M. D. Fox and M. E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging, Nat Rev Neurosci, vol.8, p.17704812, 2007.

S. E. Petersen and M. I. Posner, The attention system of the human brain: 20 years after, Annu Rev Neurosci, vol.35, p.22524787, 2012.

M. T. Alkire, A. G. Hudetz, and G. Tononi, Consciusness and Anesthesia. Science (80-), vol.7, p.18988836, 2008.

K. Takahashi, S. Kim, T. P. Coleman, K. A. Brown, A. J. Suminski et al., Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex, Nat Commun, vol.6, p.25994554, 2015.

T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli, Spontaneously emerging cortical representations of visual attributes, Nature, vol.425, p.14586468, 2003.

M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli, Linking spontaneous activity of single cortical neurons and the underlying functional architecture, Science, vol.286, pp.1943-1949, 1999.

M. J. Brookes, M. Woolrich, H. Luckhoo, D. Price, J. R. Hale et al., Investigating the electrophysiological basis of resting state networks using magnetoencephalography, Proc Natl Acad Sci U S A, vol.108, p.21930901, 2011.

E. D. Adrian and B. H. Matthews, The interpretation of potential waves in the cortex, J Physiol, vol.81, p.16994555, 1934.

W. L. Shew and D. Plenz, The functional benefits of criticality in the cortex, Neuroscientist, vol.19, p.22627091, 2013.

P. Bak, C. Tang, and K. Wiesenfeld, Self-Organized Criticality: An Explanation of 1/f Noise, Phys Rev Lett. APS, vol.59, pp.381-384, 1987.

D. Plenz and T. Thiagarajan, The organizing principles of neuronal avalanches: cell assemblies in the cortex?, Trends Neurosci, vol.30, p.17275102, 2007.

D. Chialvo, Emergent complex neural dynamics: the brain at the edge, Nat Phys, vol.6, pp.744-750, 2010.

J. Beggs and D. Plenz, Neuronal avalanches in neocortical circuits, J Neurosci, vol.23, p.14657176, 2003.

J. Beggs and D. Plenz, Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures, J Neurosci, vol.24, p.15175392, 2004.

N. Friedman, S. Ito, B. Brinkman, M. Shimono, R. Deville et al., Universal critical dynamics in high resolution neuronal avalanche data, Phys Rev Lett, vol.108, p.208102, 2012.

A. Mazzoni, F. Broccard, E. Garcia-perez, P. Bonifazi, M. Ruaro et al., On the dynamics of the spontaneous activity in neuronal networks, PLoS One, vol.2, p.17502919, 2007.

V. Pasquale, P. Massobrio, L. Bologna, M. Chiappalone, and S. Martinoia, Self-organization and neuronal avalanches in networks of dissociated cortical neurons, Neuroscience, vol.153, p.18448256, 2008.

F. Lombardi, H. J. Herrmann, D. Plenz, and L. De-arcangelis, Temporal correlations in neuronal avalanche occurrence, Sci Rep, vol.6, p.27094323, 2016.

E. Gireesh and D. Plenz, Neuronal avalanches organize as nested theta-and beta/gamma-oscillations during development of cortical layer 2/3, Proc Natl Acad Sci U S A, vol.105, p.18499802, 2008.

G. Hahn, T. Petermann, M. Havenith, S. Yu, W. Singer et al., Neuronal avalanches in spontaneous activity in vivo, J Neurophysiol. Am Physiological Soc, vol.104, p.20631221, 2010.

T. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D. Chialvo et al., Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle, PLoS One, vol.5, p.21152422, 2010.

T. Bellay, A. Klaus, S. Seshadri, and D. Plenz, Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state, Elife, vol.4, p.26151674, 2015.

T. Petermann, T. Thiagarajan, M. Lebedev, M. Nicolelis, D. Chialvo et al., Spontaneous cortical activity in awake monkeys composed of neuronal avalanches, Proc Natl Acad Sci U S A, vol.106, p.19717463, 2009.

S. Yu, H. Yang, O. Shriki, and D. Plenz, Universal organization of resting brain activity at the thermodynamic critical point, Front Syst Neurosci, vol.7, p.23986660, 2013.

S. Yu, H. Yang, H. Nakahara, G. Santos, D. Nikoli? et al., Higher-order interactions characterized in cortical activity, J Neurosci, vol.31, p.22131413, 2011.

O. Shriki, J. Alstott, F. Carver, T. Holroyd, R. Henson et al., Neuronal avalanches in the resting MEG of the human brain, J Neurosci, vol.33, p.23595765, 2013.

E. Tagliazucchi, P. Balenzuela, D. Fraiman, and D. Chialvo, Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis, Front fractal Physiol, vol.3, p.22347863, 2012.

V. Priesemann, M. Munk, and M. Wibral, Subsampling effects in neuronal avalanche distributions recorded in vivo, BMC Neurosci, vol.10, p.19400967, 2009.

O. Arviv, A. Goldstein, and O. Shriki, Near-Critical Dynamics in Stimulus-Evoked Activity of the Human Brain and Its Relation to Spontaneous Resting-State Activity, J Neurosci, vol.35, p.26468194, 2015.

W. Shew, W. Clawson, J. Pobst, and Y. Karimipanah, Adaptation to sensory input tunes visual cortex to criticality, Nat Phys, 2015.

C. Bédard, H. Kroeger, and A. Destexhe, Does the 1/f frequency scaling of brain signals reflect self-organized critical states?, Phys Rev Lett. APS, vol.97, p.17025932, 2006.

V. Priesemann, M. Wibral, M. Valderrama, R. Pröpper, L. Van-quyen et al., Spike avalanches in vivo suggest a driven, slightly subcritical brain state, Front Syst Neurosci, vol.8, p.25009473, 2014.

J. Touboul and A. Destexhe, Can power-law scaling and neuronal avalanches arise from stochastic dynamics?, PLoS One, vol.5, p.20161798, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466697

T. L. Ribeiro, S. Ribeiro, H. Belchior, F. Caixeta, and M. Copelli, Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches, PLoS One, 2014.

, , p.24751599

K. Harris and A. Thiele, Cortical state and attention, Nat Rev Neurosci. Nature Publishing Group, vol.12, p.21829219, 2011.

A. Destexhe, S. Hughes, M. Rudolph, and V. Crunelli, Are corticothalamic "up" states fragments of wakefulness?, Trends Neurosci, vol.30, p.17481741, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00151895

A. Luczak, P. Barthó, S. Marguet, G. Buzsáki, and K. Harris, Sequential structure of neocortical spontaneous activity in vivo, Proc Natl Acad Sci. National Acad Sciences, vol.104, p.347, 2007.

A. Renart, J. De-la-rocha, P. Bartho, L. Hollender, N. Parga et al., The asynchronous state in cortical circuits. Science (80-), vol.327, p.587, 2010.

S. Crochet and C. Petersen, Correlating whisker behavior with membrane potential in barrel cortex of awake mice, Nat Neurosci, vol.9, p.16617340, 2006.

J. Poulet and C. Petersen, Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice, Nature, vol.454, p.18633351, 2008.

M. Okun, A. Naim, and I. Lampl, The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats, J Neurosci, vol.30, p.20335480, 2010.

J. Poulet, L. Fernandez, S. Crochet, and C. Petersen, Thalamic control of cortical states, Nat Neurosci, vol.15, p.22267163, 2012.

A. Tan, Y. Chen, B. Scholl, E. Seidemann, and N. J. Priebe, Sensory stimulation shifts visual cortex from synchronous to asynchronous states, Nature. Nature Publishing Group, vol.509, p.24695217, 2014.

S. H. Gautam, T. T. Hoang, K. Mcclanahan, S. K. Grady, and W. L. Shew, Maximizing Sensory Dynamic Range by Tuning the Cortical State to Criticality, PLoS Comput Biol, vol.11, p.26623645, 2015.

G. Scott, E. D. Fagerholm, H. Mutoh, R. Leech, D. J. Sharp et al., Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics, J Neurosci, vol.34, p.25505314, 2014.

V. Priesemann, M. Valderrama, M. Wibral, L. Van-quyen, and M. , Neuronal Avalanches Differ from Wakefulness to Deep Sleep-Evidence from Intracranial Depth Recordings in Humans, PLoS Comput Biol, vol.9, p.23555220, 2013.

E. D. Fagerholm, G. Scott, W. L. Shew, C. Song, R. Leech et al., Mutual Information and Scale-Free Dynamics in Waking Mice, Cortical Entropy, vol.26, p.27384059, 2016.

E. Tagliazucchi, D. R. Chialvo, M. Siniatchkin, E. Amico, J. Brichant et al., Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics, J R Soc Interface. The Royal Society, vol.13, p.26819336, 2016.

C. Meisel, E. Olbrich, O. Shriki, and P. Achermann, Fading signatures of critical brain dynamics during sustained wakefulness in humans, J Neurosci, vol.33, p.24174669, 2013.

E. D. Fagerholm, R. Lorenz, G. Scott, M. Dinov, P. J. Hellyer et al., Cascades and Cognitive State: Focused Attention Incurs Subcritical Dynamics, J Neurosci, vol.35, p.25788679, 2015.

N. Dehghani, N. Hatsopoulos, Z. Haga, R. Parker, B. Greger et al., Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep, Front fractal Physiol, vol.3, p.22934053, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00850572

A. Klaus, S. Yu, and D. Plenz, Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches, PLoS One, vol.6, p.21720544, 2011.

S. Poil, R. Hardstone, H. D. Mansvelder, and K. Linkenkaer-hansen, Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks, J Neurosci, vol.32, p.22815496, 2012.

C. Eurich, J. Herrmann, and U. Ernst, Finite-size effects of avalanche dynamics, Phys Rev E. APS, vol.66, p.66137, 2002.

N. Marshall, N. M. Timme, N. Bennett, M. Ripp, E. Lautzenhiser et al., Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox, vol.7, p.27445842, 2016.

M. Teich, C. Heneghan, S. Lowen, B. Ozaki, and E. Kaplan, Fractal character of the neural spike train in the visual system of the cat, J Opt Soc Am, vol.14, pp.529-575, 1997.

. Safonov-l-a, Y. Isomura, S. Kang, Z. R. Struzik, T. Fukai et al., Near Scale-Free Dynamics in Neural Population Activity of Waking/Sleeping Rats Revealed by Multiscale Analysis, PLoS One, vol.5, p.20927400, 2010.

R. Segev, M. Benveniste, E. Hulata, N. Cohen, A. Palevski et al., Long term behavior of lithographically prepared in vitro neuronal networks, Phys Rev Lett, vol.88, p.118102, 2002.

G. Tka?ik, T. Mora, O. Marre, D. Amodei, S. E. Palmer et al., Thermodynamics and signatures of criticality in a network of neurons, Proc Natl Acad Sci, 2015.

M. Cohen and A. Kohn, Measuring and interpreting neuronal correlations. Nat Neurosci, Nature Publishing Group, vol.14, p.21709677, 2011.
DOI : 10.1038/nn.2842

URL : http://europepmc.org/articles/pmc3586814?pdf=render

N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J Comput Neurosci, vol.8, pp.183-208, 2000.

J. Touboul and A. Destexhe, Power-law statistics and universal scaling in the absence of criticality, Phys Rev E, vol.95, p.28208383, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02063982

W. Klimesch, Alpha-band oscillations, attention, and controlled access to stored information, Trends Cogn Sci. Elsevier Ltd, vol.16, p.23141428, 2012.
DOI : 10.1016/j.tics.2012.10.007

URL : https://doi.org/10.1016/j.tics.2012.10.007

A. S. Ecker, P. Berens, R. J. Cotton, M. Subramaniyan, G. H. Denfield et al., State dependence of noise correlations in macaque primary visual cortex, Neuron. Elsevier Inc, vol.82, p.24698278, 2014.

M. Benayoun, J. Cowan, W. Van-drongelen, and W. E. , Avalanches in a Stochastic Model of Spiking Neurons, PLoS Comput Biol, vol.6, p.20628615, 2010.

A. Ecker, P. Berens, G. Keliris, M. Bethge, N. Logothetis et al., Decorrelated neuronal firing in cortical microcircuits. Science (80-), vol.327, p.20110506, 2010.
DOI : 10.1126/science.1179867

J. Beggs and N. Timme, Being critical of criticality in the brain, Front fractal Physiol, vol.3, p.22701101, 2012.

A. Schurger, I. Sarigiannidis, L. Naccache, J. D. Sitt, and S. Dehaene, Cortical activity is more stable when sensory stimuli are consciously perceived, Proc Natl Acad Sci U S A, vol.112, p.25847997, 2015.
DOI : 10.1073/pnas.1418730112

URL : http://www.pnas.org/content/112/16/E2083.full.pdf

E. Zagha and D. Mccormick, Neural control of brain state, Curr Opin Neurobiol. Elsevier Ltd, vol.29, p.25310628, 2014.

M. Goard and Y. Dan, Basal forebrain activation enhances cortical coding of natural scenes, Nat Neurosci, vol.12, pp.1444-1453, 2009.
DOI : 10.1038/nn.2402

URL : http://europepmc.org/articles/pmc3576925?pdf=render

S. L. Marguet and K. D. Harris, State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex, J Neurosci, vol.31, p.21525282, 2011.

M. Pachitariu, D. R. Lyamzin, M. Sahani, and N. Lesica, State-Dependent Population Coding in Primary Auditory Cortex, vol.35, p.25653363, 2015.

A. Kumar, S. Rotter, and A. Aertsen, Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding, Nat Rev Neurosci. Nature Publishing Group, vol.11, p.20725095, 2010.

P. Fries, Rhythms for Cognition: Communication through Coherence, Neuron. Elsevier Inc, vol.88, p.26447583, 2015.
DOI : 10.1016/j.neuron.2015.09.034

URL : https://doi.org/10.1016/j.neuron.2015.09.034

G. Hahn, A. F. Bujan, Y. Frégnac, A. Aertsen, and A. Kumar, Communication through Resonance in Spiking Neuronal Networks, PLoS Comput Biol, vol.10, p.25165853, 2014.
DOI : 10.1371/journal.pcbi.1003811

URL : https://hal.archives-ouvertes.fr/hal-01147111

M. Munk, P. Roelfsema, P. König, A. Engel, and W. Singer, Role of reticular activation in the modulation of intracortical synchronization. Science (80-), vol.272, pp.271-275, 1996.

S. Herculano-houzel, M. Munk, S. Neuenschwander, and W. Singer, Precisely synchronized oscillatory firing patterns require electroencephalographic activation, J Neurosci, vol.19, p.10234029, 1999.
DOI : 10.1523/jneurosci.19-10-03992.1999

URL : http://www.jneurosci.org/content/19/10/3992.full.pdf

. Williams-garcía-r-v, M. Moore, J. M. Beggs, and G. Ortiz, Quasicritical brain dynamics on a nonequilibrium Widom line, Phys Rev E Stat Nonlin Soft Matter Phys, vol.90, p.62714, 2014.

P. Moretti and M. A. Muñoz, Griffiths phases and the stretching of criticality in brain networks, Nat Commun, vol.4, p.24088740, 2013.

G. O-´-dor, R. Dickman, and O. , Griffiths phases and localization in hierarchical modular networks, Sci Rep, vol.5, p.14451, 2015.

C. C. Hilgetag and M. Hütt, Hierarchical modular brain connectivity is a stretch for criticality, Trends Cogn Sci, vol.18, p.24268289, 2014.

J. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, J Cybern, vol.3, pp.32-57, 1973.

J. Alstott, E. Bullmore, D. Plenz, M. Michel, H. Kirk et al., A Python Package for Analysis of Heavy-Tailed Distributions, PLoS One. Public Library of Science, vol.9, p.24489671, 2014.

E. Schneidman, M. J. Berry, R. Segev, and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, vol.440, p.16625187, 2006.

O. Marre, E. Boustani, S. Frégnac, Y. Destexhe, and A. , Prediction of spatiotemporal patterns of neural activity from pairwise correlations, Phys Rev Lett, vol.102, p.138101, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00444939

A. Kumar, S. Rotter, and A. Aertsen, Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model, J Neurosci, vol.28, p.18480283, 2008.

M. Stimberg, D. Goodman, V. Benichoux, and R. Brette, Brian 2-the second coming : spiking neural network simulation in Python with code generation, BMC Neurosci. BioMed Central, vol.14, p.38, 2013.