Z. Jiang, K. P. Carlin, and R. M. Brownstone, An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks, Brain Res, vol.816, issue.2, pp.493-499, 1999.

K. Sadlaoud, Differential plasticity of the GABAergic and glycinergic synaptic transmission to rat lumbar motoneurons after spinal cord injury, J Neurosci, vol.30, issue.9, pp.3358-3369, 2010.

C. Jean-xavier, J. F. Pflieger, S. Liabeuf, and L. Vinay, Inhibitory postsynaptic potentials in lumbar motoneurons remain depolarizing after neonatal spinal cord transection in the rat, J Neurophysiol, vol.96, issue.5, pp.2274-2281, 2006.

J. C. Norreel, Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat, J Neurosci, vol.23, issue.5, pp.1924-1932, 2003.

A. Stil, Contribution of the potassium-chloride co-transporter KCC2 to the modulation of lumbar spinal networks in mice, Eur J Neurosci, vol.33, issue.7, pp.1212-1222, 2011.

C. Raoul, Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL, Proc Natl Acad Sci, vol.103, issue.15, pp.6007-6012, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088942

V. Arce, Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique, J Neurosci Res, vol.55, issue.1, pp.119-126, 1999.

R. Bos, F. Brocard, and L. Vinay, Primary afferent terminals acting as excitatory interneurons contribute to spontaneous motor activities in the immature spinal cord, J Neurosci, vol.31, issue.28, pp.10184-10188, 2011.

P. Boulenguez, Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury, Nat Med, vol.16, issue.3, pp.302-307, 2010.

M. Max,

I. Max,

C. Egan, Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT(2A) and 5-HT(2C) receptors, Synapse, vol.35, issue.2, pp.144-150, 2000.

F. G. Boess and I. L. Martin, Molecular biology of 5-HT receptors, Neuropharmacology, vol.33, issue.3-4, pp.275-317, 1994.

A. R. Knight, Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors, Naunyn Schmiedebergs Arch Pharmacol, vol.370, issue.2, pp.114-123, 2004.

T. H. Mclean, 1-Aminomethylbenzocycloalkanes: Conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists, J Med Chem, vol.49, pp.5794-5803, 2006.

G. Engel, M. Göthert, D. Hoyer, E. Schlicker, and K. Hillenbrand, Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites, Naunyn Schmiedebergs Arch Pharmacol, vol.332, issue.1, pp.1-7, 1986.

V. J. Aloyo and J. A. Harvey, Antagonist binding at 5-HT(2A) and 5-HT(2C) receptors in the rabbit: High correlation with the profile for the human receptors, Eur J Pharmacol, vol.406, issue.2, pp.163-169, 2000.

D. Cussac, Characterization of phospholipase C activity at h5-HT2C compared with h5-HT2B receptors: Influence of novel ligands upon membrane-bound levels of [3H] phosphatidylinositols, Naunyn Schmiedebergs Arch Pharmacol, vol.365, issue.3, pp.242-252, 2002.