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We study spectral properties of a family (HY ).¢x, indexed by a non-negative integer p,
of one-dimensional discrete operators associated to an ergodic dynamical system (7', X, B, )
and defined for u in £2(Z) and n in Z by (HEu)(n) = u(n —p) +u(n+p)+ Vz(n)u(n), where
Ve(n) = f(T"z) and f is a real-valued measurable bounded map on X. In some particular
cases, we prove that the nature of the spectrum does not change with p. Applications
include some classes of random and quasi-periodic substitutional potentials.

1. Introduction

The one-dimensional discrete Schrodinger operator H, sometimes called the
Jacobi matrix, is defined for u belonging to ¢2(Z) (the Hilbert space of square
summable sequences), and for any integer n by

(Hu)(n) = u(n = 1) + u(n + 1) + V)u(n) . (1.1)

where (V(n))nez 18 a bounded real potential. There has been a lot of interest for
Schrodinger operators to be associated with a dynamical system 7 = (7. X, B, )
as follows. For all x in X, let H, be defined by

(Hou)(n) =un—1)+un+1)+Ve(n)u(n), Vne€Z and VYue*(Z), (1.2)

where V,(n) = f(T™z) and f is a real-valued bounded measurable function on X.
Under the ergodicity of 7, the invariance of the spectral properties of such operators
is true for p-almost every operator H,, which means that p-almost all operators
have the same spectrum and spectral components (see [1, 2, 4, 5, 6, 9, 13, 14, 18]
for more details).

In this paper, we introduce more general operators defined on (?(Z), associ-
ated with the dynamical system 7 and indexed by a non-negative integer p. More
precisely, we put for all z in X,

(HPu)(n) = u(n —p) + u(n +p) + Va(n)u(n) , ¥Yn€Z and Vue€ 3(Z) (1.3)

where the potential V,, is defined as previously by a bounded mesurable map f from
X to R. Each H? operator will be called a p-sparse Schrédinger operator associated
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316 C. GUILLE-BIEL

with the dynamical system T and with the potential V.. Our purpose is to study
spectral properties of such operators, according to the values of p.

In Sec. 2, we first set up notations and terminologies of dynamical systems,
spectral theory and random operators. We can also see that the notion of sparse
Schrodinger operators is included in the more general theory of random ergodic
operators described in details by A. Figotin and L. Pastur in [9]. According to
[9] and under the ergodicity of 7, immediate spectral properties like invariance
p-almost everywhere of the spectrum and the spectral components, or absence p-
almost surely of the discrete component. can be deduced for sparse Schrédinger
operators.

The specific form of p-sparse Schrodinger operators allows a more accurate
understanding of their spectra and spectral components. In Part 3, the natural
decomposition of ¢2(Z) in a direct sum of orthogonal subspaces, which are stable
under each HY, permits the study of p classical discrete one-dimensional Schrédinger
operators associated to H?, instead of studying H? itself. We thus obtain p families
of associated operators, each of them being defined for any x in X. In this case, we
prove that each family is associated with the dynamical system 77 = (T?, X, B, p).
Let us note that 77 is not necessarily ergodic.

When the dynamical system 7 is ergodic and minimal, we can cut X into m
disjoint TP-invariant closed subspaces, denoted by Xg,..., X,,_1, where m is a
non-negative integer depending on p and less than or equal to p. This result is
due to W. H. Gottschalk and G. A. Hedlund (see [10]), and T. Kamae ([11}) for
substitutional dynamical systems. We also refer the reader to [7]. Section 4 of this
article states this theorem and discusses the spectral properties of each family of
associated operators, according to the value of m. We prove in particular it suffices
to restrict our attention to elements of Xg.

The forthcoming three sections concern special cases of potentials. In Part 5,
we deal with the periodic case: X = Z/NZ, where N is a non-negative integer. For
any z belonging to X, the sequences (V;(n)),cz are N-periodic. We prove that the
spectrum ¥* of any operator H? is purely absolutely continuous and composed of
N not necessarily disjoint bands (closed intervals of R). This is exactly the same
result as in the classical case of discrete unidimensional N-periodic Schrédinger
operators, which can be found in [19, Chap. 4]. Moreover, we show that ¥? can
be explicitly described and depends only on p modulo N. More precisely, &P =
gpmed(N) = gN=(pmod(N) for all p € N*, and there exist exactly [&] + 1 possible
spectra, which are $1, $2, ... SI[¥] ang ©V.

Section 6 treats the random case: we suppose that the (V,(n)),ez are indepen-
dent identically distributed random variables. We prove that the general results
stated for discrete one-dimensional Schrodinger operators with such potentials, can
be extended to sparse Schrédinger operators. More precisely. we prove an ana-
logue of the Kotani and Simon theorem: the absolutely component of p-almost all
operators is empty (see [13, 17], or [1], for more details). Moreover, when the density
function is continuous on R and compactly supported, the spectrum TP of y-almost
all operators H? is pure point and equal to [« — 2, 5 + 2], if [a. 3] is the support of
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the density function. This is an analogue of the Kunz and Souillard theorem. In
the same way we state an analogue of the Carmona, Klein and Martinelli theorem
(random variables admitting a Bernoulli distribution). In these two extremal cases,
we show that the nature of the spectrum does not change with p.

We analyze in Sec. 7 the case of substitutional potentials: the dynamical system
T is generated by a primitive substitution £ on a finite alphabet A = {0,...,r —1}.
It is strictly ergodic, and we can apply the main theorem of Sec. 4. In the cases
m = 1 or m = p, we state that the spectrum X? of any operator H? is the union of
the spectra of any associated operator on Xy and there is no absolutely continuous
part almost everywhere. Moreover, when & has a constant length ¢ and m =1 or
p, the associated operators are classical Schrodinger operators with substitutional
potentials. Finally, if p = ¢ for n > 1, then this new substitution is again & and
the spectra of almost all associated operators have same nature which is the same
for all .

2. Definitions and First Properties
2.1. Dynamzical systems and random operators

Let 7 = (T,X,B,u) be a dynamical system: X is an non-empty, compact
metrizable space, B denotes the g—algebra of Borel sets of X, u is a probability
measure on X and 7 : X — X is an automorphism (invertible transformation)
of X, preserving the measure p (that is to say for any A € B, u(T~14) = u(4)).
The dynamical system 7 is said to be ergodic if each Borel subset A of X such
that 7714 = A has a y-measure equal to 0 or 1. It is called uniquely ergodic if
there exists a unique T-invariant probability measure on X which turns out to be
ergodic. If X has no closed T-invariant subspace other than @ and X itself, then
T is a minimal dynamical system. When 7 is uniquely ergodic and minimal it is
called strictly ergodic. In this article, we will always suppose 7 ergodic.

Let us denote by (.,.) the inner product of ¢2(Z) and by ||.||2 its associated norm.
Moreover, S denotes the shift operator on ¢?(Z).

We recall that a random variable on the probability space (X, B,u) is a real-
valued B-measurable function on X taking infinite values on a subset of X of
p-measure 1. A random operator A on the probability space (X, B, u) of domain
(*(Z) is a map defined on X into the set of linear operators on ¢?(Z) by

A xz— A, (2.1)

where A, is for p-almost every z in X a bounded linear operator on ¢2(Z), and such
that for all w and v in (3(Z), the map (Au,v) : r € X — (A,u,v) € R is a random
variable. If, in addition, p-almost all operators A, are self-adjoint, we say that A
is symmetric. Moreover, if 7 is ergodic, and if there exists a homomorphism from
the group {T™ ; n € Z} into a group {U, ;n € Z} of unitary operators on ¢*(Z)
such that, for p-almost all x in X,

*4T"1‘ = Un44.1‘U7:1 5 Vn € Z (22)



318 C. QUILLE-BIEL

then A is called ergodic or metrically transitive. The best general reference for the
random operators theory is [9]

2.2. Spectral theory

We recall that the spectrum o(H) of a self-adjoint continuous linear operator H
is defined as the complement in C of the set of values A for which (H — AJd)~! exists
and is a bounded linear operator on ¢2(Z). By self-adjointness and continuity of H.,
the set o(H) is a non-empty compact subset of R. A real number X for which there
exist u € (%(Z), u # 0, verifying Hu = Au is called an eigenvalue of H. The set of
all eigenvalues of H is called the point spectrum o,(H). The pure point spectrum,
denoted by 7,,(H), is defined by

opp(H) =0,(H) ,
where o, (H) denotes the closure of the set o,(H) in R. The set o(H)\ 0,(H) is
the continuous spectrum. It can be cut into two parts, according to the Lebesgue
decomposition of the spectral measure: the absolutely continuous spectrum oqc(H),
and the singular continuous spectrum oy (H). We thus have

a(H) = app(H) | Jouc(H)| ose(H) | (2.3)

and these sets are not necessarily disjoint. For more details, we refer the reader to
Berthier ([3]) and to Dunford and Schwarz ([8}).

2.3. Definition and immediate properties of sparse Schrédinger
operators

Let (HZ)zex be a family of p-sparse Schrdinger operators defined by Eq. (1.3)
and associated with the ergodic dynamical system 7. We firstly note that each
operator HY can be written under the following form:

HP =SP4 5774V, (2.4)

where (Vzu)(n) = Vy(n)u(n), for all u in ¢*(Z) and all n in Z. Secondly, we remark
that every operator H? is a linear continuous self-adjoint operator from ¢(*(Z) to
itself. Its norm satisfies ||H2|| < 2 +sup, ¢z [IVo(n)] < 2+ ||(H)lso-

By measurability of f, we can obtain, for given « and v in (%(Z), that the map
(HPu,v) defined on X by (HPu,v)(x) = (HPu,v) is a random variable. Hence HP
is a symmetric random operator on (X, B, 1) in (*(Z). Moreover for all » € X, H?
satisfies

HY = SH!S™', (2.5)

and this leads us to Proposition 2.1.

Proposition 2.1. The operator H? : x — HP for all z in X, is a symmetric
ergodic random operator on (X,B,u) in (*(Z). The group of unitary operators
on €*(Z) associated with the automorphism group {T" ;n € Z} is exactly {5" ;
n € Z}.

Proof. We
Relation (2.5) a
ergodicity of the

It is now pos
of operators H!
0sc(HT)). the s
continuous part:
part, we can ren
in the interval |-

Moreover, by
the spectrum of
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(i) there ex

(i) there ex

vp -
TP, suc

(i) for p-al
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of HY})
(v) for p-al
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Proof. See”
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Proof. We have already seen that H? is a symmetric random operator. By
Relation (2.5) and by induction, we deduce Eq. (2.2) with U, = S” for all n. The
ergodicity of the dynamical system 7 implies the metric transitivity of H?. O

It is now possible to have information about the spectra and their components
of operators HY. Let us denote by o(H?) (respectively o,,(H?), o..(HP) and
osc(HY?)), the spectrum (resp. the pure point, absolutely continuous, and singular
continuous parts of the spectrum), of each operator HF. According to the previous
part, we can remark that each o(HP) is a non-empty compact subset of R, included
in the interval [~2 — sup, = [Vo(n)].2 + sup, o7 V2 (n)]].

Moreover, by Figotin and Pastur (see [9]), we obtain directly some properties of
the spectrum of symmetric ergodic random operators.

Theorem 2.2. Let H? be as in Proposition 2.1, then

(i) there exists a non-empty compact set of R, denoted by SP, such that
P =g (HY) for p-almost allz € X (2.6)

(ii) there exist three closed subsets of R, denoted respectively by P, Yh. and
TP . such that for u-almost all x in X,

Egp = UPP(Hf) L (27)

SP =g, (H?) , 2.8)
ac x

.= asc(Hf) ; (29)

(iii) for p-almost x in X, the spectrum of HF admits no isolated eigenvalues of
finite multiplicity, that is to say it is purely essential p-almost everywhere:

oais(HE) =0 p—ae; (2.10)

(iv) for any given X in R, p({x € X ; X is an eigenvalue of finite multiplicity
of HI}) = 0;

(v) for p-almost all z in X and if 0,p,(HE) is not empty then it is locally
uncountable.

Proof. See Theorems 2.10, 2.11, 2.12 and 2.16 of [9]. O

Remark 2.1. When the dynamical system 7 is ergodic and minimal. it can be
shown that
YP=0(HE), VzeX. (2.11)

For details we again refer the reader to [9].

Thanks to random operator theory, we have obtained interesting results about
nonrandomness of the spectrum and its components. But we do not know exactly
neither their form nor the nature of the spectrum. It is the object of the next part
of this article.
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Remark 2.2. The random real-valued map V(n) defined on X by V(n)(x) =
Vie(n), for all € X where n is fixed, can be viewed as random variable on the
probability space (X,B.u). Thus (V(n)),cz is a sequence of random variables.
Consequently p-sparse Schrodinger operators are special cases of random finite dif-
ference operators introduced by H. Kunz and B. Souillard in {14].

3. Decomposition of the Operator H?

Let us denote by (e, )mez the canonical orthonormal base of (2(Z): en(n) =
0n.m for all n and m in Z., where ¢ is the Kronecker symbol. For i € {0,...,p— 1},
we consider the linear subspace of (2(Z) spanned by all vectors of the form €,
with m € Z. We denote it by K or K; when there is no ambiguity. Thus
K? = K; = vect {empyi , m € L} . (3.1)

1

It is clear that every element v of K; looks like ...0...0 v;—, 0...0 v; 0...
0 vi450...0 vi42p.... Moreover, the K; are mutually orthogonal, and 3(Z) is
their orthogonal direct sum:
p—1
A(z)=PK, with KiLK; for i#j. (3.2)
i=0

Let us now consider the behavior of the operators H? on each subspace K;.

Lemma 3.1. For 0 < i < p and if K, is given by Relation (3.1), then K, is
stable under HE.

This lemma together with (3.2) implies Proposition 3.2.

Proposition 3.2. For any x in X, the spectrum of H? as well as its spectral
components can be cut into p parts as follows:

p—1

o(HP) = U a(HE ) (3.3)
=0

with ¢ € {pp, ac, sc}.

Instead of studying HP? on (*(Z), we will do the study on each subspace K,.
Before this, we have to look a little bit more at these subspaces.

3.1. Study of subspaces K;

First of all notice that every subspace K; is isometrically isomorphic to (*(Z).
Indeed let us consider for each 0 <7 < p, the map ¢ = ¢, : K; — ¢2(Z) defined for
all v € K; and all n by

(d:(e))(n) = v(np + 1) .

The action of tl
(2(Z) — K;, give

is such that ¥; =

Moreover, ¢; an
1. Thus each K,
subspace K; is is
the following len

Lemma 3.3.
then

For0<i<p,le

Similarly. if (S~

Finally it can be

Relations (3.5) t
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The action of this map is illustrated by Fig. 1. Conversely, the map ¢ = o, :
(*(Z) — K, given for any u € (*(Z) and all m, by
u(n) if m=1i (modp)
(¥iu))(m) = {

0, otherwise,

is such that v; = (¢;) L.

0000 vimgy 00345 0...00549, 0...0...

0...0v,_,0...0t; 0

Vi 2p Vi p U Vi p Vig2p - -
Fig. 1. The ¢% function

Moreover. ¢; and ¥;, for 0 < ¢ < p, are linear continuous maps of norm equal to
1. Thus each K; is isometrically isomorphic to ¢2(Z). This also implies that every
subspace K; is isometrically isomorphic to any K, (0 £ ¢,j < p) and in particular
the following lemma can be deduced.

Lemma 3.3. For anyi € {0,..., p—1}, if S denotes the shift operator on (*(Z).
then

SKo =Kyt (3.5)
SK;=K;_1, for 1<1<p. (36)
For 0 <i < p, let us denote by S|, the restriction of S to the subspace K;. Then
S\)CU : ]Co — K:p~l
S|,gl:lCi——'»IC,;_1, for 1<i<p.
Similarly, if (S7')(x, is the restriction of S™! on the subspace K;, we have
(S~1)|)CIZIC1'——’K¢+1, for 0<i<p-1
(S_l)“(p_l Z’Cp_l b K:o .
Finally it can be shown that
(Six,) ™ =5k, (3.7)
(5|1c1)_1 = (S‘l)“c,_1 yfor 1<i<p. (3.8)

Relations (3.5) to (3.8) lead to a dependence of the ¢, functions.
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Proposition 3.4. For any i€ {0,..., p— 2}, we have

@; © S]N‘+1 = Qjﬁ_l . (39)

Moreover if i = p— 1,
Op,,l o] S)/Co =So @0 . (310)
Proof. The proof is left to the reader. a

Remark 3.1. This proposition implies that, for any i in {0....,p — 2} (and
respectively for ¢« = p — 1), the following diagrams commute:

SIK g 1Ky .

/C7_'+1 K:i KO K/p—l
Pit1 [P JV bp—1
(7)) —————2(7) (7)) 2(z)

Id

S

Proposition 3.5. For 0 £ i < p, the subspace K; is stable under SP, and if
(S?)k, denotes the restriction of SP to K;, then

Sop;=¢i0(S)k, - (3.11)

This signifies that the following diagram commutes:

57
1K 41
@, j J b
(L) ———— *(Z)
s
Proof. The proof is left to the reader. d

3.2. Associated operators

We have already noticed that we had to study each operator Hfuc, yfor0 <4 < p.
Because each subspace K; is isometrically isomorphic to ¢3(Z), we will lift this study
from K, to ¢>(Z) by putting for alli € {0,...,p—1} and all z € X:

HP'= ;0 HI o (6])7. (3.12)

The H?* are continuous linear self-adjoint operators on (2(Z). They are the H?
associated operators. Each operator HP'* being unitarily equivalent to Hi’“( . the
following proposition can be deduced.
Proposition 3.6. For alli€ {0,...,p— 1} and all 2 € X,
o(H>') = o(H?

) (3.13)

o (HP")=0.(H?, ), with c¢ {pp.ac,sc} . (3.14)
z|K;

Consequently w

Theorem 3
tations of Theo

for < € {pp,ac, s

Proof. It is
tions 3.2 and 3.(

Remark 3.
invariants, that
not know anythi

Remark 3.:
to the union of

3.3. Immed:ati

In this sectic
by a new charac

Propositior
on €*(Z) by

where

Proof. The

This proposi
of V.

Propositior

Proof. By ¢
3.5, we complete

Corollary
thati+j=np-
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Consequently we can conclude by Theorem 3.7 concerning the spectrum of HP.

Theorem 3.7. Under the ergodicity of the dynamical system T, and with no-
tations of Theorem 2.2, we have

p—1

<= J o (3.15)
1=0
p—1

S = | o (HPY) (3.16)
1=0

for e € {pp,ac, sc} and p-almost oll z in X.

Proof. It is an immediate consequence of Theorem 2.2, together with Proposi-
tions 3.2 and 3.6. O

Remark 3.2. It is an interesting fact that the HP® spectra are “globally”
invariants, that is to say their union is invariant p-almost everywhere. But we do
not know anything about the behavior of each one of these operators.

Remark 3.3. If moreover the dynamical system 7 is minimal, then ¥? is equal
to the union of the spectra of H?* for any = in X.

3.3. Immediate properties of associated operators

In this section, we see the strong links between the operators Flf'i. We begin
by a new characterization of them.

Proposition 3.8. For0 <i<pandallr e X, }ng*i 15 a linear operator defined
on (*(Z) by

HP' =S54+ 84 ypt (3.17)

where
Vit(n) = Ve(np+id), Vnel. (3.18)
Proof. The result directly follows from the definition of H?*. O

This proposition means that the sequence of potentials pr’i is a subsequence
of V.

Proposition 3.9. For 0 <i <p and all r € X, we have the following relations:
HEP™! = gEPO51 (3.19)

Hp, = HP (3.20)

Proof. By definition of operators Hf’i, and according to Propositions 3.4 and
3.5, we complete the proof. O

Corollary 3.10. Ifi € {0,...,p— 1}, and if j is a non-negative integer such
thati+ j = np+m where 0 <m < p and n € N, then

HE = S"HP™ST (3.21)
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Proof. The result follows inductively from the previous proposition. O

Remark 3.4. In particular, for all x € X and all i € {0,...,p — 1}, we deduce
that A" = HE?.

Remark 3.5. Corollary 3.10 implies for example that HZ' and H?**1 are
unitarily equivalent. They also have same spectra and same spectral components.

Corollary 3.11. Let i be given in {0,. .., p—1}. For all z € X, HP" verifies

HE! = SHPSTY (3.22)

Proof. Since 0 < i < p, Corollary 3.11 can be applied with n = 1 and m = 1.
Thus the proof is complete. O

To end this part, we put g; = foT", for 0 < i < p. Then g; is a bounded measurable
function from X to R, and

VPin) = g;((T")"z) , Vn€Z, VeeX. (3.23)

This permits us to conclude with a theorem.

Theorem 3.12. Let i be given in {0,...,p—1}. Then (HP"),ex is a family of
discrete unidimensional Schrédinger operators associated with the dynamical system
(TP, X,B, ). '

Proof. According to Propositions 3.8 and 3.11 with Relation (3.23), we com-
plete the proof. O

Remark 3.6. We can also say that H?" is a symmetric random operator on
the probability space (X, B, ) of domain ¢?(Z). But we do not know if it is ergodic
or not: in the general case, the dynamical system (77, X, B, u) is not supposed to
be ergodic! This is the object of the following section.

4. The Decomposition of a Dynamical System and Its Applications

Let 7 be an ergodic dynamical system. If p is a non-negative integer, we denote
by 7P the new dynamical system (77, X.B, ). In this section, we are concerning
into the ergodicity of the dynamical system 77. In general case, we are not able
to give any answer; but when 7 is ergodic and minimal, the following theorem is a
useful tool which is given in [7] (see also [11, 10)).

Theorem 4.1. (GOTTSCHALK, HEDLUND, KAMAE). Let T = (T, X, B, 1) be a
minimal and ergodic dynamical system. Let p be a non-negative integer. Then there
exists a finite partition of X, denoted by {Xo,..... Np—1}, such that

O Ui Xo =X and X, N X, =0 if k # £

(i) each Xy is a closed non-empty subset of X

(iii) each Xy is TP-invariant: TP X, = X;;

(iv) Xy does not admit any closed TP-invariant proper subspace;

(v) the partition is cyclic: TXo=X1,...TXpm_ o = Xpo1, T X1 = Xo.

This partition i

We illustrate

Remark 4.
(T, - Xk Bix,.
subset 4 of X.

Remark 4.
p and is less th:
called the decor

In all this se
corollaries, whic

Corollary
Then, under no
18 uniquely ergo

Moreover, R
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If, moreover, &(
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The followi
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Moreover, if ¥
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This partition is unique up to a cyclic permutation of its terms.

We illustrate this result by Fig. 2.

Fig. 2. The decomposition of a dynamical system

Remark 4.1. Under the notations of Theorem 4.1, each dynamical system
(Tlpxk,Xk,lek,pk) is minimal, where ui(A4) = p(A N Xy)/u(X;) for any Borel
subset A of X. The partition is also said to be minimal. Moreover, u(X;) =1/m.

Remark 4.2. The non-negative integer m defined in Theorem 4.1 depends on
p and is less than or equal to it. From now on will we denote m = é(p) and é(.) is
called the decomposition function of powers of T. It is linked to p by é(p) | p.

In all this section, we will suppose 7 ergodic and minimal. We also state some
corollaries, which can be found in [7].

Corollary 4.2. We suppose that the dynamical system T is strictly ergodic.
Then, under notations of Theorem 4.1, each dynamical system (TI(?’((T)"X’C’ Bix, 1)
s uniquely ergodic.

Moreover, Remark 4.1 and Corollary 4.2 imply the following result.

Corollary 4.3. We suppose that the dynamical system T is strictly ergodic.
If. moreover, 8(p) = p, then each dynamical system (T&k,Xk,B‘Xk,;lk) is strictly
ergodic.

The following theorem yields information about spectral behavior of the
associated operators.

Proposition 4.4. If 7 is the spectrum of HY for all x in X, then
p—1
o= Ja(HEY), VoeXo. (4.1)
i=0

Moreover, of XF,, P and TE. are the spectral components of the spectrum of

p-almost all HY,
p—1
o= oe(H2Y) (42)
1=0
for e € {pp.ac. sc} and for pg-almost all  in Xg.
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Remark 4.3. In our study, we have to consider each associated operator ch” on
the dynamical system 77. Theorem 4.1 induces us to restrict our attention to Iﬂ’*i
on each “sub”-dynamical system 7" = (T&k,Xk.B[Xk,uk). Now Proposition 4.4
permits us to study the associated operators only on the dynamical system 7" =
(T&U,Xm B(X(pﬂo)-

Proof. Let i be given in {0,...,p — 1} and k be in {0,...,6(p) — 1}. By
minimality and ergodicity of 7, we know that Y7 is the spectrum of any operator
H?, and (4.1) is deduced.

By Theorem 4.1, X;, = 7% X, and if y is given in X}, then there exists x € X,
such that y = T*z. This implies ffgvi = H;’fz. Ifi+k=mnp+ m where n > 0 and
0 < m < p, then by Corollary 3.10, f[{j*i = S”f[f’mS_”, and for € € {pp. ac, sc},

p—1 _ p—1 _
UUE( 7= U o (HP™)
=0 m=0

This last equality is verified for any y € Xj.

If there exist Ag C X of po-measure 1 on which the spectral component X? is
not equal to the union of af(ﬁg*i), then for any 1 < k < §(p), Ar = TFAy C X4,
has the same property as 4p. We put A = Ui(:p();lAk C X. The set A verifies u(A)
= 1 and has the same property as Ay. This is a contradiction with Theorem 2.2
and the proof is complete. . a

Remark 4.4. We have an analogue of Proposition 4.4 in replacing 77 by
any 7.

As a direct consequence of Remark 3.4 and Proposition 4.4, we can state
Corollary 4.5.

Corollary 4.5.

1
= |JoHR), VzeX, (4.3)
0

3
|

.
I

p—1
P = ag(ﬁ;‘l%) , Yee{ppacsctand pg—a.e. (4.4)

t9
I
<

Let us now consider associated operators Iﬁ”i on the dynamical system 7;". For
any 7 belonging to {0,...,p — 1}, (HP*).cx, is a family of Schrédinger operators
associated with 7;°. But we do not know whether 7;” is ergodic in general case: in
fact, when 7 is strictly ergodic, it depends on the values taking by é6(p).

Proposition 4.6. Let T be strictly ergodic dynamical system and p a non-
negative integer such that 6(p) = p.

(1) There exist p non-empty compact subsets of R, denoted by £p0 . Srp-l
verifying
p—1
=T (4.5)
1=0

Each o
(ii) For ¢
o-(HD

Proof. By |
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Each of them is the spectrum of operators HP' (Vx € X,).
(ii) For ¢ € {pp,ac,sc} there exists a compact subset SP' of R such that
o-(HPY) = SP for pg-almost all x in Xo. Moreover

= ]S (4.6)

Proof. By Corollary 4.3, Proposition 4.4, Theorem 2.2 and Corollary 2.3. [

Remark 4.5. Under notations of Proposition 4.6, Remark 3.4 implies that the
spectrum 7' of any HP'' on Xj is also the spectrum of HEC, for any y € X,.

We now will describe explicit cases.

5. The Periodic Case

Let us consider X = Z/NZ, where N € N*. We denote by B the s-algebra of
Borel subsets of X and by y the counting measure on X (defined forall 0 < j < N
by u({j}) = iV) The transformation T': x — z + 1 is an invertible measure-
preserving transformation of X. The dynamical system 7 = (T, X, B, i) is strictly
ergodic. If f is a measurable bounded map from X to R, we define the potential
for all » € X by

Veln)=f(T"x), Vnez. ) (5.11)

In addition, we suppose f such that the sequence (V,(n)), is exactly N-periodic.
Let p be given in N*. In this section, we study p-sparse Schrodinger operators
associated with the dynamical system 7 and with the potential (5.1). For general
results on discrete one-dimensional periodic Schrédinger operators, we refer the
reader to Toda [19].

5.1. First properties of the associated operators

We can now introduce the associated operators HP' defined by Egs. (3.12)
and (3.17)-(3.18). For all ¢ € {0,...,p— 1} and all * € X, H?' is given by
H?P" = S+ 871 4+ VP where

VPin) =Venp+1) = flz+np+i) VneZ. (5.2)

Proposition 5.1. Let i be given in {0,...,p — 1} and 2 € X. Then HP* is
a discrete uni-dimensional periodic Schrédinger operator, where the period N, does
not depend on i and is given by

~ N
N, = —————— . (5.3
" ged(p,N) 83)
Proof. It is easy to see that Flgj’i is a periodic Schroédinger operator. For the
calculation of its period, which clearly does not depend on i, we consider two cases:
p = aN or not.
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First, if p = aN,a > 1, VP¥(n) = f(z + i) is constant for all n. Thus N,=1.
Remark that ged(N,p) = N. Suppose now p # aN. If 1 < p < N, the period ]\7,,
is such that Np x p is the lowest multiple of N, which is of course a multiple of p.
Therefore
_lem(N,p)

. .
If p> N, let us consider the Euclidian division of p by N: p = ¢N + r, where 0 <
r < N (p# aN). It appears that f’zp’i(n) = f(xz+mnr+1) so that Np =lem(N,7)/r.
Moreover for all a and b non-negative integers, ab = lem(a, b) x ged(a, b). Thus

lem(a, b) B a
b ged(a,b)

Finally. notice that for all a > 1. ged(a.b) = ged((a + ab).b), and ged(N.r) =
ged(N, p). This concludes the proof. (]

Recall that the spectrum of a discrete one-dimensional P-periodic Schrodinger
operator is well known. Namely it is purely absolutely continuous and composed of
P bands, which are closed intervals of R. These bands are not necessarily disjoint.
For a treatment of this case, we refer the reader to [19, Chap. 4]. We can now
formulate a similar result for periodic sparse Schrédinger operators.

Theorem 5.2. For all x € X, SP is absolutely continuous and defined by
p—1
<P = JoHar (5.4)
=0

There are at most pr bands in the spectrum.

Proof. By minimality and ergodicity of 7, the spectrum is the same for all z
(Corollary 2.3). From the previous proposition, the associated operators are Np-
periodic. Thus, the spectrum of each associated operator H P+ is purely absolutely
continuous and composed of ]\7p bands. Theorem 3.7 completes the proof. a

5.2. Decomposition function and consequences on the spectrum

By the strict ergodicity of the dynamical system 7, we can apply Theorem 4.1.
Let é(p) be the decomposition function corresponding to p. Thanks to the peculiar
form of X and to the definition of T', we have information about 6(p).

Theorem 5.3. If X = Z/NZ and Tz = 2 + 1 on X, then the decomposition

function is given for any non-negative integer p, by

6(p) = ged(p, N) . (5.5)
Moreover, each dynamical system (T&kanvB]XuNk) 18 strictly ergodic.

Proof. It is clear that 6(p) is linked with the period of T?. By Relation (5.3), T”
is N,-periodic with N, = N/gcd(N,p). This means that each TP-invariant subset

of X admits exact
are 6(p) such sub
The second state
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of X admits exactly Np elements. By definition of the decomposition function, there
are 6(p) such subsets. Thus 6(p) x N, = N, and we deduce the expression of o(p).
The second statement is clear. O

Remark 5.1. This theorem implies that 1 < §(p) < min(p, N).
Remark 5.2. When p and N are relatively prime we know immediately that
&(p) = 1. Moreover
0(p) =p<=N=ap where a>1,
6(p)=N < p=p3N where g>1.
Remark 5.3. We suppose X; to be the subset of the partition {Xov..-s

Xs(p)~1} containing 0. This theorem allows us to an analogue of Proposition 4.6,
whatever the value of 8(p).

Theorem 5.4. Let p be a non-negative integer, and (HP).cx be a family of
p-sparse N-periodic Schrédinger operators. Then

v ) e (5.6)

where SP 45 the spectrum of every operator f[;"i when x € Xy. In the same way,
for e € {pp, ac, sc}, the c-spectral component of the spectrum TP is given by

§(p)—1 ~
= =, (5.7)
with Us(fff’i) = ig”i for po-almost all x in Xg.

Proof. Thanks to strict ergodicity given by Theorem 5.3, and as in the proof
of Proposition 4.6, we see that

p—1 p—1
2P =)= and TP =S,
0 i=0

7

Il

But the main property of 6(p) is 6(p) | p. Let us consider a the non-negative integer
verifying p = aé(p). Thus

a—1 5(p)—1

U 5Py it+56(p)
=0

For any j € {0,...,a — 1} and i € {0,...,8(p) — 1} we know that TP =o( 7Pt
for all # € Xy. By Proposition 3.9 and for any z in X, we see that Hﬁ’lﬂé(p) =

ff(p;b(,,))m and T¥P)z € X,. Thus &P = U(g{)ijo(p>)11) = TPi+3i8(P) | and Relation
(5.6) is proved. For (5.7) equalities hold po-almost everywhere. O
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Corollary 5.5. When p = 3N where 3 > 1, then we know exactly 2P,

U i)—2,f(i)+2 . (5.8)

Proof. By Remark 5.2, 6(p) = N. Thus Xo = {0} and Theorem 5.4 implies for
¢ € {pp, ac, sc} that

— N-1
U o(HP') and X2 = | oc(HP)

2=0 1=0

But. as we have already noticed in the proof of Proposition 5.1, V” *is a constant

sequence equal to f(i). In this case, we know (cf [19]), that cr(H‘”) = {f@) —
2, f(i) + 2. This concludes the proof. [m]

The following corollary is another direct consequence of Proposition 5.4.

Corollary 5.6. If p is a non-negative integer and if ¢ = aN +p when o > 1,
then
TP=37. (5.9)

Proof. By Theorem 5.4, ¥ (respectively ©7) depends on the sets PO, ...,
$p6(r)=1 (respectively on the sets S9C, ..., ©2:0(0)-1) " which are the spectra of
ApO . HPOPTN on XP (respectively of HIO..... AP 7" on X{). But, as we
have already not1ced in the proof of PrOposmon 5.1, 6(q) = 6(aN + p) = é(p) and
therefore N

Moreover Xy (respectlvelv X{). contains 0 and is exactly equal to the set {0,770,
AT 1)"0} (respectively X¢ = {0,790,....T! (¥a=1)90}). For 0 < n < N,
ng mod (N) = np mod (N) and then 7790 = T™0. This implies that X§ = X§.

Let us now compare 77 and S T4 for i =0,...,8(p) — 1. For all n and all r € X,
let us note that z + ng+imod (N) =z +np + i mod (N) and V&i(n) = VF'(n).
Thus H?* = HP** and the proof is complete. 0

Remark 5.4. This corollary means that the spectrum does not change if p is
replaced by p + aN. with & > 1. Thus the spectrum of HP? with p = aN is exactly
UV and we find again the result of Corollary 5.5.

Remark 5.5. Now, ¥? admits a most 6(p)NP bands, that is to say. at most
N bands.

Proposition 5.7. Let p be given in {1,...,] N —1}. We put g =N —p. Then

TP =59, (5.10)

Proof. When N is even and p = N/2, the result is evident. We suppose now
1< g < p< N. It is easy to prove that §(p) = 6(¢). Consequently N, = = N,. Thus
the associated operators H gv‘i and H 9% are periodic Schrodinger operators mth same
periods, and according to Theorem 5.4 their spectra are decomposed into the same
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number of parts: ¥7 = (J{) 7 g (AP?) for all z in X7, and T9 = Uit o (He)
for all z in X{.

But Xf = {0,T70,...,T*»=120} and X§ = {0,T90....,T'%~V40}. For
1 <n < N,. it is clear that ~(Np —n)pmod (N) = N(p/gcd(N,p)) —npmod (N) =
n(N — p) mod (N). and TN»—=9P0 = 7790, Hence X} = X{.

Moreover for 0 <i < 8(p), all 2 in X and all n, o+ n(N — ¢) + i mod (N) =
2+ (—n)g+i mod (N) and Vi (n) = V& (—n). We use the Floquet theorem which
characterizes elements of the spectrum of a P-periodic one-dimensional discrete
Schrodinger operator H as follows (for more details see [19]).

Hu = du
A€ o(H) <> Ju € £°(Z) such that{ u(n + P) = pu(n) Vn .
where p € C and [p| = 1.

For any u € €°(Z), we put @(n) = u(—n). Then @ € £>(Z).

Let us consider A € o(H??) and u like in the Floquet theorem. Then HP''u =
A = HP'i = A, and for all n, u(n + N,) = pu(n) = u(n + N,) = (1/p)i(n)
with |1/p] = [p| = 1 (N, = N,). We thus get o(HP*) C o(H%'). In the same
manner, we establish the equality of the spectra and the proof is complete. I

We formulate our main results in a theorem.

Theorem 5.8. Let p be a non-negative integer, and HE a p-sparse N-periodic
Schridinger operator. Then
(i) o(H?) =X? for allz € X;
(i) If p = 0 mod (N), then =P = UM [f(i) — 2, f(3) + 2);
(ili) If p Z 0 mod (N), then XP = Spmod(N) — N —(pmod(N)).
(iv) EP is purely absolutely continuous and it is composed of N bands.

The nature of the spectrum of a family of p-sparse N-periodic Schrodinger operators
does not change with p. It is always purely absolutely continuous and always com-
posed of NV bands. Moreover, the spectrum itself can change according to the values
of p. Notice that X7? is exactly the spectrum of the classical N-periodic Schrodinger
operator when p = 1 mod (N).

5.3. Exzamples
Ezample 5.3.1. The case of p-sparse 1-periodic Schridinger operators

Let us consider X = Z/1Z (i.e. X = {0}). and Vy(n) = a for all n. Then
YP is absolutely continuous and composed of a unique band for any non-negative
integer p.

P=la-2,a+2].

Erample 5.3.2. The case of p-sparse 2-periodic Schrédinger operators
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Let us consider X = Z/27Z. The potential takes two values a and 3. We suppose
a < 3. Then

P -

d

Yl if pis even
T2 if pis odd.

We know exactly the form of these spectra.

o arw—ma] U [ﬁ o+ 3+ /16 @ BF
2 ’ ’ 2

h =

=la-2.a+2 (J[B-2.8+2] .

Thus, there exist exactly two disjoint bands in the spectrum when p is odd, but in
the case where p is even, one or two bands can appear.

In particular when a = —g, with 3 > 0, we always have exactly two bands in
the spectrum.

o = [-var -8 U [8 va+ ]
P=[-p-2-8+2 | B-2.8+2.
In this case, notice that the spectrum is symmetric with respect to the origin.

Erample 5.3.3. The case of p-sparse 3-periodic Schrédinger operators

Let us consider X = Z/37Z. Then

- Tl ifp=1or 2 mod (3)
T = if p=0mod (3).

We know the form of these spectra:

St={AeR /1A= FO)A - FWA - F(2) = (A= £(0)) - (A= f(1))
-(A=f@)F <4}

28 = [£(0) - 2, £(0) + 2| JIF (1) - 2. F(1) + 2] U[f(2) —2.f(2) +2]

and there exist at most three bands. Notice that the three values of f play the same
role in %7,
If we suppose f(0) = 0, f(1) = a and f(2) = —a with a > 0, then we imme-
diately have
P =l—a-2,~a+2Jl-2.2Jla - 2.a+2) .

Moreover, &' = {A€e R/ [A3 - (3+a?)A+2][A3 — (3 +a2)A — 2] <0}, and we
can show there exist three positive reals A\; < Ay < A3, such that

== [=As, el =AM A el -
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Thus ! is always composed of 3 disjoint bands whereas ©° can have 1 or 3 bands
according to o is strictly greater than 4 or not. Anyway, the spectrum is again
symmetric with respect to the origin.

6. The Random Case

Let us consider X = S where S is a Borel subset of R, B the o-algebra
generated by the cylinder sets, i.e. by sets of the form {x / 2, € A1, ... ,2,, € 44}
forny,....n, € Zand A4,,..., 4, Borel sets in R. We consider a sequence (V(n))nez

of random variables. The sequence of potentials is given by V,(n) = V(n)(z) for all
z in X (we say V, is a realization).

In all this part, we will suppose the V(n) are independent identically distributed
random variables of product distribution p and of same law r(.). Remark that the
dynamical system 7 = (T, X.B, ), where T is the shift operator on X, is ergodic.
The discrete one-dimensional Schrédinger operator H, associated with the sequence
of potentials (V,(n))nez, is referred to as the Anderson model (see [5, Chap. 9], or
[9]). According to this, the p-sparse Schrodinger operator H? is called a p-sparse
Anderson model.

Proposition 6.1. Let (HP),.cx be a p-sparse Anderson model. Then (ﬁ;"i)rex,
for alli € {0....,p— 1}, is an Anderson model.

Proof. Fach VP is a realization of a sequence of the random variables
(V(np+1i))nez. This sequence is also an independent identically distributed random
variables sequence, whose common product distribution is again y and law is r(.).

O

This proposition directly leads to a more precise result as Theorem 3.7.

Corollary 6.2. Under the assumptions of Proposition 6.1. the spectrum SP of
p-almost all operators HY is the union of p compact subsets of R. More precisely

p—1
P = U $P where SP=g(HPY) p—pp. (6.1)
i=0

Moreover, if ¢ € {pp, ac, sc}, and~ 1f TP (respectively ©P) is the e-component of
p-almost all operators HP (resp. HP?), then

p—1
RSP (6.2)
=0

Proof. It is a consequence of a theorem given by Kunz and Souillard in [14]
and extended by Kirsch and Martinelli in [12]. By Proposition 6.1, i being fixed

in {0,...,p— 1}, (HP"),ex is an Anderson model. Thus g-almost all operators
HP'* have the same spectrum and spectral components. Theorem 3.7 concludes the
proof. O

Moreover, an analogue of the Kotani-Simon theorem can be stated.
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Theorem 6.3. Let (HP),.cx be a p-sparse Anderson model. Then oq.(H?) =0
for p-almost all x.

Proof. By Proposition 6.1, (H??),cx is an Anderson model. The theorem of

Kotani-Simon establishes that for g-almost all z, 04.(H?*) = § (for more details,
we refer the reader to [13] and [17]). Corollary 6.2 concludes the proof. O

According to some peculiar properties of the common density function r(.),
several results can be deduced. Firstly we can state an analogue of the Kunz and
Souillard theorem (see for instance [14, 9] or [5, 1, 6]).

Theorem 6.4. Let (HP),cx be a p-sparse Anderson model. We suppose that
the common density function of (V(n)), is a non-negative function such that there
exists a real 0 < A < 1 with

sup [r()(1 + [t < 400 . (6.3)
teR

Then, with probability 1, the spectrum is pure point and equal to
TP = [-2,2] + Supp(r) . (6.4)

Moreover all eigenvectors are exponentially localized.

Remark 6.1. Supp(r) denotes the support of the function . If A and B are
two subsets of R, then A+ B={a+b; a€ A and b € B}.

Remark 6.2. According to Property (6.3), r is a bounded function.

Proof. By Proposition 6.1, we can apply the Kunz and Souillard theorem,
given in [14], to each family (H2?),cx. For p-almost all z, the spectrum of HP*
is pure point and equal to [-2,2] + Supp(r). Applying Corollary 6.2 completes the
proof. a

In the particular case where the common density function 7(.) is continuous with
compact support, we get Corollary 6.5.

Corollary 6.5. Let (HE),.cx be a p-sparse Anderson model. We suppose that
the common density function of (V(n)), verifies the following conditions:

(a) 7 is a continuous function on R;
(b) 7(t) =0 <=t ¢]a,B[C R.

Then the spectrum is p-almost surely pure point and equal to
YP=ja-2,8+2]. (6.5)

Moreover, all eigenvectors are exponentially localized.

Proof. Support of r(.) is [a, 8] and r verifies Relation (6.3) for any A in ]0,1].
Proof is complete in applying Theorem 6.4. O
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On the other hand, if the random variables V(n) are Bernoulli distributed,
an analogue of the Carmona, Klein and Martinelli theorem is verified (see [9] for
instance).

Theorem 6.6. Let (HP),cx be a p-sparse Anderson model. We suppose that
the sequence (V(n)),ez admits a Bernoulli distribution, that is to say:

0 with probabilit
Vin)(a) = { preneT

a  with probability 1 — p, and «a real.
Then the spectrum is p-almost surely pure point and equal to
£ =[-22| Jla-2.a+2]. (6.6)

Moreover, all eigenveciors are exponentially localized.

Proof. Using the same arguments as in the proof of Theorem 6.4 and according
to the Carmona, Klein and Martinelli theorem given in [9}, we obtain the proof. O

Remark 6.3. Let us mention that in the special cases corresponding to Theo-
rems 6.4 and 6.6, and to Corollary 6.5, neither the spectrum nor its nature changes
with p.

7. Sparse Schrodinger Operators with Substitutional Potentials

The class of almost periodic potentials lies between periodic and random cases.
We study here the subclass of substitutional potentials. In the first part, we recall
some elementary results in substitutional sequences. For more details, we refer the
reader to {16].

7.1. Substitutional dynamical systems

Let us consider a finite set A = {0,...,r — 1} called an alphabet. We denote by
A7 the set of all bi-infinite sequences of letters from A. A word is a finite sequence
of letters. We consider a substitution £ which associates to any letter a in A, a
word £(a). Moreover ¢ will be supposed primitive, which means that there exist a
non-negative integer k such that for all pairs of letters a and b in A, the word £*(a)
contains the letter b.

Under the primitivity condition, £ admits fixed-points, that is to say there exist
bilateral sequences w = ... w_y wp wy ... in A% such that £(w) = w (see {7, 16]).
Such a fixed-point w is called a substitutional sequence. It is an almost periodic
sequence, which means that every word of w occurs in w with bounded gaps (the
bound depending on the word). We denote by T the shift operator on A% A
topological dynamical system can be assigned in a natural way to the substitutional
sequence w. Precisely

X&) ={Trw; ke Z}, (7.1)

where the closure is in the strong sense in A®. X(¢) is a compact metrizable
set. The restriction of T to X (&) is again denoted by 7. The pair (X(£),T) is
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a topological dynamical system. Moreover it is minimal. Notice that under the
primitivity condition on £, any fixed-point w of £ generates the same dynamical
system. From now on, a fixed-point w is given.

Let B be the o-algebra of Borel subsets of X(£). Under primitivity of £, there
exists a unique T-invariant probability measure p on X (£), which turns out to be
ergodic (for more details see [16]). Thus T = (T, X(£).B. i) is a strictly ergodic
dynamical system. 7 is called the dynamical system generated by substitution &.

By strict ergodicity of 7, we can apply Theorem 4.1 for a given non-negative
integer p, we find a partition of X (&) into é(p) parts. We always choose X to be
the member of the partition containing w. When é(p) = p, we deduce immediately
from Corollary 4.3, the strict ergodicity of 7 = (T";(O.XO, Bix, o).

Proposition 7.1. If p is a non-negative integer such that 6(p) =1, then TP =
(TP, X (&), B, 1) is a minimal ergodic dynamical system.

Proof. According to [7], T? is minimal if and only if it is ergodic. O

Now, if B =by...b;_, is a word of letters from A, then j is called the length of
B and is denoted by |B|. When for any letter a of A, the length of £(a) is equal to £,
where £ is a non-negative integer, the substitution ¢ is said to have constant length
or uniform length. Otherwise, it has non constant length. In the case where £ is
a substitution with constant length, we can say more about the dynamical system
77 (we refer the reader to [7]). ’

Proposition 7.2. Let us consider a substitution & with a constant length €, and
a non-negative integer p.
(i) If 8(p) = 1, then there exists a finite alphabet A and a primitive substitution
n with constant length equal to ¢ on A, such that the dynamical system
generated by the substitution n is isomorphic to TP.
(ii) If8(p) = p. then there exists a finite alphabet A and o primitive substitution
n with constant length equal to ¢ on A, such that the dynamical system
generated by the substitution 1 is isomorphic to 1.
(iii) In particular when p = €™, with m > 1, we know §(¢™) = {™, Moreover
A=A, n=¢ thus T} is isomorphic to T .

Remark 7.1. The alphabet A and the substitution 7, just as the isomorphism
between 77 (respectively 7¢) and the dynamical system generated by 7, are explic-
itly constructed in the proof of M. F. Dekking (see [7]).

7.2. Properties of the sparse Schrédinger operators

We only suppose for instance that ¢ is a primitive substitution. Let us consider

the potential (V,(n)),ez given by
Veln)= f(T"z) , VneZ (7.2)

where f is a real-valued bounded measurable application on X(£). Then H? is
called a p-sparse Schridinger operator with substitutional potential. In the theory

of Schrodinger ope
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of Schrédinger operators we usually consider f verifying

flx) = v(xo) (7.3)

where v is a finite real-valued map from A and ry is the first component of r. More-
over v is chosen so that the resulting sequence of potential values V, = (v(w,))nez
is aperiodic.

According to Proposition 4.6, we know that if §(p) = p, then EP and its compo-
nents are the unions of p compact sets, which are respectively the spectra and the
spectral components of the associated operators on the dynamical system 77. In
other words,

p—1 p—1
=) and T2= (82,
i=0 1=0

where ¢ € {pp,ac,sc}, SP = o(H?*) for any = € X, and S = g (HPY) for
pip-almost every x in Xo. By Proposition 7.1. we find a similar result when 8(p)
equals 1.

Proposition 7.3. If p is a non-negative integer such that 6(p) =1, then
(i) there exists a non-empty compact set of R, denoted by PV which is the
spectrum of HPY for any x € X(€), and such that

P = url . (7.4)

(i1) f9r ¢ € {pp.ac, sc} and if 5:1;»0 denotes the s-component of the spectrum of
HPO for p-almost all x in X (&), we see that

P

e

©p0 (7.5)

Proof. According to (4.3), (4.4) and Proposition 7.1, and since X, = X(€), the
proof is complete. O

This proposition means that in the case where §(p) is equal to 1, X7 is exactly the
spectrum of a certain family of Schrédinger operators (HPO) ¢ x(¢) whose potentials
are given for any z in X(§) by

V2O(n) = Vie(np) = v(an,) . VR EL. (7.6)

In the case where §(p) equals p, we have to study the p families of the associated
operators (HP*),cx,, with 0 < ¢ < p, whose potentials are given for any r in Xy
and for 0 <i < p, by

VPi(n) = Vo(np+ i) = v(@pnpes) - I EL . (7.7)
We are now able to state, in the extremal cases 6(p) = 1 and 6(p) = p. a theorem
concerning the absolutely continuous component of X7.

Theorem 7.4. Let & be a primitive substitution on the alphabet A and p a non-
negative integer. If p is such that 8(p) = 1 (respectively, 6(p) = p), then there is no
absolutely continuous spectrum p-almost surely (respectively, po-almost surely).
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Proof. We first consider the case 6(p) = 1. By (7.6) and Proposition 7.3, we
have to study a new family of Schrédinger operators (ﬁ£=°)rex(5), associated with
the strictly p-ergodic dynamical system 77. But aperiodicity of V,, means that the
topological support of i is not a finite set. Thus fﬁf*o is not periodic, and we can
apply the Kotani theorem to the family (ﬁf*o)zex(g) (see for instance [13]): for
p-almost every x in X (&), H 20 does not admit any absolutely continuous part in
its spectrum.

For the second case §(p) = p, we use (7.7) and the fact that the topological
support of ug is finite if and only if it is the same for the topological support of u,
in view to apply the Kotani theorem to the p families (ﬁj}’i)mex() with 0 <7 < p.
Proposition 4.6 completes the proof. O

When the substitution £ is primitive and has constant length, Proposition 7.2 can
be applied, and means, under the condition é(p) = 1 or p, that each operator fI}C’*i is
a Schrodinger operator with substitutional potential. Moreover, when p = {™, the
corresponding substitution is again €. and the nature of the spectrum of these ¢™-
sparse Schrédinger operators is the same as in the classical case of one-dimensional
discrete Schrodinger operators with the same substitutional potential. We can say
more: the nature of the spectrum ¢ does not change with m > 1.

We will illustrate these results by examples.

7.3. Ezxamples
Ezxample 7.3.1. The period-doubling substitution

We consider the alphabet A = {0.1}. The period doubling substitution is
defined by

E: 0 —01
1 —00.
It is a primitive substitution with constant length equal to 2. We can choose the
fixed-point w = lim £27(0) lim £27(0), i.e.
w=...0100010010001000106001010100 ...

By primitivity of £, X(£) is generated by any fixed-point, and the dynamical system
generated by £ is strictly ergodic.
Moreover, the decomposition function can be calculated (for more details see

[7):
2"y =2" v¥n2>1
6(m)=1, imisodd
5(2"m) =2, V¥n>1, Vmodd.
According to Theorem 7.4, the following proposition is deduced.

Proposition 7.5. Let us consider the period doubling substitution on A =
{0,1}. Then
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(1) for any (non-negative) odd integer p, X is the spectrum of a Schrddinger
operator with substitutional potential ﬁf"), for any x € X(&), and X2, = {;

(ii) for any non-negative integer n, ©%" is a Cantor set of zero Lebesgue mea-
sure. and for p-almost oll z in X, it is purely singular continuous.

Proof. (i) is a direct consequence of Theorem 7.4. For (ii), we remark that each
f]g’i is a Schrodinger operator with substitutional potential generated by the period
doubling substitution. But we know, according to [2] (see also [4, 15, 18]), that
the spectrum of every associated operator on Xy is a Cantor set of zero Lebesgue
measure, and it is for ug-almost z in Xg purely singular continuous. So is £*". O

Ezample 7.3.2. The Thue-Morse substitution

We consider the alphabet 4 = {0,1}. The Thue-Morse substitution is defined
by

£&: 0 —01
1 — 10 .

It is a primitive substitution with constant length equal to 2. We can choose the
fixed-point w = lim £27(0) lim £27(0), i.e.

w=...011001101001 ...

By primitivity of &, z(&) is generated by any fixed-point, and the dynamical system
generated by ¢ is strictly ergodic. Moreover, the decomposition function can be
calculated:

6(2")=2", Yn>1
d(m)y=1, ifm isodd
6(2"m)=2", ¥n>1, VYmodd.
According to Theorem 7.4, we find an analogue of Proposition 7.5:

Proposition 7.6. Let us consider the Thue-Morse substitution on A = {0,1}.
Then
(1) for any (non-negative) odd integer p, TP is the spectrum of a Schrodinger
operator with substitutional potential H?®, for any x € X(£), and T2, = 0;
(ii) for any non-negative integer m. 2" is a Cantor set of zero Lebesque
measure, and for p-almost all x in X, it is purely singular continuous.

8. Conclusion

We can now compare the three special cases of p-sparse Schrédinger operators
treated in this paper. When the potential is a sequence of independent identi-
cally distributed random variables, neither the nature of the spectrum nor its lo-
cation change with p: the spectrum of H? is exactly the one of the corresponding
Schrodinger operator H = H!,



340 C. GUILLE-BIEL

On the other side, if the potential is N-periodic, then the nature of the spectrum
does not change with p, just as the number of its bands (there are always N bands).
But ¥? (the spectrum of HP), is the same as the spectrum of the classical N-periodic
Schrédinger operator only in the case of p = 1 mod (N) or p= N — 1 mod (N).

The case of the substitutional potentials, which lies between the two others, is
more complicated because linked with the decomposition function é(p). In fact we
only know that there exists no absolutely continuous part in the spectrum of H” if
6(p) = 1 or p. Moreover, if the primitive substitution has a constant length ¢ and
if p = €, then the nature of ¥P is the one of the spectrum of the corresponding
substitutional Schrodinger operator H.

Finally, in these cases (random, periodic and substitutional), the spectral be-
havior of p-sparse Schrodinger operators is similar to the one of the corresponding
Schrodinger operators for all p when the potential is random or periodic, and for
6(p) = 1 or p when it is substitutional. We could conjecture similar results for sparse
Schrodinger operators with limit periodic or quasi-periodic potentials. Such a study
will surely leads us to a more accurate understanding of these random operators.

References

[1] P. Bougerol and J. Lacroix. Products of Random Matrices with Applications to
Schrédinger Operators, Birkhauser, Boston, 1985.

[2] J. Bellissard, A. Bovier and J. M. Ghez, “Spectral properties of a tight binding Hamil-
tonian with period doubling potential”, Commun. Math. Phys. 135 (1991) 379-399.

[3] A. M. Berthier, “Spectral theory and waves operators for the Schrédinger equation™.
Research Notes in Math. 71; Pitman Advanced Publishing Program, 1982.

[4] A. Bovier and J. M. Ghez, “Spectral properties of one-dimensional Schrédinger ope-
rators with potentials generated by substitutions”, Commun. Math. Phys. 158 (1993)
45-66. Erratum in Commun. Math. Phys. 166 (1994) 431-432.

[5] H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrédinger Operators with
Application to Quantum Mechanics and Global Geometry, Springer Verlag, 1987.

[6] R. Carmona and J. Lacroix, Spectral Properties of Random Schrédinger Operators,
Birkhauser, Boston, 1990.

[7] ¥. M. Dekking, The Specirum of Dynamical Systems Arising from Substitutions of
Comnstant Length, 41 (1978) 221-239.

(8] Dunford and L. Schwarz, Linear operators; vol. I and II, Interscience Publishers, 1963.

[9] A.Figotin, and L. Pastur, Spectra of Random and Almost-periodic Operators, Springer
Verlag, 1992.

[10] W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Col-
log. Publ., vol. 36, Amer. Math. Soc., Providence, R. 1., 1955. .

(11} T. Kamae T, “A topological invariant of substitution minimal sets”, J. Math. Soc.
Japan 24 (1972) 285-306.

[12] W. Kirsch and F. Martinelli, “On the ergodic properties of the spectrum of general
random operators”, J. Reine Angew. Math. 334 (1982) 141-156.

[13] S. Kotani, “Jacobi matrices with random potentials taking finite many values”, Rev.
Math. Phys. 1 (1988) 129-133.

[14] H. Kunz and B. Souillard, “Sur le spectre des opérateurs aux différences finies
aléatoires”, Commun. Math. Phys. T8 (1980) 201-246.

[15] J. Peyriere, “On the trace maps for products of matrices associated with substitutive
sequences”, J. Stat. Phys. 62 (1991) 411-414.

[16] M. Queffelec, “Substitution dynamical systems-Spectral analysis”, Lecture notes in

Math. 1294, S
[17] B. Simon. “Ko
Math. Phys. 8
[18] A. Siito, “Sch
Beyond quasi-
D. Gratias; co
[19] M. Toda, The



SPARSE SCHRODINGER OPERATORS 341

Math. 1294, Springer Verlag, 1987.

[17] B. Simon, “Kotani theory for one-dimensional Stochastic Jacobi matrices”, Commun.
Math. Phys. 89 (1983) 227-234.

[18] A. Siito, “Schrédinger difference equation with deterministic ergodic potentials™, in
Beyond quasi-crystals, Les éditions de Physique, Springer Verlag; ed. by F'. Axel and
D. Gratias; course 17 (1995) 481-549.

[19] M. Toda, Theory of Nonlinear Lattices, Springer Verlag, 1989.



