C. Beer, P. Barendse, P. Pillay, B. Bullecks, and R. Rengaswamy, Classification of high temperature PEM fuel cell degradation mech-anisms using equivalent circuits, IEEE Trans. Ind. Electron

S. Lira, V. Puig, J. Quevedo, and A. Husar, LPV observer design for PEM fuel cell system: Application to fault detection, J. Power Sources, vol.196, issue.9, pp.4298-4305, 2011.

D. Hissel, D. Candusso, and F. Harel, Fuzzy-clustering durability diagnosis of polymer electrolyte fuel cells dedicated to transportation applications, IEEE Trans. Veh. Technol, vol.56, issue.5, pp.2414-2420, 2007.

N. Y. Steiner, D. Hissel, P. Mocoteguy, and D. Candusso, Diagnosis of polymer electrolyte fuel cells failure modes (flooding and drying out) by neural networks modeling, Int. J. Hydrogen Energy, vol.36, issue.4, pp.3067-3075, 2011.

D. Benouioua, D. Candusso, F. Harel, and L. Oukhellou, Fuel cell diag-nosis method based on multifractal analysis of stack voltage signal, Int. J. Hydrogen Energy, vol.39, issue.5, pp.2236-2245, 2014.

J. Hua, J. Li, M. Ouyang, L. Lu, and L. Xu, Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method, Int. J. Hydrogen Energy, vol.36, issue.16, pp.9896-9905, 2011.

C. Vong, P. Wong, and W. Ip, A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for timedependent patterns, IEEE Trans. Ind. Electron, vol.60, issue.8, pp.3372-3385, 2013.

T. Boukra, A. Lebaroud, and G. Clerc, Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation, IEEE Trans. Ind. Electron, vol.60, issue.9, pp.4034-4042, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904827

M. Biet, Rotor faults diagnosis using feature selection and nearest neigh-bors rule: Application to a turbogenerator, IEEE Trans. Ind. Electron, vol.60, issue.9, pp.4063-4073, 2013.

M. Prieto, G. Cirrincione, A. Espinosa, J. Ortega, and H. Henao, Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks, IEEE Trans. Ind. Electron, vol.60, issue.8, pp.3398-3407, 2013.

X. Gong and W. Qiao, Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals, IEEE Trans. Ind. Electron, vol.60, issue.8, pp.3419-3428, 2013.

Z. Li, S. Giurgea, R. Outbib, and D. Hissel, Online diagnosis of PEMFC by combining support vector machine and fluidic model, Fuel Cells, vol.14, issue.13, pp.448-456, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02476496

Z. Li, R. Outbib, D. Hissel, and S. Giurgea, Data-driven diagnosis of PEM fuel cell: A comparative study, Control Eng. Practice, vol.28, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01113297

J. Wu, A review of PEM fuel cell durability: Degradation mech-anisms and mitigation strategies, J. Power Sources, vol.184, issue.1, pp.104-119, 2008.

R. O. Duda, P. E. Hart, and .. G. Stork, Pattern Classification, 2001.

L. Cao, K. Chua, W. Chong, H. Lee, and Q. Gu, A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine, Neurocomputing, vol.55, issue.1, pp.321-336, 2003.

C. Hsu and C. Lin, A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Netw, vol.13, issue.2, pp.415-425, 2002.

P. Y. Hao and Y. H. Lin, A new multi-class support vector machine with multi-sphere in the feature space, Proc. 20th IEA/AIE, pp.756-765, 2007.

S. Nikitidis, N. Nikolaidis, and I. Pitas, Multiplicative update rules for incremental training of multiclass support vector machines, Pattern Recognit, vol.45, issue.5, pp.1838-1852, 2012.

G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning, Proc. Adv. NIPS, vol.13, pp.409-415, 2001.

D. Candusso, Characterisation and modeling of a 5 kW PEMFC for transportation applications, Int. J. Hydrogen Energy, vol.31, issue.8, pp.1019-1030, 2006.