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\4'e study spectral properties of a family (H!)"ex, indexed by a non-negative integer p,

of one-dimensional discrete operators associated to an ergoclic dynamical system ( 7, X , B , p)

anddef inedforzint2(Z)andn\nZby(Hlu)(n):u(n-p)+u(n-tp)* l ' " (n)z(n),where
V"(n) = T(af"") and / is a real-valued measurable bounded map on X. In some particular

casesJ we prove that the nature of the spectrum does not change with p. Applications

include some classes of random and quasi-periodic substitutional potentials.

1. Introduction

The one-dimensional discrete Schrôdinger operator 11, sometimes called the

Jacobi matrix, is defined for u belonging to Pç27 $ne Hilbert space of square

summable sequences), and for any integer n by

(Hu)(n):  u(n -  1)  + u(n + 1) + l ' (n)u(n) (1.1)

where (V(n)).ez is a bounded rcaI potenti,a/. There has been a lot of interest for

Schrôdinger operators to be associated with a dynamical s-"-stern f = (T.X.B,p)

as follows. For all r in X, let 11" be defined by

(H,u)(n) :u(n -1)+u(n+1)+I" . (n)u(n) Yn eZ and Vu Q (2(Z),  (1.2)

where t ' ' ,(n): f Q"r) and / is a real-valued bounded measurable function on X.

Under the ergodicity of T , the invariance of the spectral properties of such operators

is true for p-almost every operalor H,, which means that Ér.-almost all operators

have the same spectrum and spectral  components (see [1,  2,4,5,6,  9,  13.  14, 18]

for more details).
In this paper. we introduce more general operators defined on P(27. associ-

ated with the dynamical system T and indexed by a non-negative integer p. More
precisely, we put for all r in X,

(He"u)(n) :  u(n -  p)  + u(n+p) + v,(n)u(n),  v n €Z and vu € t2(v ' )  (7-3)

where the potential V" is defined as previously by a bounded mesurable map / from

X to R. Each H! operator will be called a ysparse Schrôdinger operator associated
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316 C. CUILLE,BIEL

with, th,e dynarn'ical systetn T and utit lt. the Ttotent' ial I ' .. Our purpose is to study
spectral properties of such operators. according to ti ie vaiues of p.

In Sec. 2, we first set up notations and terminologies of dvlamical systems.
spectral theorv and random operators. \&'e can also see that the notion of sparse
Schrôdinger operators is inclucled in the more generai theory of random ergodic
operators described in details bv A. Figotin and L. Pastur iu [g] . According to

[9] and uncler the ergodicity of 7. immediate spectral properties like inr.ariance

/r-almost ever)'where of the spectrunt and the spectral compoDents. or absence p-
alnost surely of the cliscrete component. can be deduced for sparse Schrôdinger
operators.

The specific form of psparse Schrôdinger operators allows a more accurare
understanding of their spectra and spectral components. In Part 3. the natural
decomposition of {2(Z) in a direct sum of orthogonal subspaces, which are stable
under each 1{, permits the study of p classical discrete one-dimensional Schrôdinger
operators associated fo H!. instea.d of studving f{ itself. \û'e thus obtain p families
of associated operators, each of them being defined for anr. r. in -Y. In this case. we
prove that each familf is associated with the dynamical s1'stem Tp : (Tp . X. B, tt).
Let us note that Tp is not necessarily ergodic.

When the dynarnical system 7 is ergodic and rninimal, we can cut f into nz
disjoint Zp-invariant closed subspaces, denoted by X0,...,I-_1, where nl is a
non-negative integer depending on p and less than or ecltal to p. This result is
due to W. H. Gottschalk and G. A. Hedlund (see 110]), ancl T. Karnae ([tt]) for
substitutional dynamical systems. \À,'e also refer the reader to [7]. Section 4 of this
article states this theoretn and discusses the spectral properties of each familv of
associated operators, according to the r'aiue of zn. We prot'e in particular it suffices
to restrict our attention to elements of Xn.

The forthcoming three sections concern special cases of potentials. In Part 5,
wedealwi ththeper iodiccase: f  :V, lNV,,  where,Àtr isanon-negat iveinteger.  For
any r belonging to X, the sequences (i;(n)),E2 are l[-periodic. We prove that the
spectrum Ir of any operator fff is purell'absolutely continuous and composed of
,Ày' not necessarily disjoint bands (closed iutervals of R.). This is exactlv the same
result as in the classical case of discrete unidimensional Àr-periodic Schrôdinger
operators, which can be found in [t0. Chap.4]. Moreover, we sltou'that Ip can
be explicitly described and depends onlv ou p modulo ,\. More precisely, !p :
s'pmod(N) ; !,\-(pnrod(N)), for all p € N*, and there exist exactl l, tT] + t possible

spect la,  which are I t ,  ! t ,  . . . ,  ! t+ l  and !N.

Section 6 treats the randorn case: we suppose that the (1"(n)).ez are indepen-
dent identically distributed random variables. We prove that the general results
stated for discrete one-dimensional Schrôdinger operators with such potentials, can
be extended to sparse Schrôdinger operators. More preciselv. u'e prove arr ana-
logue of the Kotani and Simon theorem: the absolutely component of p-almost all
operators is empty (see [13, 17], or [1]. for rnore details). X4oreover, when the density
function is continuous on lR and compactly supported, the spectrum lp of !-almost
all operators 1{f; is pure point and equal to [o - 2,0 +21, if [o,rg] is the support of
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the density function. This is an analogue of the Kunz and Souil lard theorem. In

the same way we state an analogue of the Carmona. Klein and Martinelli theorem
(random variables admitting a Bernoull i distribution). In these two extremal cases.

we show that the nature of the spectrum does not change with p.

We analyze in Sec. 7 the case of substitutional potentials: the dynamical system

Tisgeneratedbl 'apr imit ivesubst i tut ion{onaf in i tealphabet,4:{0, . . . , r -1} .
It is strictly ergodic, and we can apply the main theorem of Sec. 4. In the cases

m:1. or m: p, we state that the spectrum Ip of any operator Iff is the union of

the spectra of any associated operator on X6 and there is no absolutely continuous
part almost everywhere. N{oreover, when { has a constant length (, and m.: 1 or

p, the associated operators are classical Schrôdinger operators with substitutional
potentials. Finally, if p : (,n for n ) 1, then this new substitution is again { and

the spectra of almost all associated operators have same nature which is the same

for all I l".

2. Definit ions and First Properties

2.L. Dgnarnical systems and randorn operators

Let T : (7, X,B,p.) be a dynamical system: f is an non-empty. compact

metrizable space, 6 denotes the o-algebra of Borel sets of X. trr is a probability

measure on X and I : X * X is an automorphism (invertible transformation)

of X. preserving the measure p (that is to say for any A € B, p(f-tA): p(A)).

The dynamical system 7 is said lo be ergodic if each Borel subset A of I such

lhat T-rA: -,{ has a p-measure equal to 0 or 1. It is called uniquely ergodi,c if

there exists a unique ?-invariant probability measure on X which turns out to be

ergodic. If X has no closed T-invariant subspace other than 0 and X itself, then

T is a m'inimal dynamical system. When 7 is uniquely ergodic and minimal it is

called strictly ergod'ic. In this article, we will always suppose 7 ergodic.

Let us denote by (.,.) the inner product of Pç27 and by l l l l2 its associated norm.

Moreover, S denotes the shift operator on 121V,1.

We recall that a random uariable on the probability space (X, B,p) is a real-

valued B-measurable function on X taking infinite values on a subset of X of
p-measure 1. A random operator A on the probabi,l i ,ty space (X,B,p) oï domai,n

12(Z) is a map defined on X into the set of l inear operators on [2(Z) by

A :  r  *4", (2 1)

where A" is for p-almost every r in X a bounded linear operator on (2 1V,). and such

thatforal luand u\n(2127, themap (Az,u) :  r€X 
-(A,u,u) 

e Risarandom

variable. If, in addition, p-almost all operators ,4, are self-adjoint, we say that A

is symmetric. Moreover, if 7 is ergodic, and if there exists a homomorphism from

the group {T' ; n € Z\ inio a group {U- ,n eV,} of unitary operators or PIZ)

such that, for p-almost all r in X.

Ar-,-LI^A,LI ; \ ,  Vn€V, ()  ) \
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318 C. GUTLLE-BrEL

tlrerr A is called ergodi,c ot ïnetr'icûlly trans'it'iue. The best general reference for the
random operators theory is [91.

2.2. Spectral theory

We recall that the s'pectrum, o(H) of a self-adjoiut continuous linear operator fl
is defined as the complement in C of the set of values À for which (rl - À1d)-1 exists
and is a boundecl l inear operator on P(Z). By.-self-adjointness ancl contiuuity of .É/.
the set o(11) is a non-empty compact subset of R. A real number À for which there
exist u e (2@), u l0. r 'erifying Hu = Àu is callecl an eigenuahre: o[ H. The set of
all eigenvalues of f1 is called the point spectrurn or(H). The pure'po,LïL(. specu'urn1
denoted by ooo(H), is defined by

orr(H l :  optHl  .

*h"r" on,(11) denotes the ciosure of the set or(H) in R. The set o(f1) \ ao(fl) is
the cont'inuous spectrurn It can be crrt into two parts, according to the Lebesgue
decomposition of the spectral measure: the absolutely continuous spectru,m oo.(H),
and the singular cont,inuous spectrum o",(H).We thus have

o(H) :  ooo(H)U"",(û [J o""(FI)  , (2.3)

and these sets are not necessarily disjoint. For more details, we refer the reader to
Berthier ([3]) and to Dunford and Schwarz ([8]).

2.3. Definition and immediate properties of sparse Schrôdinger
operators

Ler (H!).ça be afamily of psparse Schrôdinger operators defined by Eq. (1.3)
and associated with the ergodic dynamical s1'stem 7. We firstlv note that each
operator H! can be written under the following form:

H!:5r+,9-P+l/ . (21)

where (V"z)(n) = l;(n)u(n), for all a, in l!2(Z) and all n in Z. Secondly. we remark
that every operator rff is a linear continuous self-adjoint operator fron (2(z) to
i tself.  I ts norm satisf ies l l f l f  l l  {  2 + sup,.z l l f i ,(") l  < 2 + l l( /) l l - .

By measurabil ity of /, we ca. obtai', for given u and.u iL 12(V,), that the rnap
(Heu,a) defined on X bv (.Heu.u)(r) : (H!u,tr) is a random variable. Hence -tlp
isasymmetr icraudonoperatoron ( f ,6,  1r)  in l ' (V,) .Moreoverforal l  . r '€ X.Hp"
satisfies

HT, = sHls-r (2 5)

and this leads us to Proposition 2.1.

Proposition 2.t. The operator Hp : r 
- 

H! for all r in X, , is a synnnetric
ergod'ic random operator on (X,B,p) in 1.2(Z). The group of un'itary operators
on P(Z) associated with the automorph'ism group {7" ;n. e Z}' is er:actly {5,, :
n € V,) .

Proof. W'e
Relation (2.5) a
ergodicitv of the

I t  is  nou'pos
of operators /1j
a".( I / f ) ) ,  the s1
continuous parts
part, we can ren
in the interval [-

\,Ioreover, by
the spectrum of

Theorem 2

(i) there et

(1i) there ex
! f . .  suc

(r1i) for p-alt

fini,t,e m'

(iv) for any
or Hlj)

(v)  for  p-al

uncount,

Proof. See

Remark 2.1
shown that

For details we a1

Thanks to re
nonrandomness
neither their for'
of this article.
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Proof. We have already seen that I1p is a svmmetric random operator. By
Relation (2.5) and by induction, we deduce Eq. (2.2) with Lr, = ,5' for all n. The
ergodicity of the dynamical system 7 implies the ntetric transitivity of Hp. n

It is now possible to have information about the spectra and their compouents
of operators IIf. Let us denote by o(H!) (respectively oop(H|).o",(H!) and
o",(Hl)), the spectrum (resp. the pure point, absolutely continuous. and singular
continuous parts of the spectrum), of each operator f/f. According to the previous
part, we can remark that each o(Hl) is anon-empty compact subset of iR, included
in the interval  l -2 -  sup.e I  l l ; ( " )1.2 + sup,. ,  l l . ( " ) l ] .

Nloreover, b1'Figotin and Pastur (see [9]). \r/e obtain directly some properties of
the spectrum of symmetric ergodic random operators.

Theorem 2.2. Le.t Hp be as in Proposition.2.I, then

(i) there eri,sts a non-empty compact sel o/ iR, denoted byle, such that

EP : o(HP,) for pL-almost all r e X ; (2 6)

(1i) there eri;st three closed subsels o/ IR, denoted respecti,uely by L1,,, \!, and
1_f;,. sucLt tho,t for p-o,lntost all r in X,

for any giuen À in IR, p({r € X : À i,s an
of H! j ) :0;

for p-almost all r in X and if ooo(H!)
'uncountable.

(2.7)

(2 8)

(2.e)

eig enualue of fi,ni,te multi,pli,city

is not empty then it is locally

\eoo = ooo(He,) ,

\ f , ,  = o."(H!) ,

IP", = o"r(HP,) ;

(iii) /or p,-almost rin X, the spectrum of Hl admits no,isolated eigenualues of

f,nit,e multi,plicity, that 'is to say it i,s purely essential p-almost elreryutherel

oai , (Hl)=A p-a.e. ' . (2.10)

( iv)

(u)

Proof.  See Theorems 2.10, 2. I I .2.12 and 2.16 of  [91.  n

Remark 2.1. When the dynamical system 7 is ergodic and minimal. it can be
shown that

\ -P -  
- /  

IJPI V^ r  1-
-u\ f r r / .  vJ È-\ (2.11)

For details we again refer the reader to [9].

Thanks to random operator theory, we have obtained interesting results about
nonrandomness of the spectrum and its components. But we do not know exactly
neither their form nor the nature of the spectrum. It is the object of the next part
of this article.
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Remark 2.2. The rândom rea.l-valued map V(n) defined on X by l/(rz)(.r) :

lt"(n),for all r € -\ where n is f ixed. can be viewed as random variable orr the
probabil ity space (X,6,p). Thus (V(n))nev. is a sequence of random variables.
Consequently ;trrsparse Schrôdinger operators are special cases of randorn finite dif-
ference operators introduced by H. Kunz and B. Souil lard in [1a].

3. Decomposition of the Operator .Elf

Let us denote by ("*)^ez the canonical orthonormal base of PIZ): ea(n) =

6,, . -  for  a l l  n and m inZ, u,here ô is the Kronecker symbol.  For r  € {0, . . . ,p-  1} ,
we corisider the l inear subspace of (2(V,) spanned by all vectors of the form e,,o1;,
with m. €2. We denote it by Kf or [, when there is no ambiguity. Thus

Kor:  Kr:  vect  {e*p+t ,  In €V') (3 1)

I t  is  c lear that  every element l  of  Ki  looks l ike . . .0. . .0 u,-p 0. . .0 t ' t  0. . .
0 t r ;1o0.. .0t : i+2p.. . .  Nloreover.  the K1 are mutual ly orthogonal .  and ( ' (V,)  is
their orthogonal direct sum:

pl

(2(V") = @,t.  with KiLKI for i  + j  .

Let us now consider the behavior of the operators H! on each subspace Kt.

Lemma 3.1. For 0 ! i < p and iT K, i,s giuert, by Relation (3.I). then Ki is
stable u,nder H!.

This lemrna together with (3.2) implies Proposition 3.2.

Proposition 3.2. For any rin X. the spectrurn of Hl as utell as'its spectral

components can be cut' into p parts as Jollows:

The action of tt
( '2(V,) 

- 
l(1. give

is such that d,l =

Moreo\rer. Or an(
1. Thus each rc?
subspace [, is is

the following len

Lemma 3.3.
tlt,en

For0( lcp.  le

Similarly. if (5-

Finallv it can b<

Relations (3.5) 1

.0

(3 2)

(3 3)

(3.1)

p-7

"(Hl) :  l )o(H!1ç,)
i :0

p-I

o,(Hl): lJ ou @lw,)
i :o

n' i th e e {pp.ac,sc}.

Instead of stud;' ing IIf on (2(V,), we wil l do the studv on each subspace K;.

Before this, we have to look a little bit more at these subspaces.

3.L. Study of subspaces Ki

First of all notice that every subspace K, is isometrically isomorphic to P(Z).

Indeed let us consider for each 0 < ? < p, the map ôl: o":K,- (2(ZS definedfor

all o € K, and all n by
(dr(u)Xn) :  u(n 'p -r  i )  .

\\
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The action of this map is i l lustrated by Fig. 1. Conversely. the
(2(v') 

- 
Â.,, given for any u € P(v') and all m, by

(di(u) )(m):{  : ' ' '  
i f  m' :  i  (modp)

[ 0. ot hern'ise.

is such that r r r l  :  (dr)- l .

map t!? -
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'ù)? :

.  .0.  .  .0 1,"-2p O. .  .0 t r ; -o 0. .0 t"

/

I
J

.  .  .  Ui-2p 2r i -p U. l t ;1,  Lr iatO .  .  .

Fig.  1.  The df  funct ion

I4oreover. @, and r/1, for 0 < i < p, are linear continuous maps of norm equal to

1. Thus each [; is isometrically isomorphicro P(V'). This a]so implies that every

subspace /J, is isometrically isomorphic tc) any K, (0 S i, j < p) and in particular

the following lemma can be deduced.

Lemma 3.3. For any i € {0, . ,p-1}, if S denotes the shift opercttor on(2(.2).

t,hen

SKs - , tp-r  (3 5)

SKi-Kr- t ,  for  l< i<p. (3.6)

For 0 ( i ( p, let us denote by Src, the restriction of S to the subspace [1 . Then

S5o :K0 + Kp-1

S1,r ,  :K,  -  , ( , - r  for  7 < i< P.

Similarly, if (^9-1)i(, is the restriction of S-r on the subspace Ki, we have

(S-t) t r ,  :K,  -6,*r .  for  0<i  <p-7

(S-t) ; rc.- , : r f ,o-r  - l 'o

Finally it can be shown that

(^91,r , , ) - t  :  (5- t ) l rcu-,

(^91rc,)- t  = (S-1) l r , - ' ,  for  |  < i  <P'

Relations (3.5) to (3.8) lead to a rlependence of the @; functions.

tJ. ,  /

(3 8)
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Proposi t ion 3.4.  For any, € {0. . . . ,p-2},  weh,aue

o; o,S1,t ,*1 :  ô i+t

Morectuer i f  i :p- I .

(3 e)

Qp-1o 51.,  :  '9 o do '  (3.10)

Proof. The proof is left to the reader. !

Remark 3.1.  This proposi t ion impl ies that ,  for  any i  in {0. . . . ,1,  -  2}  (and
respectively for i : p - 1). the following diagrams commute:

Consequently wr

Theorem 3

tat'ions of Theor

for:  € {pp,ac,s

Proof. It is

t ions 3.2 and 3.(

Remark 3.:
invariants, that
not know anythi

Remark 3.3
to the union of 1

3.3. Irnrnedial

In this sectic
by a neu'charac

Propositior

on P(z) by

where

Proof. The

This proposi

of  I ' " .

Propositior

Proof. By r
3.5, we cornpletr

Corollary I
that i* j :np-

slr ,+,
Kt+t-  Kt

t l
@;+r |  |  q,

JJ
t2(21 -  12,?)

Id

Ko

,,, I
J

|2Q,

'5r" u .^-, \  p_1

I
I  Vr)-  I

J
\  -  l2(v, \
|  .  \ -Js

Proposition 3.5. For 0 3 i < p. the sttbspacr: E; is stable under Sp, and if
(So)trc, denotes the restrict ' ion of Se to K;, th,en

S o et  -  @, o (SP)Irc,  .

This signifies that the following diagram commutes:

(3.11)

ql,
- l r ,+r

, --â

I
lo,
t

P(Z)
ù

Proof. The proof is left to the reader. n

3.2. Associated operators

\\'e have already noticed that we had to study each operator Ho,l",, for 0 < i < p.

Because each subspace K, is isometrically isomorphic to PlV.), we wil l l i ft this studv
from ,L;  to P(72) by putt ing for  a l l  i  € {0, . . . ,p -  1}  and ai l  r  € X:

H!'  = a,  o HP,. .  o (of ' t - r
' -x  v i  -  ^rr lÀ/  -  \ \  / ,

(3.12)

Tlre f1f'' are continuous linear self-adjoint operators on P(Z). Thev are the Ifl
associ,ated operators. Each operat or H\'i being unitarily equivalent to f1f,,o . the
following propositiou can be deduced.

Proposi t ion 3.6.  For al l  i  € {0,  . . . ,p-  l }  and al l  r  e X.

"(Ho, 'o)  
:  o(H!6,)

o,(HP, ' '  )  :  o,(H\, .  ) ,  wi th É € {pp, ac,sc}
Jl^, '

V')

K

I
a, l

J
P(

(3.13)

(3.14)



where

(3.15)

(3.16)

(3.17)

(3.18)
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Consequently we can conclude by Theorem 3.T concerning the spectrum c;f H!.

Theorern 3.7. Under the ergodicity of the dynam'ical systemT, and w,ith no-
tat' ion.s of Theorem 2.2, we Ltaue

p- l
s,r , -  |  |  * r  ùp, , t-  

L,  
U\Ir I  i

r=0

p-1

s'P-f  l^r i t r . , t
-e 

-  
\J 

u€\rrr .  I

t=u

for  e € {pp,or,sc) and p-&lmost al l  r  in X.

Proof. It is an immediate consequence of Theorem 2.2, together with Proposi-
t ions 3.2 and 3.6.  n

Remark 3.2. It is an interesting fact that the i lf, '  spectra are "globally"
invariauts. that is to say their union is invariant pr-almost evervwltere. But we do
not know anything about the behavior of each one of these operators.

Remark 3.3. If moreover the dynamical system Z is minimal, then !p is equal
to the union of the spectra of H!" for any:r in -{.

3.3. Imrnediate pntper-ties of associated opervtors

In this section, we see the strong links between the operators I1g''. We begin
by a ner'"' characterization of them.

Proposition 3.8. For0 ( t l < p and allr € X, ttg,i ls a l inear otr)er(rtor d,ef,ned
on P(v,)  by

H!' ' :  s+s-1 +v: 'o .

V! ' iQr1 :V,(npr i ) ,  Yn €Z .

Proof. The result directly follows from the definition of ny. n

This proposition means that the sequence of potentials i3., is a subsequence
of l''".

Proposition 3.9. For O 1 i < p and all r e X. we haue the follouting relations:

Hi-':-' - $f7n'o 5-t

Ul;l : iIe'i+l .

Proof. By definition of operators .É3,t, and according to Propositions 3.4 and
3.5, we complete the proof. n

Corol lary 3.10. # i  e {0,  . . . ,p -  l } ,  and i , f  j  is  a non-negat, iue integer such
that i t j  : np I m. where 0 I m I p andn € N, tÀen

np;, : 5n i1r'm 5-n (3.21)

(3.1e)

(3.20)

\\
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Proof. The result follows inductivelv from the previous proposition. n

Remark 3.4.  In part icular,  for  a l l  r  € X and al i  i  e {0.  . . . ,p-  1} ,  we deduce
that Ë/f ' '  : Hi:.

Remark 3.5. Corollary 3.10 implies for example fhai H+': anrl I1"' '*1 are
unitarill' ecluir.alent. They also have salre spectra and same spectral components.

Corol lary 3.11. Let i  be giuen zn {0, . .  ,p-  1} .  For o, l l  r  € f .  H! ' '  uerzf ies

Hç',:, : 511r"' 5-t (3.22)

Proof. Since 0 ( i < p, Corollary 3.11 can be applied with n, = 1 and nt : ' i .

Thus the proof is conrplete. n

To end this part, we prrt gi : f oI', for 0 < i < p. Then.gl is a bounded measurable
function from X to lR. and

V!,"(")  :  g i ( (Tq) ' r )  ,  yn eZ, Vr 6 ; (3.23)

This permits us to conclude with a theorem.

Theorem 3.L2. Let i, be g'iuen i,n {0, .. .p - 1} Then çH\.i),çy is a family of
discrete unirl,i,mens'iortal Schrôdirtger operators associ,ated wi,th the dynarni,cal system
(Te,X,B,p).

Proof. According to Propositions 3.8 and 3.11 with Relation (3.23), we com-
plete the proof. n

Remark 3.6.  \^e can also say that Ho' i  is  a symmerr ic random operator on
the probabil ity space (-f.B.fr) of domain (2(Z). But we do not know if it is ergodic
or not: in the genelal case, the dynarnical system (fp,-\.t l ,pt) is not supposed to
be ergodic! This is the object of the following section.

4. The Decoruposition of a Dynamical System and fts Applications

Let T be an ergodic dynamical system. If p is a non-negative integer, we denote
by fn the neu,dynamical system (7o,f. B,p,). In this section, we are concerning
into the ergodicity of the dynamical system Tr'. In general case. we are uot able
to give any answer; but when 7 is ergodic and minimal, the following theorem is a
useful tool which is given in [7] (see also 111, 10]).

Theorern 4.1.  (GoTTSCHALK, HEDLUND, I i l t reo).  LetT :  (T,X,B,p) be a
minimal and ergod'ic dynam'ical system. Let p be a non-negatiue i,nteger. Then there
erist.s a finit,e parti,t i ,or't, of X, denoted bU {X0,....I,,-r}. su,ch that.

(i) U:;t xt : -T and, x1, n xr - A if k I t';
(t i) each Xp is a closed, non-empty subset of X;

(11i) each Xp is Tp-i,nuariant: TpXr - fr;
(iv) X6 does not admit anE closed Tp -i,nuariant proper subspace,;
(v)  the part ' i t ' ion is cycl ' ic :  TXs: Xr, . . .  ,TX^-z :  X^,1,  IX--1 -  Xe.

This part' i t ' ion'i,

\\'e illustratr

Remark 4.
(f1x^, xo, 6;x* '
subset .4 of ,\.

Remark 4.
p and is less thi
called the decori

In all this se
corollaries, whi<

Corollary ,

Tlt,en, u,nde.r no
is uniquelg ergo

N'Ioreover, R

Corollary
If. moreouer. 6(
ergodi,c.

The followi
associated oper,

Propositio

Moreouer', if D
p-almost all H!

for e € {pp.or,
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Thi,s parti,tion is un'ir1ue uyt to o cycli,c permutat,ion. of i,ts terms.

\Àre i l lustrate this result br. Fig. 2.

Xn trm-l

Fig.  2.  The decornposi t ion of  a dvnamical  system

Remark 4.1. Under the notations of Theorem 4.1. each d)'nàmical system
(7;T^,X0, Blxu,Fx) is minimal.  where p1(,4) :  p(AnX1,) lp$p) for  any Borel
subset ,4 of X. The partit ion is also said to be mtn'imal. Moreover, p(Xr) : l lm.

Remark 4.2. The non-negative integer m defined in Theorem 4.1 depends on
p and is less than or equal to it. From no\4r on wii l we denote ni : ô(p) and ô(.) is
called the decompos'it'ion funct,ion of powers of 7. It is linked to p bv 6(p) | p.

In all this section, we will suppose 7 ergodic and minimal. We also state some
corollaries, which can be found in [7].

Corollary 4.2. We supytose that the dynamical sAstern T is strictly ergodic.
Then. und.er rrctat ions of  Theorent 1. ! .  ench. r lyn.atnical  s]Jstem (4l i '  .Y1 . lJ;ç*. / r1.)
is uni,quely eryod'ic.

Moreover, Remark 4.1 and Corollary 4.2 impl;r the following result.

Corollary 4.3. We suppose that the dynamical system T is stri,ctlE ergod'ic.
If. moreouer, 6(p) : p, then each, dynam,ical system (4L,Xo, B r^,,1,u) is strictly
e.rgodic.

The following theorem yields information about spectral behavior of the
associated operators.

Proposition 4.4. If Ee is the sy,tectrum of H! for all r i,n X, then

p-1

s,p- l l^rùp, i \  \ rt .  " , r€- \o
r=0

Moreouer. if Elo, lf;, and l!, are the spectra,l components of the spectrum of

1t-almost all H!,
p-I

I f  = U o,1H!- i l
i=0

for  e e {pp.or.sc) and for ps-almost al l  r in Xs.

(41\

(4 ) \
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Remark 4.3. In our study, we have to consider each associated operator H\,i ort
the dynamical system 7p. Theorem 4.1 induces us to restrict our attention to Éf't
on eaclr "sub"-dynamical system T{ : (T(au,X6.61ru,pr). Now Proposition 4.4
permits us to stud1, the associated operators only on the dynamical system T/' :

( I I , , ' ro,  Blxu,Fo).

Proof.  Let  i  be given in {0, . . . ,p -  1}  and À be in {0, . . . ,6(p) -  t } .  By
mininraiity and ergodicifi of T, we know that !p is the spectrum of any operator
I1f , and (a.1) is deduced.

By Theorem 4.1, 11 :14-\o and if y is given in X6. then there exists z € X6
sucht l rat  U:Tkr.  This impi ies n| ,o:  nor: ; , . t t i+À: np+m wheren)0and

0 (  m (  p,  then by Corol lary 3.10, Hl , i  -  S"Hl '^S-",  and for e € {pyt .ac.sc}.

p-r p-r

U ".(  u X' ' \  :  l )  o. tuX -  t

This last equality is verified for any U € Xr.
If there exist ,4s C -Xs of !,6-m€âsur€ 1 on which the spectral component !f is

not equal  to the union of  o,(Êl , t ) ,  then for any 1( k < ô(p),  Ar :7r ' - {o C - \ r
has the same property as 46. We put A : ui-qJ-1A6 c I. The set A verif ies p(A)
: 1 and has the same property as,4s. This is a contradiction with Theorem 2.2
and the proof is compiete. !

Remark 4.4. We have an analogue of Proposition 4.1 in replacing Tl by
anv ./,1 .

As a direct consequence of Remark 3.4 and Proposition 4.4, we can state
Corollary 4.5.

Corollary 4.5.

7t- |

çp- l l^ tup'o \  Vr€XsvtT' ix l  '

z :0

p-I

t l  :  U o,(HI: ,o"\ ,  Y e e {pp,ac.sc\ and, p,s -  a.e.
i :0

Let us now consider associated operators H3'' on the dynamical system T{. For
any i  belonging to {0, . . . ,p -  I } ,  (Hl ,o)rçxn is a fami ly of  Schrôdinger operators
associated with 7op. But we do not know whether 7op is ergodic in general case: in
fact, when 7 is strictly ergodic, it depends on the values taking bV ô(p)

Proposition 4.6. Let T be strictly ergodic dynamical system and p a non-
negati,ue integer such that ô(p) : p.

(i) There etist p non-empty compact subsets of R. d,enoted by In'0,.... ip'p-l
uerifyi,ng

p-I

çp- l l ip, ,

i=0

(4.3)

(14)

Each o1
(ii) For e

o,(Hl ' "

Proof. By {

Remark 4.
. i - ;

spectrum l-r" 0

We now will

5. The Perioc

Let us consi

Borel subsets ol

by p({r}) :  ,*
preserving trant

ergodic. If / is

foral l r€Xb1

In addition, we

Let p be given

associated with

results on discr

reader to Toda

5.1. First prc

We can nor;

and (3.17)-(3.1

Hl 'o:  s+s-1

Propositio

a d'iscrete uni-o
not depend on r

Proof. It ir

calculation of it

P : crlrl or not.
(4.5)

\
\
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Each of themis the spectrum of operators a3'' 1V., e Xo).
(1i) For € € {pp,ac,sc} there erists a compact subset iË" ,/ R such that

o,(Hl' i) = i! ' i  for lt l-alrnost all yin, X6. Moreouer

(4.6)

Proof. By Corollary 4.3, Proposition 4.4, Theorem 2.2 and Corollary 2.3. !

Rernark 4.5. Lrnder notations of Proposition 4.6, R.emark 3.4 implies that the
spectrum ip't of any Hy,i on Ie is also the spectrum of Hnr'j, for arry' A € X,.

We now will describe explicit cases.

5. The Periodic Case

Let us consider X = ZINZ, where À" € N*. We denote by 6 the o-algebra of
Borel subsets of I and by g, the counting measure on X (defined for all 0 < j < À'
byp({"r})  :  +)  Thetransformat ion ?:  r  

-  
r* l  isaninvert ib lemeasure-

preserving translbrmation of X. The dynamical system T : (7,X.13, p) is strictly
ergodic. If / is a rneasurable bounded map from X to R, we define the potential
foral l r€Xb1'

I ' " (n)  : f (T"r) ,  YneZ. (5.11)

In addition. we suppose / such that the sequence (V,(n))" is exactl l ' ,4[-periodic.
Let p be given in N*. In this section, we stud5r lFsparse Schrôdinger opel'ators
associated with the dynamical system T and with the potential (5.1). For general
results on discrete one-dimensional periodic Schrôdinger operators. we refer the
reader to Toda [19].

5.1. First properties of the associated oper"ators

We can now introduce the associated operators Hg', definecl by Eqs. (3.12)
and (3.17)-(3.13).  For al l  i  € {0,  . . . ,p -  1}  and al l  r '  € X, U! ' '  is  g iven by
Hl,  : .9 + s- '  + i3 ' .  *her"

i"t, '(n) -- l '"(np + ?) : J@ + np * i) Vn e V, (5 2)

Proposi t ion 5.1.  Let i  be g ' iuenin {0, . . . ,p-1} andr e X. Then H!, i  is
a discrete un'i-di,mens'ional periodic Schrôdi,nger olterator, where the perr,od" Ir,to dort
not depend on i and is g,iuen bg

p-I

tf = u !3,'

AI

"e -  
gcd(p. .V)

(5.3)

Proof. It is easy to see that ng'i is a periodic Schrôdinger operator. For the
calculatiort of its period, which clearly does not depend on zl, we consider two cases:

P : ctl{ or not.

\
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Firsr .  i f  p = o-v.o > l .  i7 ' ' tn 1 :  f r r*  l )  is  constanr for  a l l  n.  Thus l /o = 1.
Remark that gcd(À,p) : N. Suppose tow p f aÀ. If I { p l- l{. the period ,\
is such that À; x p is the lou,est multiple of ,^J. which is of course a rlultiple of p.
Therefot'e

1' ' '  = 
lcm(À-'P) 

.'p

If p > N, let us consider the Euclidia' di ' ision of 2 by À: p - qÀ +r. where 0 <
r ' (  ÀI  (p l  aÀ') .  I t  appears that  f3, ,1n;  = f  ( r l_nr*z) sorhat 

^;  
= lcm(À-,r) / r .

Nloreover for all a and b norr-negative integers. ab : Icm(a, b) x gccl(a. b). Thus

Q

gcd(a,  ô)

Final ly,  not ice that  lbr  a l l  a )  1.  gr :d(o.b) :  gcd((a + ob).ô),  ancl  gcd(À.r)  :
gcd(À,p). This concludes the proof. n

Recall that the spectrum of a discrete one-dimensional P-perioclic Schrôdinger
operator is ra'ell knorvn. Namelf it is purelv absolutely'continuous and coprposecl of
P bands, which are closed intervals of IR.. These bands are not necessarily disjoint.
For a treatment of this case, we refer the reader to [19, chap. 4]. we can now
formulate a similar result for periodic sparse Schrôdinger operators.

Theorem 5.2. For all t e x, !r '  is absctlutely continrous'anrt d.efined, bu

p-I

l '= U "@!'o)
z=0

There are at most pfr, bands ,in the spectrum.

Proof. By rninimality and ergodicity of 7. the spectrum is the same for all z
(corollary 2.3). From the previous proposition, the associated operators are ,\'o-
periodic. Thus, the spectrum of each associated operator A3'i is pureh- absolutelv
contiuuous and composed of Âo bands. Theorem 3.7 completes the proof. n

5.2. Decornposition function and, consequerlcea on the spectr-urn

By'the strict ergodicitS, of the dl.namical system 7, we can appil 'Theoreru 4.1.
Let ô(p) be the decomposition function corresponding to p. Thanks to the peculiar
lbrm of -{ and to the definition of 7, we have information about 6(p).

Theorem 5.3. If x : zl l{z andrr: r t I on x. then the rrecomposit, ion,
functi,on ts giuen for any non-negatiue i,nteger p, by

6(p) :  gcd(p, ,n/)  . (5.5)

Moreouer, each dynam'ical s'gstem (r,!^ , xu, 81xu, Fn) is strictly ergod"ic.

Proof' It is clear that 6(p) is l inked with the period of re. By Reration (5.3), Tp
is T-periodic with No: Nlgcd(À-,p). This nreans that each 7p-inyariant subset

\
\

lcm(a. b)

b

of f admits exacl
are ô(p) such sub
The seconcl stater

Remark 5.1.

.  Renrark b.2.
I  

^ / , . \  -  1
I  u\ t ' t_ L.  Moreor.

i
I

Remark 5.3,
Ia(n) r ) containi
whatever the valu

Theorenr 5.4
p - spû,r'.s e |r' - peri or1

uthere \P] ,is the

for e e lp1t.a,c.sc),
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Proof. Thanl
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But the main prop
verifying p : a6(p
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(5.6) is proved. Fc

(5 4)
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of X admits exactly ,ù, elements. By definition of the decomposition function, there
are 6(p) such subsets. Thus ô(p) x j l  = ly', and we deduce the expression of ô(p).
The second statement is clear. n

Remark 5.1.  This theorem impl ies thar 13 ô(p) < min(p, t / ) .

- Remark 5.2. When p and À'are relatively prime we know immediately that
I  a(u):1.  Moreover
l i  " \yt  -

i  O(p):ps3,\--qp where o)1,

6(p) = Àr <+ p: 0N where p > 1

Remark 5.3.  We suppose Xs to be the subset of  the part i t ion { f0, . . . .
Xotr)-r) containing 0. This theorem allows us to an analogue of Proposition 4.6,
whatever the value of 6(p).

Theorem 5.4. Let p be a non-negatiue ,integer, and (H!),ça be a fami,ly of
p-spûrse N -period'ic Schrôdinger operators. Then

ô(p)-  1

\ -p-  
U ip. ' .  (5.6)
i :0

wheretp' ' is the spectrum of euery operator H\' i wh,en r € Xç.. In the sarne way,
for e € {pp,or,sc), the e -spectral component of the spectrumlp is giuen b,g

6(p)-  r

r l :  U i9. , .  (5. ; )
i :o

with o,(H!' i) : i3' '  for p,s-almost all, in Xs.

Proof. Thanks to strict ergodicity given by Theorem 5.3. and as in the proof
of Proposition 4.6, we see that

"o 
: 

o1_,1t 
5o,0 and rg : 

tUt 
sg,,

i -0 i=0

| . 
But the main property of 6(p) is 6(p) | yt. Let us consider 

- 
the non-negative integer

'  ver i fy ing p:  oô(p).  Thus

I
+ o - t  f  atnl- t  \

t r :UIU Èp.r+7rtar 
I

r=0 \  r=0 /

For any j  € {0, . . . ,o -  1}  and i  € {0,  . . . ,6(p)-  1}  we know rhar fp, i  -  
" (Hl ,o)for all r € Xe. By Proposition 3.g and for any r in X6, we see that È|' '+ia{n) -

Frlrl^,,,,,,, ayr476(n)* € xe. Thus io,r - o(H(i,,,,1,,) : !e,i+rô(r) , and Relation
(5.6) is proved. For (5.7) equalit ies hold pe-atmost everywhere. tr
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Corollary 5.5, Wlten p: dlv- where iJ ) L. then we ktLow ero'ctl"y lp

N-t
r -p- |  | f r r ; r - )  I r ; \+)1-  L,J t . t t ' r  ' 'J \ ' t  '  

2 l (5 8)

number of parts
for all :r: in Xfi.

But Xf :

1(n(T, i t i r
n(À'-  p)  mod ( .

Moreover for
r + (-n)q f il mc
characterizes ele
Schrôdirrger ope

^€o(L

For any u € L'o (

Let us cousic

)s J Éy' ia =

with l l lp l  = lPi
manner, we esta.

\\'e formulate ou

Theorem 5.

Schrôdinger oper

( i )  o(1131 =

( i i )  #p = 0

(1i1) I fpf}
(iv) IP is pu

The nature of thr

does not change
posed of À band

of p. Notice that

operator whel p

5.3. Dæamples

Erample 5.3.1. :

Let us consi,

!P is absolutely
integer p.

Erample 5.3.2.

Proof. By Remark 5.2, 6(fl: .N. Thus rs = {0} and T}reorem 5.4 implies for

e € {W,ac, sc} that

\ -P -

"(Hl ' )  
and I3 = ^ 

(  H?, ' \v6\--{}  /

But. as we have already noticecl in the proof of Proposition 5.1, I-f-'' is a constant

sequence equal to /(z). In this case, we know (c/ [19]), that 
"(H3') 

= [.f(?) -

2, TQ) + 2]. This concludes the proof. n

'fhe following corollary is another direct consequence of Proposition 5.4'

corollary 5.6. Ir 7t,is a non-negati,ue integer and if Ç: o.ly' lp when n ) I,

then

'.p 
- \'c (5.e)

proof.  By Theorem 5.4,  Ie (respect ivel l '  !q)  depends o'  the sets ip 'o, . . . ,

! r ,o(r)-r  ( respect ively on the sets is '0, . . . . is 'ô(s)- t ) ,  
-which 

are the spectra of

ulp, . . . , iq ' i tn l - t  o" 16 (respect ivel l '  of  nXp.. . . 'F1' t '6(q)-1 on xoq) '  But,  as we

have already noticed in the proof of Proposition 5'1' 6(q): ô(oÀ +?) : ô(p) and

therefore 
^t 

: Â'n

lvforeov-er Xfi (respectively ]ff), contains 0 and is:13.t]I equal to the set {0,?PO,

. . . ,?( fo-1)e0) (respect ivelv r f  -  {0,rsO.. . . .7(r"- t )eg1; '  For 0 (  n (  Àb,

nq mod (À*) = np mo_d (]!*) ar._d then I"q0 = 7"P0. This implies that Xfr - foo.

Let us l low compâre !p ' '  and !0, ,  for  i  :  0, . . . ,6(p) -  1.  For al l '  and al l  : r  € - \0,

let  us note that  r  +nq+r rnod ( l f )  :  ix  +n'p *z mod ( 'n/)  and VfrQt) :Vfr(r t ) '

Thus .F/f 't - ny'" and the proof is complete. n

Rernark 5.4. This corollary nleans that the spectrum does not change if p is

replaced by p + oÀ-. with o ) 1. Thus the spectrum of flf with P : oÀ' is exactly

!N and we find again the result of Corollary 5.5'

Remark 5.5. Now. !p adrnits a most 6(pt]o bands. that is to say at most

-\ bands.

Proposi t ion 5.7.  Letp be g ' iuen zn {1, . . . .À ' -  1} '  We put Ç: À'  -  p '  Then

s'P - 
'\s

(5.10)

Proof. When Â- is even and p : 
^//2, 

the result is evident. We suppose now

I < q <p <,V. I t  is  easy to prove that 6(p) :  ô(S).  Consequent l ) 'À;  = Àn Thus

the associated operators l{g'i and FIf i are periodic Schrôdinger operators witll same

periods, and according to Theorem 5.4 their spectra are decomposed into the same

l l
t ll l
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number of parts: I, = Uf!?-'"(n"y'n) for all r in ffi, and !q : Ui!? 'o(nïn)
fol all .r '  in If .

But Xf i  :  {0. IpO,. . . , f l rur- t ) rg1 and Xnq :  {0, fso. . . . ,7(rr- t )e61. For
1 {  r i  (  À'o.  i t  is  c lear that  (À; -  n)p mod (À )  = N(p/gcd(,V,p))  -  np mod (À) :

n( l [  -  p)  mocl  (N).  and 7(Ài , -")r '6 :7"q0. Hence f f  -  f3.

\t loreover fbr 0 < i < 6(p), all z in f6 and all n, :r+n(,r/ - s) +i mod (À) :

r+(-n)q* lmod(À)andiJ ' t1n.1 : i ;4 ' '1-n,) .  \ \ , 'eusetheFloquettheorerDrvhich
characterizes elements of the spectmm of a P-periodic one-dimensionai discrete
Schrôdinger operator l/ as follows (for more details see [19]).

Hu: ) ,u

u(n + P):  pu(nl  Yrr

where p€Candlpl=t .

For any u € (*(Z),  we put ù(n) :  u(-n).  Thel  ù € {*(V') .

Let us consider À e o(n|,i) and u l ike in the Floquet theorem. Then .Hf,. 'u :

Àrr+ È1' ' i ,  :  Àt .ancl  foral l  n.u(n+.\-o)= pu(n)-  i r (n* i 'n1=(1lp\ i t l t r )
with l1/pl : lpl : 1 (^re : r^!rq). we thus get o(HX"1 c o(H3'i1. Iu the same
manner, rve establish the equality of tlie spectra and the proof is cornplete. !

We formulate our main results in a theorem.

Theorem 5.8. Let p be a nort-negat'iue i,nt.eger, and HTI a [)-s[)arse N-periodic
Schrôd'inger operator. Then

(1) o(Hl)  -  Yr Jor al l  r  e X;
( i i )  I f  p:  0 mod ( ! { ) ,  thenlp :  u lo l t f ( ,  -  2,  f ( i )  + 2):

(1t i )  I f  p l0 mod ( l { ) .  then pr -  samod(N) -  1N-(pmod(N)) '
(iv) !e 'is purely absolutely cont'imrnus and it is comy.tosed of IV bands.

The nature of the spectrum of a family of psparse l{-periodic Schrôdinger operators
does not change witli p. It is always purely absolutely continuous and always com-
posed of Àr bands. À4oreover, the spectrum itself can change according to the values
of p. Notice that Ip is exactly the spectrum of the classical ,Atr-periodic Schrôdinger
operator wheu p = l mod (-N).

5.3. Dæarnples

Erample 5.3.1. The case of p-spo,rse |-peri,odic Schrôd,inger operators

Let us consider X : V,ltZ (i.e. I : {0}), and I, i1(n) : a for all n. Then
Ip is absolutell' continuous and composed of a unique band for any non-legative
integer p.

IP = [a -  2,a *  2]  .

Erample 5.3.2. The case of p-sparse 2-periodic Schrôdi,nger operators

À e ot .ÉI)  ça la € (x(Zlru"h ,hu,{

t
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Let us consider X : Zl22. The potential takes two r,alues n and rg. We suppose
n < d. Then

f :..t i f p is even
s.p _ ,,-  

I  t t  i f  p isodd.

\!'e know exactly the form of these spectra.

,' : 
[" 

*,, - ./ry *G-P,"] 
, |o,

a+t+JteTTa-ïPl
z- j

Thus !l is aiway

according to o i l
symmetric witl i  r

6. The Randor

Let us consid
generated bl the
forn1,. . . ,nn€Z
of randoni variab

r inX(wesayI
In all this par

randorn r'ariables
dynamical systen
The discrete one-
of potentials (l;(

[9]). According t

An,derson model.

Proposition

for ul l  I  e {0. . . .

Proof. trac.
( l j (np* i ) )"ç; .  1
variables sequenc

This proposition

Corollary 6.
p-almost ctl l  oper

:

Moreouer, if e €
p-almost all oper

Proof. It is
and extended by
in {0. . . . ,p -  1}

-Éf,i have the sar
proof.

N{oreover. an

12 :  lcr  -2.a *21 U t .d -  2,0 +2] .

Thus, there exist exactly two disjoint bands in the spectrum when p is odd, but in
the case where p is even, one or two bands can appear.

In particular when a: -0, with d ) 0. we always have exactly two bands in
the spectrum.

J'  : i - 'Æ+JI.-J]  l ' t  -1L r  J Lt ' '  \ /4+ r : l

r ,2: l -0-2.-B+21 U lB-2.d+2! .

In this case. notice that the spectrum is symmetric with respect to the origin.

Erample 5.3.3. Th,e case of p-sp(irse 3-Tteriodic Schrôdinger operators

Let us consider X : V,l3Z. Then

f f  i fp=1or2rnod(3J
\-p - .,-  

I  r '  i fP=6mod(3).

W-e know the form of these spectra:

!1 = tÀ € R /  [ (À -  / (0)XÀ -  / (1))(À -  f  (2D -  (À -  / (0))  -  (À -  / (1))
-  (À -  rQ))1,  < 4j

13 :  [ / (0)  -  2, / (0)  + 2]  UI/(1) -  2,  r0)+ 2l  Ut/(2) -2.  TQ) +2)

and there exist at most three bands. Notice that the three values of / play the same
role in IP.

If we suppose /(0) = 0, /(1) : cr and f (2) : -a with o ) 0, then we imme-
diatel--v have

!3:  [ -û -2,-a+2]U[-2,2]Ul"  -2,a+2l  .

Moreover. ! l : . and we
can show there exist tirree positive reals )r ( Àz ( À3, such that

r1 :  [ -Às,-Àr]U[-rr ,À1]U[)?,À3] .



SPARSE SC]HRODINGER OPERATOI1S 333

Thus 11 is always composed of 3 disjoint bands whereas 13 can have 1 or 3 bands
according 1o c'r is strictly greater than 4 or not. Anyway, the spectrum is again
symmetric 'n,itli respect to the origin.

6. The Random Case

Let us consider X : Sl. u'here S is a Borel subset of iR. 6 the a-algebra
generated by the cylinder set s. i.e. by sets of the forrn \:r f x .,, € Ar , . . . . :r n,, € An)
for n1,. . . . /ùq € Zand At, . . . ,  - - ln Borel  sets in IR. We consider asequence ( I . - ( r ) ) .ez
of randomvariables.  Thesequenceof potent ia ls isgivenbyI ' ' " (n)  : l ' (n)(r) foral l

r in X (we say l.- is a realization).
In all this part, we wil l suppose the l/(n) are independent identically distributed

random variables of product distribution p and of same law r(.). Remark that the
dynamical s)'sterrl T : (7.X.6.trr), where ? is the sli i ft operator on -{. is ergodic.
The discrete one-dimensiona,l Schrôdinger operator 11. associated with the sequence
of potentials (I ' ,(n))nez, is referred to as the Anderson model (see [5, Chap. 9], or

f9]). According to this, the p-sparse Schrôdinger operator l/f, is called a1Èsparse
Anderson ntodeL

Proposition 6.L. Let (Hf ).e -x be. a p-sparse Anderson model. Then (H!' i)"ça,

for  a l l  i  e {0. . . . ,p-7}, ' i .s  ar t ,  Andersonmodel.

Proof. Each V'f't is a realization of a sequence of the random variables
(V(np+i)),,e2. This sequence is also an independent identically distributecl random
variables sequence. whose common product distribution is again p, and law is r(.).

This proposition directly leads to a more precise result as Theorem 3.7.

Corollary 6.2. Under the o"ssum,pt.ions of Propositiort 6.I. the sytectrum \I' ol

1t"-aln'tost all operators H! is the unzon of y., compact. subsets of R. More precisely

p-7

!o : l.J lo't where IP'i : 
"(Hl,') 

p - p.p.
i :0

(6.1)

Moreouer. if e e {pp,ac1 sc}, and i,f l,! (respecti,uely l!'') 'is the e-component of
p-almost ul l  opcrators H! (resp. HX' '1,  thn

tt- 1

sp- |  ls .p, ,
-e - L,l -s

i=0

(6.2 )

Proof. It is a consequence of a theorem given by Kunz and Souillard in l1a]
and extended bv Kirsch and Martinell i in [12]. By Proposition 6.1, i being fixed
i1 {0,  . . .p-  l \ ,  (H' , ' ' ) , .7ç is an Anderson model.  Thus /-almost al l  operators
fIf " have the same spectrum alld spectral components. Theorem 3.7 concludes the
proof. n

Moreover. an analogue of the l{otani-Simon theorem can be stated.
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Theorem 6.3. Let (Ho")"ex be a p-sparse Anderson model. Then o",(H!) : f i

for  p-almost al l  r .

Proof. By Proposition 6.1. (H!"),r, is an Anderson model. The theorem of

Kotani Simon establishes that for p-almost all r, o""(Ê!'o):0 (for more details.

we refer the reader to [13] and [17]). Corollary 6.2 concludes the proof. !

According to some peculiar properties of the common density function r(.).

several results can be deduced. Firstly we can state an analogue of the I{unz and

Soui l lard theorem (see for instance [14,9]  or  [5.  1,6]) .

Theorem 6.4. Let (HI),rx be a p-sparse Anderson model. We suppose that,

the common density funct' ion of (V@)). is a non-negat' iue funct' ion such th,at there

er istsareal  0<À<Iwith

On the other

an analogue of tl

instance).

Theorem 6.(

the serluence (V (r

l '

Then the spectrut

Moreouer, all ei,g

Proof. Using

to the Carmona.

Remark 6.3

rems 6.4 and 6.6,

with p.

7. Sparse Schr,

The class of a

\['e study here t]

some elementary

reader to [16].

7.1. Substituti '

Let us consid

Az the set of all

of letters. We c,

word {(a). More

non-negative intt

contains the lettr

Under the pri

bilateral sequenc

Such a fixed-poi

sequence. which

bound dependin

topological dyna

sequence tu. Pre,

where the closu:

set. The restric

lup l r ( t ) ( t  + l r l ) '+^ l  (  *oo .

Then. wi,th probabi,li,ty I. the spectrum 'is pure point and equal to

IP :  [ -2,2]  + Supp(r)  .

M o reou er all e'ig enu ectors are erponentially local'i zed.

Remark 6.1. Supp(r) denotes the support of the function r. If , ' l

twosubsetsof IR,then A+B:{o*b' ,  a,€ A andbe B}.

Remark 6.2. According to Property (6.3), r is a bounded function.

Proof. By Proposition 6.1, v/e can apply the Kunz and Souillard theorem.

given in [14], to each family (Hl'o),rr.For p-almost all r, the spectrum of. Hf i

is pure point and equal to l-2,2) + Supp(r). Applying Corollary 6.2 completes the

proof. !

In the particular case where the common density function r(.) is continuous with

compact support, we get Corollary 6.5.

Corollary 6.5. Let (Hl),ex be a p-sparse Anderson model. We suppose that.

the common density function oT (V(n)). uerif ies the t 'ollowing conditions:

(a) r is a continuous function on R;
(b) r( t )  -  0<+ t  Ç)o,d[c R

Then the spectrum i,s 11,-almost surely pure po'int and equal to

(6.3)

tP: [a-2,A+2].

Moreouer. all eigenuectors o,re erponent'ially localized.

Proof. Support of r(.) is [o,B] and r verif ies Relation (6.3) for

Proof is complete in applying Theorem 6.4.

(6 4)

and B are

(6 5)

any À in 10.1[ .
!
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On the other hand. if the random variables l,-(n) are Bernoulli distributed,
an analogue of the Carmona. Klein and Martinelli theorem is verified (see [9] for
instance).

Theorern 6.6. Let (â3)"e x be a gt-sparse Anderson m,od,el. We supl4ose that
th.e. sequence (I '-(n)),,e2 acLmits u, Bernoull i distribution, that is to sa11:

utith probabi,li,ty p

ruith probab'ility 1 - p, anrl, o real.

Then t.he spectrum rs p-alm.ost su,rely pu,re 1to'int antl equal to

'J35

I"(n)(r) : i  
o

ta

(6 6)

Moreouer, all etgenuectors are erponentially localized.

Proof. IJsing the same arguments as in the proof of Theorem 6.4 and according
to the Carmona, Iilein and Martinelli theorenr given in [9], we obtain the proof. n

Remark 6.3. Let us mention that in the special cases corresponding to Theo-
rems 6.4 and 6.6, and to C)orollary 6.5, neither the spectrum nor its nature chauges
with ir.

7. Sparse Schrôdinger Operators with Substitutional Potentials

The class of ahnost periodic potentials lies between periodic and random cases.
\&'e study here the subclass of substitutional potentials. Iu the first part. n'e recall
some elementary results in substitutional sequences. For more details, we refer the
reader to [16].

7.I. Substitutional dynamical sgsterrts

Let us consider a f in i te set  .4:  {0, . . . ,  r  -  1}  cal led an alphabet.  We denote by
AL tl'te set of all biinfinite sequerces of letters from -4. A utord is a finite sequence
of letters. We consider a substi,tu,tion { which associates to ànv letter n in ",{. a
word {(a). Moreover { will be supposed pr'i,mitiue. which means that there exist a
non-negative integer È such that for all pairs ofletters a and li in .4, the word {k(a)
contains the letter b.

Under the primitivity condition, { admits fixed-points, that is to say there exist
bilateral sequences u) : ... 'ur-1 tug ?.rr ... in 

-42 
such that {(,u) : u (see [7, 16]).

Suclr a fixed-point u' is called a substitutional sequence.. it is an almost peri,odi:,c
sequence, which means that every word of u occurs in u' with bounded gaps (the
bound dependiug on the word). We denote by 7 the shift operator on,4l. A
topological dynamical system can be assigned in a natural walr to the substitutional
sequence tu. Precisely

x({) : T7r,: kE@. (7.1)
where the closure is in the stron€ç sense in .rl:. f({) is a compact metrizable
set. The restriction of ? to X(O is again denoted by 7. The pair (J(({),7) is

IP :  [ -2,2]  Ut"  -  2,  a + 2l  .
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a topological dynamical system. Moreover it is minimal. Notice that under the
prirnitivity condition on {. any fixed-point 'u, of { genelates the same d1'namical
systenr. From no'r'n'on. a fixed-point u is given.

Let 13 be the a-algebra of Borel subsets of X({). LTrrder primitivity' of (, there
exists a unique I-invariant probabil itv measure p, on I({), which turns out to be
ergodic ( for  more detai ls see [16]) .  Thus 7:  (7.1f({) .  B.p.)  ts a str ict i l 'ergodic
dynamical system. 7 is called lhe dynamical system gerlerated by substitution {.

Bv strict ergodicitv of T, we can apply Theorem 4.1 for a given non-negative
integer p. we find a partit ion of X({) into ô(p) parts. \Â,'e alnays choose -\6 to be
the member of the partit ion containing ur. When ô(p) : p, we deduce irnurediately
fi 'om Corollary 4.3. the strict ergodicity of T{ = (!},,,f0, Byxo,Fo).

Proposition 7 .L. If p is a non-negatiue ' integer such that 6(p) : 7, then TP :

(To, X({), B, p) i,s a nrinimal ergodic dynam'ical systern.

Proof. According to [7], Te is minimal if and only if i t is ergodic. n

Now. if B : bo...bj-t is a word of letters from "4. then j is called the length of
B and is denoted bl' lBl. When for any letter a of "4, the length of {(a) is equal to l,
where I is a non-negative integer, the substitution { is said to have constant length
or uniform length. Otherwise, it has non constant lengtlt. In the case where { is
a substitution with constant length, we cân sav more about the dynamical system
TP (we refer the reader to [7]).

PropositionT.2. Let us consider a substi,tut' ion( uttth a constantlengt,h (., and
a non-negatiue r,nteger p.

(i) f/6(p) : l, th.en there erists a f.ni,te alphabet A anrl a primitiue subst'itution
11 with constant, length equal to ( on A. such that. the dynrtmical system
generated by the substituti,on q is isomory.thic to Tp .

(ii) 1/ ô(ir) - p. then there erists tt, f,n'ite alpLLabet A ancl, a prirniti,ue subst'itut'ion
11 wi,th constant length equal to ( on A, such, that the dynamical system
generated by the substitution q 'is isomorphi,c to T{ .

(i i i) /n part' icular when p : l-, wr,th m ) 7, we knout 6(t^) : (-. Moreouer
A = A, q - {. thus T{ i,s i,somorythic to T .

Remark 7.1. The alphabet I ancl the substitution 4, just as the isomorphism
between 7e (respectively Td) and the dynamical system generated by 4, are explic-
it ly constructed in the proof of M. F. Dekking (see [7]).

7.2. Prcperties of the sparse Schrôdinger operators

We only suppose for instance that { is a primitive substitution. Let us consider
the potential (V,(n))"çv given by

V"(n): f (T"r) ,Yn€Z \ t . . )

where / is a real-valued bounded measurable application on X({). Then fIf, is
called a lrsparse Schrôdi,nger operator ut'ith substitutional potenti,al. In the theory

of Schrôdinger ope

lr,here o is a finite r

over r.t is chosen so

is aperiodic.
According to P

nertts are the uni<r

spectral componer

other words.

where E € {pp,ac
pq-alurost every r

equals 1.

Proposition I

(i) there eris.

spectrum '

(1 i )  for .  € {p
n\'o 7or 1"

Proof. Accorc

proof is complete.

This propositic

spectrum of a cert

are given for any:

In the case wh,
,  ?-T^ ;  \

operators (fi5" ).r
andfor0<i<p.

\Ve are now abie

coucerning the ab

Theorem 7.4

negati'ue integer.

absolu,tely cont'inr'
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of Schrôdinger operators we usuallv consider / verifying

"f  
( r )  :  t r ( ro)  , ( i  3)

where rr is a finite real-r'alued map frorn "4 and r0 is the first component of r' \'{ore-

over o is chosel so that the resllt ing sequence of potential values J'; : (r,(u,,))"ç7

is aperiodic.
According to Proposition 4.6, we knou,' that if ô(p) = p, then Ip alld its cornpo-

nents are the unions of p cornpact sets, which are respectivelv the spectra and the

spectral components of the associated operators or the dvnamical sl 'sten T,l ' . In

other u'ords,
p-7 P-t '

I', = Ll ip,, anrl rl = U if', .
i=0 r=0

ndrere s € {pp,oc,sc}, !p't = o(Hï'o) for an1' r € -fs. and ig' '  : a.(113") for

!,0-àlrnost every.r: in -{6. By Proposition 7.1, we find a similar result wherr ô(p)

equals 1.

Proposition 7.3. If p is a non-negattue ' integer such that 0 (p) : | 
'  

th'en

(t) there erists a non-empty compact set o/ IR, d,enoted bg la'o uthtr,ch ts the

spectrum oT Hl'Ù for o,ny 2r € X(€), and sucLr, that

rp -  ip,o . (T 4\

(ri) for e € {pp,ac,sc} an'd' i ' f  i ! '0 d'enotes the e-cornponent of the 'spectr'um of

f1n'o for p,-almost all r i 'n X({), ure see that

s,p - ip,o
-Ê -J

(7.5 )

Proof. According to (4.3). ( '1.4) and Proposition 7.1, and since -ts : -Y({), the

proo{ is cotnplele. D

This proposition means that in the case where ô(pr) is equal to 1, Ip is exactly the

spectrum of a certain family of Schrôdinger operators (Hf'0).e x(e ) whose potentials

are given for any r in X({) by

V: 'o(") :  l ' " (np) :  u(r ,p)  ,  Vn €Z . (7 6)

11 the case where 6(p) equals p, we have to study the p families of the associated

operators (Êl' i),exo, with 0 1i,< p, whose potentials are given for any r in -Xs

andfor0<i<p.b5r

i '3 ' t (n)  =v,(np+ i )  = T'(r ,p1,)  
'  vr t  €v '  '  (7 7)

\['e are now able to state, in the extremal cases ô(p) = 1 and ô(p) : p, a theorem

coucerning the absolutely continuous component of Ip.

Theorem 7.4. Let { be a pri,mit ' iue substitution on, the alphabet A and P a not| '

negatiue integer. If p i 's such that 6(p): | (respectiuely.6(p) _ p), then there't,s no

absohttellt continuous sTtect.rum p-almost surely (respecti,uely, Sts-ahnost surely).
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Proof. \! 'e f irst consider the case ô(p) = 1. By (7.6) and Proposition 7.3, we

have to study a new family of Schrôdirrger operators (H3'0).e xtel, associated with

the strictly ;r,-ergodic rlynamical system Tp. Bû aperiodicity of V-- means that the

topological support of p is not a finite set. Jhus Û;'0 is not periodic. ancl we can

apply the I{otani theorem to the famih'(f/f 'o),ext1 (see for instance [13]): for

g-almost every r in I({). }1f'0 does not admit auv absolutely coutinuous part in

its spectrum.
For the second case ô(p) - p. w€ use (7.7) and the fact that the topological

support of p,6 is finite if and only if it is the same for the topological support of p,

in view to applv the Kotani theorem to the p families (H-f ' '  )".",, with 0 < i < p.

Proposition .1.6 completes the proof. D

When the substitution { is primitive and has constant length, Proposition 7.2 can

be applied, and means. under the condition ô(p) : 1 or p, that each operator a3'i is

a Schrôdinger operator with substitutional potential. Nforeover, when p : l-, lhe

corresponding substitution is again {. and the nature of the spectrum of these /--

sparse Schrôdinger operators is the same as in the classical case of one-dirnensional

discrete Schrôdinger operators with the same substitutional potential. We can say

more: the nature of the spectrum !1"' does not change with m ) 1.

We will illustrate these results by examples.

7.3. Eæamples

Erample 7.3.I. The period-rloubling stt 'bst' i tuti 'on

We consider the alphabsl ,4: {0.1}. The period doubling substitution is

definecl by

{:  0 .+01

1-00.

It is a primitive substitution with coustant length equal to 2. \Me can choose the

fixed-poinr , = l ig €" (0) lT" 42'101, i.e.

I r , : . . "  01000 1 00 1 000 1 0001 oo0 1 0 I  0 1 00 . . .

By primitivity of {, f ( i) is generated by any fixed-point, and the dynamical system

generated by { is strictly ergodic.

Moreover. the decomposition function can be calculated (for more details see

lzl),
6(2")  :2" Vn 2 I

6(m) :1 ,  i f  m is odd

6(2"m):2n, Vn)1,  Vmodd.

According to Theorem 7.4, the following proposition is deduced.

Proposition 7.5. Let us cons'ider the peri,od dou,bling subst, ' i trtt ' ion on A :

{0,1}.  Then

(i) for anlq (r

oPerat,or r

(1i) for anu n,

sure. att'd

Proof. (i) is a

ny'i is a Schrôdin1

doubling substitu

the spectrum of e

lneasure. and it is

Erample 7.3.2. Tl

\À'e conslder tl
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It is a primitirre s
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By primitivitv of
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According to The
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Then

( i )  for  any (

oYterator
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m,eûsure.

8. Conclusion
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(i) for any (non-negatiue) odd ' integer p. \)e is the spectrum, of a Schrôdinger
operator with, su,bsti ' tut' ional pot.ential Hlt. for anu r e f ({), and,Df,.: Q:

(i i) /br arLA n,on,-negatiue integer n. I2' '  i ,s a Cantor set of zero Lebesgue mea-
sttre. art,d for p-alrnost all r in f. i l  is purely si,ngular con,tinuous.

- 
Proof. (i) is a direct consequence of Theorem 7.4. For (ii), we remark that each

Ilf ' '  is a Schrôdinger operator with substitutional potential generated by the period

doubling substitution. But we know. according to [2] (see also [4, 15, 18]), that
the spectrum of every associated operator on Xe is a Cantor set of zero Lebesgue
neasure. and it is for g.6-almost e in I0 purely singular contiuuous. So is 12". !

Erample 7 .3.2. The Thue - M ors e su,b sti,tut.i,on

We consider the alphabet,4: {0, 1}. The Thue-Nlorse substitution is defined
bv

0 ---01

1+10

It is a primitive substitution with constant length equal to 2. We can choose the
fixed-point , : h,n {"(0) h:" {2' '  (0), i.e.

, t r : . . .  01 1 001 101 00 1 . . .

By primitivity of {,2(i) is generated by any fixed-point, and the dynarnical systenr
generated by ( is strictly ergodic. Moreover. the decomposition function can be
calculated:

6(2"1 :2" ,  Vn )  1

6(rn) : 1 , if nz is odd

6(2"m):2n, Vn>1, Vmodd.

According to Theorem 7.4, we find an analogue of Proposition 7.5:

Proposition 7.6. Let us cons'ider th,e Thue Morse substitut' ion on A : {0. 1}.
Then

(i) for any (non-negati,ue) od,d integer p, \p i,s the spectrum of a Schrôd,'inger
operator ui,th substitutional potential H!'0 , for o,n,y r e -{ ({), and, Ef," - A;

(ri) for a,ng non-negatiue integer rn. \2"' is a Cantor set, of zero Lebesgue
rneasure, and for p-almost all r in X, it is purely s' ingular continuous.

8. Conclusion

We can now conlpare the three special cases of ?Èsparse Schrôdinger operators
treated in this pàper. When the potential is a sequence of independent identi-
cally distributed random variables, neither the nature of the spectrum nor its Io-
cation change u'ith p: the spectrum of f/p is exactly the one of the corresponding
Schrôdinger opelator H = Ht .
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On the other side, if the potential is l/-periodic. then the nature of the spectrurn
does not change with p, just as the number of its bands (there are always À- bands).
But !p (the spectrum of 1/p ), is the same as the spectrurn of the classical Â"-periodic:
Schrôdinger operator only in the case of p: 1 mod (l/) or p = À" - 1 mod (À ).

The case of the substitutional potentials, which l ies between the two others. is
more cornplicated because linked u.ith the decomposition function 6(p). In fact we
only know that there exists no absolutely continuous part in the spectrum of Ht' rf
6(p) = 1 or p. Moreover. if the primitive substitution has a constatrt length I and
if p - 0". then the nature of !p is the one of the spectrum of the corresponding
substitutional Schrôdinger operator fI.

Finally, in these cases (random, periodic and substitutional), the spectral be-
havior of trrsparse Schrôdinger operators is similar to the one of the corresponding
Schrôdinger operators for all p when the potential is random or periodic, and for
6(p) = 1 or p when it is substitutional. We could conjecture similar results for sparse
Schrôdinger operators vl ' i th l imit periodic or quasi-periodic potentials. Such a studv

will surely leads us to a more accurate understanding of these random operators.
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