A. Derghal, M. Djelloul, J. Trouslard, and L. Mounien, The Role of MicroRNA in the Modulation of the Melanocortinergic System, Front Neurosci, vol.11, p.181, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762644

M. A. Cowley, J. L. Smart, M. Rubinstein, M. G. Cerdán, S. Diano et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus, Nature, vol.411, pp.480-484, 2001.

N. Ibrahim, M. A. Bosch, J. L. Smart, J. Qiu, M. Rubinstein et al., Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels, Endocrinology, vol.144, pp.1331-1371, 2003.

L. Plum, B. F. Belgardt, and J. C. Brüning, Central insulin action in energy and glucose homeostasis, J Clin Invest, vol.116, pp.1761-1767, 2006.

L. E. Parton, C. P. Ye, R. Coppari, P. J. Enriori, B. Choi et al., Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity, Nature, vol.449, pp.228-260, 2007.

L. Mounien, D. Rego, J. Bizet, P. Boutelet, I. Gourcerol et al., Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system, Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol, vol.34, pp.424-459, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00349463

L. Mounien, N. Marty, D. Tarussio, S. Metref, D. Genoux et al., Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons, FASEB J Off Publ Fed Am Soc Exp Biol, vol.24, pp.1747-58, 2010.

J. W. Hill, C. F. Elias, M. Fukuda, K. W. Williams, E. D. Berglund et al.,

J. Chuang, Y. Xu, and M. Choi, Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility, Cell Metab, vol.11, pp.286-97, 2010.

D. Huszar, C. A. Lynch, V. Fairchild-huntress, J. H. Dunmore, Q. Fang et al.,

W. Gu, R. A. Kesterson, B. A. Boston, and R. D. Cone, Targeted disruption of the melanocortin-4 receptor results in obesity in mice, Cell, vol.88, pp.131-172, 1997.

L. Yaswen, N. Diehl, M. B. Brennan, and U. Hochgeschwender, Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin, Nat Med, vol.5, pp.1066-70, 1999.

Y. S. Lee, The role of leptin-melanocortin system and human weight regulation: lessons from experiments of nature, Ann Acad Med, vol.38, pp.34-45, 2009.

S. G. Bouret, S. J. Draper, and R. B. Simerly, Trophic action of leptin on hypothalamic neurons that regulate feeding, Science, vol.304, pp.108-118, 2004.

Q. Gao, M. J. Wolfgang, S. Neschen, K. Morino, T. L. Horvath et al., Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation, Proc Natl Acad Sci U S A, vol.101, pp.4661-4667, 2004.

S. Pinto, A. G. Roseberry, H. Liu, S. Diano, M. Shanabrough et al., Rapid rewiring of arcuate nucleus feeding circuits by leptin, Science, vol.304, pp.110-115, 2004.

B. Coupé, Y. Ishii, M. O. Dietrich, M. Komatsu, T. L. Horvath et al., Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation, Cell Metab, vol.15, pp.247-55, 2012.

A. Stevens, G. Begum, A. Cook, K. Connor, C. Rumball et al., Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition, Endocrinology, vol.151, pp.3652-64, 2010.

T. Gali-ramamoorthy, A. Davies, A. Harno, E. Sefton, C. Murgatroyd et al., Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats, Int J Obes, 2005.

M. C. Vogt, L. Paeger, S. Hess, S. M. Steculorum, M. Awazawa et al., Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding, Cell, vol.156, pp.495-509, 2014.

A. Marco, T. Kisliouk, T. Tabachnik, N. Meiri, and A. Weller, Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not "reprogrammed" by regular chow diet in rats, FASEB J Off Publ Fed Am Soc Exp Biol, vol.28, pp.4148-57, 2014.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-97, 2004.

A. Derghal, M. Djelloul, J. Trouslard, and L. Mounien, An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors, Front Neurosci, vol.10, p.318, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471933

C. Esau, S. Davis, S. F. Murray, X. X. Yu, S. K. Pandey et al.,

M. Graham and R. Mckay, miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metab, vol.3, pp.87-98, 2006.

R. Frost and E. N. Olson, Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs, Proc Natl Acad Sci U S A, vol.108, pp.21075-80, 2011.

C. E. Grueter, E. Van-rooij, B. A. Johnson, S. M. Deleon, L. B. Sutherland et al., A cardiac microRNA governs systemic energy homeostasis by regulation of MED13, Cell, vol.149, pp.671-83, 2012.

G. M. Mang, S. Pradervand, N. Du, A. B. Arpat, F. Preitner et al., A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice, PloS One, vol.10, p.116760, 2015.

I. A. Vinnikov, K. Hajdukiewicz, J. Reymann, J. Beneke, R. Czajkowski et al., Hypothalamic miR-103 protects from hyperphagic obesity in mice, J Neurosci Off J Soc Neurosci, vol.34, pp.10659-74, 2014.

M. Schneeberger, J. Altirriba, A. García, Y. Esteban, C. Castaño et al., Deletion of miRNA processing enzyme Dicer in POMCexpressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity, Mol Metab, vol.2, pp.74-85, 2012.

Y. Greenman, Y. Kuperman, Y. Drori, S. L. Asa, I. Navon et al., Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior, Mol Endocrinol Baltim Md, vol.27, pp.1091-102, 2013.

D. Crépin, Y. Benomar, L. Riffault, H. Amine, A. Gertler et al., The overexpression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment, Mol Cell Endocrinol, vol.384, pp.1-11, 2014.

A. Derghal, M. Djelloul, C. Airault, C. Pierre, M. Dallaporta et al., Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3'UTR, Front Cell Neurosci, vol.9, p.172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212345

B. D. Harfe, M. T. Mcmanus, J. H. Mansfield, E. Hornstein, and C. J. Tabin, The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb, Proc Natl Acad Sci U S A, vol.102, pp.10898-903, 2005.

N. Balthasar, R. Coppari, J. Mcminn, S. M. Liu, C. E. Lee et al., Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis, Neuron, vol.42, pp.983-91, 2004.

J. M. Mercader, J. R. González, J. J. Lozano, M. Bak, S. Kauppinen et al., Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model, Gene, vol.497, pp.181-90, 2012.

C. W. Meyer, P. Reitmeir, and M. H. Tschöp, Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR), Curr Protoc Mouse Biol, vol.5, pp.205-227, 2015.

M. H. Tschöp, J. R. Speakman, J. Arch, J. Auwerx, J. C. Brüning et al., A guide to analysis of mouse energy metabolism, Nat Methods, vol.9, pp.57-63, 2011.

, Control of metabolic and cardiovascular function by the leptin-brain melanocortin pathway, IUBMB Life, vol.65, pp.692-700, 2013.

W. Fan, B. A. Boston, R. A. Kesterson, V. J. Hruby, and R. D. Cone, Role of melanocortinergic neurons in feeding and the agouti obesity syndrome, Nature, vol.385, pp.165-173, 1997.

A. A. Butler, R. A. Kesterson, K. Khong, M. J. Cullen, M. A. Pelleymounter et al., A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse, Endocrinology, vol.141, pp.3518-3539, 2000.

A. S. Chen, D. J. Marsh, M. E. Trumbauer, E. G. Frazier, X. M. Guan et al., Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass, Nat Genet, vol.26, pp.97-102, 2000.

L. E. Pritchard, A. V. Turnbull, and A. White, Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity, J Endocrinol, vol.172, pp.411-432, 2002.

M. C. Flynn, T. R. Scott, T. C. Pritchard, and C. R. Plata-salamán, Mode of action of OB protein (leptin) on feeding, Am J Physiol, vol.275, pp.174-179, 1998.

G. P. Smith, The controls of eating: a shift from nutritional homeostasis to behavioral neuroscience, Nutr Burbank Los Angel Cty Calif, vol.16, pp.814-834, 2000.

K. Baran, E. Preston, D. Wilks, G. J. Cooney, E. W. Kraegen et al., Chronic central melanocortin-4 receptor antagonism and central neuropeptide-Y infusion in rats produce increased adiposity by divergent pathways, Diabetes, vol.51, pp.152-160, 2002.

C. J. Small, Y. L. Liu, S. A. Stanley, I. P. Connoley, A. Kennedy et al.,

, Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure, Int J Obes Relat Metab Disord J Int Assoc Study Obes, vol.27, pp.530-533, 2003.

T. Yasuda, T. Masaki, T. Kakuma, and H. Yoshimatsu, Hypothalamic melanocortin system regulates sympathetic nerve activity in brown adipose tissue, Exp Biol Med Maywood NJ, vol.229, pp.235-244, 2004.

G. Cano, A. M. Passerin, J. C. Schiltz, J. P. Card, S. F. Morrison et al., Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure, J Comp Neurol, vol.460, pp.303-329, 2003.

A. Voss-andreae, J. G. Murphy, K. Ellacott, R. C. Stuart, E. A. Nillni et al., Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue, Endocrinology, vol.148, pp.1550-60, 2007.

D. L. Williams, R. R. Bowers, T. J. Bartness, J. M. Kaplan, and H. J. Grill, Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat, Endocrinology, vol.144, pp.4692-4699, 2003.

C. K. Song, C. H. Vaughan, E. Keen-rhinehart, R. Harris, D. Richard et al.,

, Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence, Am J Physiol Regul Integr Comp Physiol, vol.295, pp.417-428, 2008.

F. F. Martins, T. Bargut, M. B. Aguila, and C. A. Mandarim-de-lacerda, Thermogenesis, fatty acid synthesis with oxidation, and inflammation in the brown adipose tissue of ob/ob (-/) mice, Ann Anat Anat Anz Off Organ Anat Ges, vol.210, pp.44-51, 2017.

S. Herzer, A. Silahtaroglu, and B. Meister, Locked nucleic acid-based in situ hybridisation reveals miR-7a as a hypothalamus-enriched microRNA with a distinct expression pattern, J Neuroendocrinol, vol.24, pp.1492-504, 2012.

S. Sangiao-alvarellos, L. Pena-bello, M. Manfredi-lozano, M. Tena-sempere, and F. Cordido, Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: impact of obesity and conditions of negative energy balance, Endocrinology, vol.155, pp.1838-50, 2014.

A. Novak, C. Guo, W. Yang, A. Nagy, and C. G. Lobe, Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision, Genes N Y N, vol.28, pp.147-55, 2000.

J. F. Dominguez, L. Guo, C. Molnar, M. A. , B. Escobedo et al.,

T. D. Turman and J. , Novel indirect calorimetry technology to analyze metabolism in individual neonatal rodent pups, PloS One, vol.4, p.6790, 2009.

J. Marcotorchino, F. Tourniaire, J. Astier, E. Karkeni, M. Canault et al., Vitamin D protects against diet-induced obesity by enhancing fatty acid oxidation, J Nutr Biochem, vol.25, pp.1077-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01478368

E. Karkeni, L. Bonnet, J. Astier, C. Couturier, J. Dalifard et al., Alltrans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-?B signaling, J Nutr Biochem, vol.42, pp.101-108, 2017.