Y. Wu, E. Breaz, F. Gao, D. Paire, and A. Miraoui, Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine, IEEE Transactions on Energy Conversion, vol.31, issue.4, pp.1570-1582, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02380395

C. Beer, P. Barendse, and P. Pillay, Fuel cell condition monitoring using optimized broadband impedance spectroscopy, IEEE Trans. Ind. Electron, vol.62, issue.8, pp.5306-5316, 2015.

J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang et al., A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources, vol.184, issue.1, pp.104-119, 2008.

C. Beer, P. Barendse, P. Pillay, B. Bullecks, and R. Rengaswamy, Classification of high temperature pem fuel cell degradation mechanisms using equivalent circuits, IEEE Trans. Ind. Electron, issue.99, pp.1-1, 2015.

F. Bianchi, C. Kunusch, C. Ocampo-martinez, and R. Sanchez-pena, A gain-scheduled lpv control for oxygen stoichiometry regulation in pem fuel cell systems, IEEE Trans. Control Syst. Technol, vol.22, issue.5, pp.1837-1844, 2014.

S. Lira, V. Puig, J. Quevedo, and A. Husar, LPV observer design for PEM fuel cell system: Application to fault detection, Journal of Power Sources, vol.196, issue.9, pp.4298-4305, 2011.

D. Rotondo, R. M. Fernandez-canti, S. Tornil-sin, J. Blesa, and V. Puig, Robust fault diagnosis of proton exchange membrane fuel cells using a takagi-sugeno interval observer approach, International Journal of Hydrogen Energy, vol.41, issue.4, pp.2875-2886, 2016.

N. Steiner, D. Hissel, P. Moçotéguy, and D. Candusso, Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling, International Journal of Hydrogen Energy, vol.36, issue.4, pp.3067-3075, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00880498

J. Hua, J. Li, M. Ouyang, L. Lu, and L. Xu, Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method, International Journal of Hydrogen Energy, vol.36, issue.16, pp.9896-9905, 2011.

Z. Zheng, R. Petrone, M. Pera, D. Hissel, M. Becherif et al., Diagnosis of a commercial pem fuel cell stack via incomplete spectra and fuzzy clustering, Industrial Electronics Society, IECON 2013 -39th Annual Conference of the IEEE, pp.1595-1600, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02300506

Z. Zheng, M. Péra, D. Hissel, M. Becherif, K. Agbli et al., A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks, Journal of Power Sources, vol.271, pp.570-581, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02496056

R. A. Nazer, V. Cattin, P. Granjon, M. Montaru, and M. Ranieri, Lassical eis vs broadband identification comparison based on a wellknown reference impedance, The International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, 2013.

E. Pahon, N. Y. Steiner, S. Jemei, D. Hissel, and P. Moçoteguy, A signal-based method for fast PEMFC diagnosis, Applied Energy, vol.165, pp.748-758, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02130958

D. Benouioua, D. Candusso, F. Harel, and L. Oukhellou, Fuel cell diagnosis method based on multifractal analysis of stack voltage signal, International Journal of Hydrogen Energy, vol.39, issue.5, pp.2236-2245, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01049913

C. Damour, M. Benne, B. Grondin-perez, M. Bessafi, D. Hissel et al., Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition, Journal of Power Sources, vol.299, pp.596-603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221973

Z. Li, R. Outbib, S. Giurgea, D. Hissel, and Y. Li, Fault detection and isolation for Polymer Electrolyte Membrane Fuel Cell systems by analyzing cell voltage generated space, Applied Energy, vol.148, pp.260-272, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02004071

Z. Li, R. Outbib, S. Giurgea, and D. Hissel, Diagnosis for pemfc systems: A data-driven approach with the capabilities of online adaptation and novel fault detection, IEEE Trans. Ind. Electron, vol.62, issue.8, pp.5164-5174, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02004105

L. Ye and E. Keogh, Time series shapelets: a new primitive for data mining, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.947-956, 2009.

J. Lines, L. M. Davis, J. Hills, and A. Bagnall, A shapelet transform for time series classification, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.289-297, 2012.

H. Xue, S. Chen, and Q. Yang, Structural regularized support vector machine: A framework for structural large margin classifier, IEEE Trans. Neural Netw, vol.22, issue.4, pp.573-587, 2011.

P. Y. Hao and Y. H. Lin, A new multi-class support vector machine with multi-sphere in the feature space, Proceedings of the 20th international conference on Industrial, engineering, and other applications of applied intelligent systems, ser. IEA/AIE'07, pp.756-765, 2007.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learn, vol.46, issue.1-3, pp.131-159, 2002.

Z. Li, R. Outbib, D. Hissel, and S. Giurgea, Data-driven diagnosis of PEM fuel cell: A comparative study, Control Engineering Practice, vol.28, issue.0, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01113297