med, vol.32, pp.1239-1246, 2013.

G. Krikun, The CXL12/CXCR4/CXCR7 axis in female reproductive tract disease: Review, Am. J. Reprod. Immunol, vol.80, 2018.

P. Brennecke, M. J. Arlt, C. Campanile, K. Husmann, A. Gvozdenovic et al., CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice, Clin. Exp. Metastasis, vol.31, pp.339-349, 2014.

A. Benedicto, I. Romayor, and B. Arteta, CXCR4 receptor blockage reduces the contribution of tumor and stromal cells to the metastatic growth in the liver, Oncol. Rep, 2018.

S. Lefort, A. Thuleau, Y. Kieffer, P. Sirven, I. Bieche et al., Mechta-Grigoriou, F. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients, vol.36, pp.1211-1222, 2017.

D. Maussang, A. Muji´cmuji´c-deli´cdeli´c, F. J. Descamps, C. Stortelers, P. Vanlandschoot et al., Llama-derived Single Variable Domains (Nanobodies) Directed against Chemokine Receptor CXCR7 Reduce Head and Neck Cancer Cell Growth In Vivo, J. Biol. Chem, vol.288, pp.29562-29572, 2013.

N. Zheng, W. Liu, J. Chen, B. Li, J. Liu et al., CXCR7 is not obligatory for CXCL12-CXCR4-induced epithelial-mesenchymal transition in human ovarian cancer, Mol. Carcinog, vol.58, pp.144-155, 2019.

D. G. Duda, S. V. Kozin, N. D. Kirkpatrick, L. Xu, D. Fukumura et al., CXCL12 (SDF1?)-CXCR4/CXCR7 Pathway Inhibition: An Emerging Sensitizer for Anticancer Therapies?, Clin. Cancer Res, vol.17, 2011.

A. Van-hout, A. Klarenbeek, V. Bobkov, J. Doijen, M. Arimont et al., CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry, Biochem. Pharmacol, vol.158, pp.402-412, 2018.

S. Jähnichen, C. Blanchetot, D. Maussang, M. Gonzalez-pajuelo, K. Y. Chow et al., CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells, Proc. Natl. Acad. Sci, vol.107, pp.20565-20570, 2010.

V. Bobkov, A. M. Zarca, A. Van-hout, M. Arimont, J. Doijen et al., Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions, Biochem. Pharmacol, vol.158, pp.413-424, 2018.

S. A. Rosenberg, IL-2: The First Effective Immunotherapy for Human Cancer, J. Immunol, vol.192, pp.5451-5458, 2014.

M. Dougan, J. R. Ingram, H. Jeong, M. M. Mosaheb, P. T. Bruck et al., Targeting Cytokine Therapy to the Pancreatic Tumor Microenvironment Using PD-L1-Specific VHHs, Cancer Immunol. Res, vol.6, pp.389-401, 2018.

Y. Liu, Y. Wang, J. Xing, Y. Li, J. Liu et al., A novel multifunctional anti-CEA-IL15 molecule displays potent antitumor activities. Drug Des, Dev. Ther, vol.12, pp.2645-2654, 2018.

M. P. Rubinstein, M. Kovar, J. F. Purton, J. Cho, O. Boyman et al., Converting IL-15 to a superagonist by binding to soluble IL-15R?, Proc. Natl. Acad. Sci, vol.103, pp.9166-9171, 2006.

S. Schoonooghe, D. Laoui, J. A. Van-ginderachter, N. Devoogdt, T. Lahoutte et al., Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer, Immunobiology, vol.217, pp.1266-1272, 2012.

T. Fang, X. Lu, D. Berger, C. Gmeiner, J. Cho et al., Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure, Nat. Methods, vol.15, pp.1029-1032, 2018.

M. D. Witte, T. Wu, C. P. Guimaraes, C. S. Theile, A. E. Blom et al., Site-specific protein modification using immobilized sortase in batch and continuous-flow systems, Nat. Protoc, vol.10, pp.508-516, 2015.

S. Massa, N. Vikani, C. Betti, S. Ballet, S. Vanderhaegen et al., Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: A versatile strategy for multiple molecular imaging modalities, Contrast Media Mol. Imaging, vol.11, pp.328-339, 2016.

C. Xavier, N. Devoogdt, S. Hernot, I. Vaneycken, M. Huyvetter et al., Site-Specific Labeling of His-Tagged Nanobodies with 99mTc: A Practical Guide, Single Domain Antibodies: Methods and Protocols

K. Broos, M. Keyaerts, Q. Lecocq, D. Renmans, T. Nguyen et al., Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers, Oncotarget, vol.8, pp.41932-41946, 2017.

M. Keyaerts, C. Xavier, J. Heemskerk, N. Devoogdt, H. Everaert et al., Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma, J. Nucl. Med, vol.57, pp.27-33, 2016.

A. Krasniqi, M. Huyvetter, C. Xavier, K. V. Der-jeught, S. Muyldermans et al., Theranostic Radiolabeled Anti-CD20 sdAb for Targeted Radionuclide Therapy of Non-Hodgkin Lymphoma, Mol. Cancer Ther, vol.16, pp.2828-2839, 2017.

A. Balhuizen, S. Massa, I. Mathijs, J. Turatsinze, J. D. Vos et al., A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells

F. J. Warnders, A. G. Van-scheltinga, C. Knuehl, M. Van-roy, E. F. De-vries et al., Human Epidermal Growth Factor Receptor 3-Specific Tumor Uptake and Biodistribution of 89Zr-MSB0010853 Visualized by Real-Time and Noninvasive PET Imaging, J. Nucl. Med, vol.58, pp.1210-1215, 2017.

P. Bannas, L. Well, A. Lenz, B. Rissiek, F. Haag et al., In vivo near-infrared fluorescence targeting of T cells: Comparison of nanobodies and conventional monoclonal antibodies, Contrast Media Mol. Imaging, vol.9, pp.135-142, 2014.

M. Rashidian, J. R. Ingram, M. Dougan, A. Dongre, K. A. Whang et al., Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells, J. Exp. Med, vol.214, pp.2243-2255, 2017.

K. Movahedi, S. Schoonooghe, D. Laoui, I. Houbracken, W. Waelput et al., Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective In Vivo Imaging of Tumor-Associated Macrophages, Cancer Res, vol.72, pp.4165-4177, 2012.

A. Blykers, S. Schoonooghe, C. Xavier, K. ;-d'hoe, D. Laoui et al., Imaging of Macrophage Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments, J. Nucl. Med, vol.56, pp.1265-1271, 2015.

C. H. Van-elssen, M. Rashidian, V. Vrbanac, K. W. Wucherpfennig, Z. El-habre et al., Noninvasive Imaging of Human Immune Responses in a Human Xenograft Model of Graft-Versus-Host Disease, J. Nucl. Med, vol.58, pp.1003-1008, 2017.

M. Rashidian, E. J. Keliher, M. Dougan, P. K. Juras, M. Cavallari et al., Use of 18F-2-Fluorodeoxyglucose to Label Antibody Fragments for Immuno-Positron Emission Tomography of Pancreatic Cancer, ACS Cent. Sci, vol.1, pp.142-147, 2015.