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Stability in Games with Continua of Equilibria

Sebastian Bervoets∗ and Mathieu Faure†

September 14, 2018

Abstract

The stability of Nash equilibria has often been studied by examining the asymptotic
behavior of the best-response dynamics. This is generally done in games where interac-
tions are global and equilibria are isolated. In this paper, we analyze stability in contexts
where interactions are local and where there are continua of equilibria. We focus on the
public good game played on a network, where the set of equilibria is known to depend on
the network structure (Bramoullé and Kranton (2007)), and where, as we show, continua
of equilibria often appear. We provide necessary and sufficient conditions for a component
of Nash equilibria to be asymptotically stable vis-à-vis the best-response dynamics. Inter-
estingly, we demonstrate that these conditions relate to the structure of the network in a
simple way. We also provide corresponding results for several dynamical systems related
to the best response.
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JEL Codes: C62, C73, D83, H41

1 Introduction

The recent literature on games played by individuals who interact on social networks has

highlighted the relationships between Nash equilibria and the structure of the network (see for

instance Jackson et al. (2016)). One important contribution is Bramoullé and Kranton (2007).

The authors focus on public goods games played on networks, where best responses are linear,

actions are strategic substitutes and individuals’ payoffs depend on the sum of neighbors’

actions. They analyze the set of Nash equilibria and find that despite multiplicity, only

very few Nash equilibrium action profiles are stable, where stability refers to the asymptotic

stability of the discrete-time best-response dynamics. The authors reiterate their analysis

with a more general class of games in Bramoullé et al. (2014), using the continuous-time

best-response dynamics (thereafter, BRD).
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In this paper we extend and complement their analysis by comprehensively analyzing

stability in these games. As we show, the set of Nash equilibria is a finite union of connected

components. In the aforementioned papers, the authors focused on isolated equilibria1, which

are specific types of components. However, as we show, these components generally form a

continuum of equilibria (section 2). In this paper, we consider all types of equilibria.

We use the concept of stability of sets standard in the dynamical systems literature (see

for instance Conley (1978)), i.e. the concept of attractor. In economics, it was introduced by

Weibull (1995) under the name of asymptotically stable sets, by contrast with asymptotically

stable points. Being an asymptotically stable point and being an attractor are equivalent

for isolated equilibria. However, no point can be asymptotically stable in a continuum of

equilibria, since any neighborhood of that point contains another Nash equilibrium. Yet the

entire component might be an attractor.

Identifying attractors is challenging for at least two reasons. First, there are no general

algebraic tools available. In the case of isolated equilibria, the nature of the Jacobian matrix

informs us about its stability. However, this does not work for continua. As Seade (1980)

puts it in his paper on stability of Nash equilibria in the Cournot oligopoly problem, “Things

would get trickier (...) if equilibria happened not to be regular, that is not even locally unique,

isolated. This, one can dismiss as a non-generic, ’unlikely’ occurrence, although that is often

a risky stand to take.” In this paper, we tackle the issue in a context where the ‘unlikely’

occurrence is generic.

Second, there are no general results to be relied on concerning the best-response dynamics.

It may or may not converge, depending on the game played. In discrete-time versions and/or

in games with discrete action space, it is known that the dynamics can diverge; in continuous

games, the vivid debate about stability of the Cournot solution (see i.a. Theocharis (1960),

Fisher (1961), Hahn (1962), Seade (1980) and al Nowaihi and Levine (1985)) illustrates how

the behavior of the best-response dynamics finely depends on the parameters of the game.

Even in very structured games such as potential games, additional conditions are needed to

guarantee convergence (see Kukushkin (2015)).

The games we focus on are best-response potential games (see Voorneveld (2000)), and

we show that attractors correspond to the local maximisers of that potential function (as

in Sandholm (2001)). We also show that attractors are always included in the set of Nash

equilibria, and correspond to sets where every point is a local maximum of the potential

(section 3).

In section 4, we consider the public good game where actions are perfect substitutes

and obtain two results that completely characterize the set of attractors. First, we identify

1We say that a Nash equilibrium x is isolated if there is a neighborhood around x that contains no other
Nash equilibrium.
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necessary and sufficient conditions for a Nash equilibrium to be a local maximum of the

potential. These conditions relate in a simple and tractable way to the topology of the

network: either the subgraphs of agents exerting an effort are all complete subgraphs and the

Nash equilibrium is a local maximum, or at least one is not complete and the equilibrium is

not a local maximum. This property is nice because, although hard to establish, it is easy to

check.

Second, our main theorem provides necessary and sufficient conditions for a set of Nash

equilibria to be an attractor. First, every attractor must contain some specialized Nash equi-

libria, i.e. equilibria in which individuals are either active and exert the autarkic effort, or

inactive and exert no effort at all. Second, a component of Nash equilibria is an attractor

if and only if the specialized equilibria that it contains are themselves local maxima of the

potential. Thus, however complex the components of Nash may be, one simply needs to focus

on their “extreme points”. The previous result already provides the condition determining

whether a specialized equilibrium is a local maximum or not. This theorem is a sharp result

that provides an algorithmic method to find the attractors.

One corollary is that at least one stable component exists for every network: any compo-

nent containing a maximum independent set2 of the network is stable. This is an important

departure from Bramoullé and Kranton (2007), who often find no stable equilibria because

of their focus on isolated equilibria. Further, we find the same result as them in the case

of isolated equilibria: they obtain that an - isolated - equilibrium is stable for the discrete

best-response dynamics if and only if it is specialized and the set of active players forms a

maximal independent set of order at least two. When equilibria are isolated, our condition is

equivalent to theirs.

In section 5 we turn to the public good game with imperfect substitutes. Although we

do not get as sharp a result as for the case with perfect substitutes, we extend the results of

Bramoullé et al. (2014), where the authors restrict their attention to Nash equilibria in which

there are no weakly inactive agents, i.e. agents who do not produce any effort but are just on

the verge of doing so3. They identify the lowest eigenvalue of the subgraph of active agents

as the determinant of the stability of a Nash equilibrium. We obtain this result and we also

consider Nash equilibria in which agents can be weakly inactive.

When interactions are low, i.e. substitutes are very imperfect, a Nash equilibrium will

always be a local maximum of the potential (and hence stable if it is isolated), which will

never be true if interactions are high. However, we identify a range of intermediate interaction

values for which the analysis gets complex. When an equilibrium falls within that range, we

provide two different necessary and sufficient conditions for an equilibrium to be a local

2The maximum independent sets of a network are the largest maximal independent sets.
3As opposed to strictly inactive agents, who produce no effort and where it would take a severe reduction

in neighbors’ efforts for them to start producing.
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maximum of the potential.

The first condition amounts to saying that an equilibrium is a local maximum if and only

if the set of active agents cannot be reduced. The second condition considers acceptable

action profiles, i.e. action profiles such that no one exerting an effort has an aggregate level of

contribution that exceeds his autarkic effort. Acceptable action profiles naturally contain Nash

equilibria, but not only. The condition then states that an equilibrium is a local maximum

if and only if the sum of efforts in that equilibrium is always greater than the sum of efforts

in any acceptable action profile on the set of active and weakly inactive agents. Although

these conditions are less easy to interpret than those on perfect substitutes, they still provide

valuable insights as well as an algorithmic way of determining whether a set is an attractor.

Finally, in section 6, we investigate several alternative dynamical systems which rely on

a best response principle. First, we provide sufficient conditions for any continuous-time

dynamical system to share the same set of attractors. Second, we focus on three different

discrete-time dynamics. We show that the asymptotic behavior of these systems is quite

sensible to the features of the dynamics: the set of attractors is the same as for the (BRD) as

long as the discrete systems are either sequential or “smooth” in some sense, while it might

differ if agents simultaneously “jump” far away from their current position at each step.

2 The local public good game and structure of Nash equilibria

2.1 The local public good game

Consider a game G = (N , X, u), where N = {1, . . . , N} is the set of players, Xi ⊂ R is

a continuous action space and X = ×i=1,...,NXi. An action xi ∈ Xi can be thought of, for

instance, as an effort level chosen by individuals, a price set by a firm, a monetary contribution

to a public good. Because in all these examples actions take positive values, we will assume

that Xi = [0,+∞[. As usual, X−i denotes the set of action profiles of every agent except

agent i: X−i = ×j 6=iXj . Finally, u = (ui)i=1,...,N is the vector of payoff functions. We assume

that the payoffs have a network structure in the following sense: there exists an undirected

graph G whose vertices are the agents and whose edges represent interactions4. We denote

by Gx the product between matrix G and vector x, and (Gx)i represents it’s i-th coordinate:

(Gx)i =
∑

j∈Ni(G) xj , where Ni(G) is the set of neighbors of agent i. We consider games

with payoff functions u that have unique best responses of the following form

∀i ∈ N , Bri(x−i) = max {1− δ(Gx)i, 0} . (1)

where δ ∈ R+ represents the rate of substitutability between agents’ actions. When δ is equal

to one, actions are perfect substitutes between neighbours, while δ equal to zero is the case

4We will also denote by G the corresponding adjacency matrix.
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of autarky.

These games exhibit strategic substitutes and best responses depend only on the sum of

neighbors’ action. The set of games that have best responses of the form (1) is denoted GδL
(where the L stands for ”linear”). A prominent member of this class is the game of local

public goods introduced in Bramoullé and Kranton (2007). It is the game that we will focus

on in this paper. The payoff function is

ui(x) = b (xi + δ(Gx)i)− cxi (2)

where c > 0 is the marginal cost of effort and b(.) is a differentiable, strictly increasing concave

function such that b′(1) = c.

Further examples of games in GδL are discussed in Bramoullé et al. (2014). The authors

show that a specific game in the class GδL is a potential game, where the potential function P

is the one identified in Monderer and Shapley (1996), as an exact potential for the Cournot

competition game:

P (x) = 〈x,1〉 − 1

2
‖x‖2 − 1

2
〈x, δGx〉 . (3)

Although this function does not serve as an exact potential for the local public good game

defined by (2), any game in GL is a best-response potential game with potential P , as introduced

in Voorneveld (2000). That is Argmaxxi∈XiP (xi, x−i) = Bri(x−i).

2.2 Nash equilibria

For games in GδL, the set of Nash equilibria (NE) is easy to describe:

x∗ ∈ NE ⇔ ∀i, x∗i = max {1− δ(Gx∗)i, 0} .

Thus, either the neighbors of i provide less than 1/δ and i fills the gap to reach 1, or else

they provide more and i enjoys the benefits without exerting any effort.

In the following definitions we adapt the terminology of Bramoullé and Kranton (2007).

For an action profile x ∈ X, let A(x) be the set of players that are active, i.e. A(x) := {i :

xi > 0}; let I(x) be the set of inactive agents, i.e. the set of agents i such that xi = 0. This

set contains the subset WI(x) of weakly inactive agents (those for who δ(Gx)i = 1) and the

subset SI(x) of strictly inactive agents (those for who δ(Gx)i > 1). Note that if x is a Nash

equilibrium, then {A(x),WI(x), SI(x)} forms a partition of N .

Definition 1 An action profile x is specialized if xi = 1 for all i ∈ A(x). If x is specialized

and is a Nash equilibrium, x is called a Specialized Nash equilibrium. An action profile x is

distributed if A(x) = N .
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Now we describe through examples the different kinds of equilibria that exist in this class of

games. We start with the simplest possible network, the pair in the case of perfect substitutes,

i.e. δ = 1. The profile (1, 0) (where x1 = 1 and x2 = 0) is a specialized Nash equilibrium,

together with the profile (0, 1), while (1
3 ,

2
3) is a distributed Nash equilibrium.

In fact, any profile of the form (α, 1− α), with 0 ≤ α ≤ 1, is a Nash equilibrium. We say

that the graph supports a continuum of equilibria, represented by the connected component

Λ = {(α, 1− α) : α ∈ [0, 1]}.

Definition 2 A connected set Λ ⊂ NE is a connected component of Nash Equilibria if and

only if there exists an open neighborhood U of Λ such that U ∩NE = Λ. A Nash equilibrium

x is isolated if the connected component that contains x is a singleton.

Connected components of Nash equilibria can be singletons. Consider for instance the kite

network of Figure 1. Here, when δ = 1 the profiles (1, 0, 1, 0) and (1, 0, 0, 1) are specialized

Nash equilibria, they belong to the connected component Λ1 = {(1, 0, β, 1 − β) : β ∈ [0, 1]},
which is a continuum of equilibria. However, the profile (0, 1, 0, 0) is also an equilibrium, it

does not belong to a continuum. Its component is a singleton: Λ2 = {(0, 1, 0, 0)}. In this

case, we say that the equilibrium is isolated.

1 2

3

4

α

1− α

1 2

3

4

Figure 1: The kite. Circles in white represent inactive players. Circles in grey represent active players.
The darkest the circle, the highest the action played. In particular, circles in black represent
players playing 1. Left panel: a continuum of equilibria; right panel: an isolated equilibrium.

Proposition 1 The set of Nash equilibria can be described as

NE = ∪Ll=1Λl

where every Λl is a connected component of NE.

Note that since the connected components are disjoint, the family {Λl}l∈{1,...,L} forms a

partition of the set of Nash equilibria.

In the examples we have provided, the continuum is one-dimensional because it involves

only two agents. However, in general, continua are much more complex objects. For instance,
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α− γ

γ

α

1− 2α 1− 2α

β

α− β

ε

α− ε

Figure 2: An example with a four-dimensional continuum: α ≤ 1/2, β ≤ α, γ ≤ α, ε ≤ α.

for δ = 1, the following network with 9 players exhibits a four-dimensional continuum (Figure

2).

In fact, the existence of continua of equilibria seems to be the rule rather than an exception.

We now provide some insight on this.

Definition 3 Given an undirected graph G, a subset of nodes M is a maximal independent

set if

(i) ∀i ∈M , Ni(G) ∩M = ∅;

(ii) ∀j /∈M , Nj(G) ∩M 6= ∅

A maximal independent set is of order k ∈ N∗ if we have minj /∈M |Nj(G) ∩M | = k.

For instance, the network of Figure 1 has three maximal independent sets: {1, 3}; {1, 4}; {2}.

Remark 1 (Bramoullé and Kranton (2007)) Let M be a maximal independent set of the

graph G. Then the effort profile in which xi = 1 if i ∈M and xi = 0 if i /∈M is a specialized

Nash equilibrium of the game with δ = 1. This is true in fact for any δ ≥ 1.

Although we were unable to state necessary and sufficient conditions for a network to

support a continuum of equilibria, we have identified the following simple and useful sufficient

condition.
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Number of agents 4 5 6 7 8 9 10

Non-isomorphic graphs 6 21 112 853 11117 261080 11716571
Graphs with a continuum 4 16 93 777 10646 256786 11653418

Ratio 0.666 0.762 0.830 0.911 0.958 0.984 0.995

Table 1: Ratio of the number of graphs that satisfy the conditions of Proposition 2 over the total numer
of graphs. These ratios provide lower bounds on the fraction of graphs having a continuum
of Nash equilibria.

Proposition 2 If the graph G admits two maximal independent sets M and M ′ such that

|M | = |M ′| = p and |M ∩M ′| = p− 1, then G supports a continuum of Nash equilibria when

δ = 1.

This condition is not necessary however. Consider the 6-agents circle network . This

network supports a continuum of equilibria, although the maximal independent sets are

{1, 4}, {2, 5}, {3, 6}, {1, 3, 5} and {2, 4, 6} and thus no pair satisfies the conditions of Proposi-

tion 2.

This proposition is useful because it gives an operational method to test for the existence

of continua in a network, since many algorithms exist in order to find maximal independent

sets. We ran tests on all distinct graphs ranging from N = 4 to N = 10. Results are reported

in Table 1.5

These ratios, which are lower bounds, suggest that the fraction of graphs supporting

a continuum of equilibria goes to 16. This also underlines the importance of focusing on

components of equilibria rather than isolated equilibria.

3 Dynamics and stability

3.1 Continuous-time best-response dynamics

As mentioned earlier, several dynamical systems are analyzed. In this section we focus on the

continuous-time best-response dynamics (thereafter, (BRD)), which is a well-known learning

process where all players simultaneously revise their strategies in the direction of their best

response to the current action profile. As seen in (1), best responses are unique. Let Br : X →
X,x 7→ Br(x) := (Br1(x−1), ..., Brn(x−n)). The (BRD) is given by the following dynamical

system:

ẋ(t) = −x(t) +Br(x(t)) (4)

5The list of non-isomorphic graphs was found at http://users.cecs.anu.edu.au/ bdm/data/graphs.html. We
thank Alex Teytelboym for providing this link to us.

6Although we consulted with graph theorists, we were unable to prove this conjecture. In particular, we
were unable to characterize graphs for which all maximal independent sets have order at least 2, which are
graphs that do not support a continuum. Complete k-partite graphs are an example of such graphs.
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The map Br(.) being Lipschitz, the ordinary differential equation (4) has a unique solution

curve starting from every initial condition in RN . Because we restrict attention to X = RN+
instead of RN and to positive times (t ≥ 0), we consider the semi-flow

ϕ : (x, t) ∈ X × R+ → ϕ(x, t) ∈ X, (5)

where, for t ≥ 0, ϕ(x, t) is the unique solution of (4) at time t, with initial condition x ∈ RN+ .

3.2 Attractors and local maximizer sets

Since we are interested in the stability properties of sets, the concept we use is that of at-

tractors. Attractors were first defined in Conley (1978) and were introduced in economics by

Weibull (1995) under the name of asymptotically stable sets. Let V : X → RN be a Lipschitz

map.

Definition 4 (Attractor) A ⊂ X is an attractor for ẋ = V (x) if and only if

(i) A is compact and invariant7,

(ii) there exists an open neighborhood U of A with the following property:

∀ε > 0, ∃T > 0 such that ∀x ∈ U, ∀t ≥ T, d(ϕ(x, t), A) < ε,

An attractor for a dynamical system is a set with strong properties. In particular, it uni-

formly attracts a neighborhood of itself. This notion extends to sets the concept of asymptotic

stability that applies to points8.

Now, we show that only sets of Nash equilibria can be attractors, and that attractors are

related to local maxima of the potential function.

Lemma 1 The potential P defined in (3) is a strict Lyapunov function for ẋ = −x+Br(x),

that is the map t ∈ R+ 7→ P (ϕ(x, t)) is strictly increasing, for any x /∈ NE. Furthermore, if

x and y are two Nash equilibria belonging to the same component Λ, then P (x) = P (y).

7Let S be a subset of RN . Then S is invariant for the flow ϕ if a) ∀x ∈ S, ∀t ∈ R, ϕ(x, t) ∈ S, and b)
∀y ∈ S,∀t ∈ R, there exists x ∈ S such that ϕ(x, t) = y

8In Bramoullé and Kranton (2007) and Bramoullé et al. (2014), the authors consider asymptotic stability of
isolated equilibria with respect to the (respectively discrete-time and continuous time) Best-Response Dynam-
ics, which is precisely the definition of an attractor restricted to singleton components. An isolated equilibrium
x̂ is asymptotically stable if and only if point (ii) holds with A = {x̂}. However when an equilibrium is not
isolated, (ii) cannot hold with A = {x̂}. This explains, for instance, why Bramoullé et al. (2014) find that the
pair has no stable equilibrium (see Proposition 4), because there are no isolated equilibria. As we will see, with
the notion of attractor, it appears that the entire component is stable.
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Note that this lemma implies that any local maximum of P is a Nash equilibrium. In

particular, a global maximum of P is also a Nash equilibrium.

Now we make sure that only Nash equilibria are candidates to be rest points of the

dynamics. Let ω(x) be the omega limit set of x (i.e. the set of points where the flow goes as

time goes to infinity, when starting at point x). We have the following9:

Lemma 2 ∀x ∈ X, the set ω(x) is nonempty and contained in a connected component of

Nash equilibria.

One interesting feature of games in the class GδL is that the potential P , defined in equa-

tion (3), is strictly increasing along solution trajectories of the dynamics ẋ = −x + Br(x)

with initial conditions outside the set of Nash equilibria. Thus an isolated equilibrium is an

attractor for the best-response dynamics if and only if it is a strict local maximum of the

potential. Because we are interested in non-trivial components of Nash equilibria, we need to

consider the more general notion of local maximizer set :

Definition 5 Let Λ ⊂ X be connected and compact. We say that Λ is a local maximizer set

of P if P is constant on Λ and there exists an open neighborhood U of Λ such that P (x) > P (y)

for any x ∈ Λ, y ∈ U \ Λ.

In the appendix, we show (see Lemma 4) that a connected component Λ of Nash equilibria

is a local maximizer set of P if and only if ∀x ∈ Λ, x is a local maximum of P . As in Sandholm

(2001), we obtain the following characterization of attractors:

Proposition 3 Let Λ be a connected component of Nash equilibria. Then Λ is an attractor

for ẋ = −x+Br(x) if and only if ∀x ∈ Λ, x is a local maximum of P .

Remark 2 The set [0, 1]N being invariant for the best-response dynamics, standard results

guarantee the existence of at least one attractor (see for instance Conley (1978)). However,

this can also be derived by the previous proposition, since the potential function necessarily

admits a global maximum on [0, 1].

We are now ready to characterize the attractors by finding the set of strict local maxima

of P .

9We prove a more precise statement in a companion unpublished paper: the omega limit-set is always a
singleton, i.e. (BRD) converges. However, for the issue under scrutiny here, lemma 2 is enough.
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4 Stability - The Case of Perfect Substitutes

Given an action profile x, we denote by GA(x) the subgraph of G restricted to the agents in

A(x). This graph is in general not connected (even if G is) and we denote by C1(x), ..., CK(x)

the decomposition of GA(x) in connected components. Note that by abuse of notation we also

use Ck(x) to denote the set of agents in Ck(x), so that

A(x) = ∪Kk=1Ck(x). (6)

If x is a specialized Nash equilibrium, we denote by M(x) := A(x) the maximal indepen-

dent set associated to x.

Definition 6 (Influence set) Let x ∈ NE with decomposition of active agents (Ck(x))k=1,...,K .

Given k ∈ {1, ...,K}, the set

I(Ck(x), x) = {j ∈WI(x) : Nj(G) ∩ Ck(x) 6= ∅}

will be called the influence set of Ck(x).

In the particular case of a specialized Nash equilibrium x with M(x) = {i1, ..., iK}, the

family (Ck(x))k=1,...,K corresponds to the family of singletons ({ik})k=1,...,K , and the influence

set of agent ik in x is the set of neighbors of ik that have no other neighbor in M(x). For

instance, in the network of figure 1, there are three specialized Nash equilibria corresponding

to the three maximal independent sets M(x1), M(x2) and M(x3) where x1 = (0, 1, 0, 0),

x2 = (1, 0, 1, 0) and x3 = (1, 0, 0, 1). In the first, only individual 2 has an influence set:

I(2, x1) = {1, 3, 4}. In the second, I(1, x2) = ∅ and I(3, x2) = {4}. Now denote by xα the

Nash equilibrium (1, 0, α, 1 − α). For α ∈]0, 1[ we have A(xα) = C1(xα) ∪ C2(xα), where

C1(xα) = {1} and C2(xα) = {3, 4}. Moreover I(C1(xα), xα) = I(C2(xα), xα) = ∅.
Note that in any network, if M(x) is of order at least 2, then I(i, x) = ∅ for all i ∈M(x).

For any k ∈ {1, ...,K} we can then define G[Ck, x] as the subgraph of G restricted to

the agents in Ck and I(Ck, x). By abuse of notation, when Ck is a singleton {ik}, we write

G[ik, x]. We illustrate these definitions on Figure 3.

The next proposition characterizes the local maxima of the potential P in terms of the

topology of the network. It is the first building block of our main theorem.

Proposition 4 Let x ∈ NE. Then x is a local maximum of P if and only if for all k, the

subgraph G[Ck, x] is complete.

Remark 3 A direct implication is that whenever x is a local maximum, all the subgraphs

G[Ck, x] must be disjoint. Indeed, if an agent is connected to two active components, then
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2/3

1/3

C1

C2

1/3

1/3

1/3

G[C2, x]

G[C1, x]

G[C3, x]

C3

Figure 3: Components of active agents (in dotted lines) and the subgraphs induced by their influence
sets (in solid lines).

this agent has to be strictly inactive and not weakly inactive. This is not necessarily the

case, when x is not a local maximum. Consider for instance the 5-line and Nash equilibrium

x = (1/2, 1/2, 0, 1/2, 1/2). Then we have C1(x) = {1, 2}, C2(x) = {4, 5} and G[C1, x] =

{1, 2, 3}, G[C2, x] = {3, 4, 5}. Thus G[C1, x] ∩G[C2, x] 6= ∅.

We can now state our theorem:

Theorem 1 A connected set Λ is an attractor for (4) if and only if:

• Λ is a connected component of Nash equilibria containing at least one specialized Nash

equilibrium,

• and, for all specialized Nash equilibrium x in Λ, with M(x) = {i1, ..., ik}, G[ik, x] is

complete ∀k = 1, ...,K.

The proof of this theorem is long and involves many arguments that we think are inter-

esting, so we provide intuitions together with several illustrating examples in what follows.

The uninterested reader can go directly to subsection 4.1. The proof can be divided into two

steps.

First, we show that if Λ is an attractor for the dynamics, then Λ contains at least one

specialized Nash equilibrium10. We illustrate this with Figure 4. There are three connected

components: Λ1 = {(1, 0, 0, α, 1− α) : α ∈ [0, 1]}, Λ2 = {(0, 1, 1, 0, 0)} and Λ3 = {(1
3 ,

1
3 ,

1
3 ,

1
3 −

ε, ε) : ε ∈ [0, 1
3 ]}. According to Theorem 1, Λ1 is a candidate to being an attractor because

it contains two specialized Nash equilibria when α ∈ {0, 1}. Λ2 is also candidate. Finally, Λ3

cannot be an attractor as it does not contain any specialized Nash equilibrium.

10This, by the way, implies that isolated interior equilibria cannot be stable.
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Figure 4: A 5 agents network. Left panel: Λ1, a continuum of equilibria containing two specialized
equilibria; Middle panel: Λ2, an isolated equilibrium; Right panel: Λ3, a continuum without
any specialized equilibria.

The proof of this first part involves several arguments. We use Proposition 4 to show

that starting from a non-specialized equilibrium in Λ, we can always move in the component

(by transferring efforts) and reduce the number of active agents. Inductively it implies the

existence of at least one specialized Nash equilibrium in Λ. The fact that efforts can be

transferred while staying in the component crucially depends on the fact that every point

in the component is a local maximum of the potential, which implies in particular that the

components of actives are complete. Let us illustrate this on the network of Figure 5. The

initial profile is a Nash equilibrium. As efforts are transferred from one player in the triangle

to another, the profile remains a Nash equilibrium. The final equilibrium is specialized, and

this is possible only when components of active players are complete. If we replaced the

triangle of this example by a square (which is not a complete network) and started at the

equilibrium whre every agent in the square plays 1/3, it would be impossible to continuously

transfer efforts from one agent in the square to another without moving out of the set of Nash

equilibria.

In the second step of the proof, we show that specialized Nash equilibria in non-singleton

components play a special role. In particular, a connected component of Nash equilibria

containing specialized Nash equilibria is an attractor if and only if every specialized Nash

equilibrium is a local maximum of P . To prove this, we need to show that any equilibrium x

in a component Λ containing specialized Nash equilibria which are all local maxima of P is

itself a local maximum of P . We use the fact that Λ is connected and thus construct a path

starting from a specialized Nash equilibrium x̂ and ending in x by continuously transferring

efforts between agents. Along this path, the decomposition of actives C1, ..., CK may change,

and we need to make sure that the subgraphs G(Ck, x) always remain complete. We show

that there is always a specialized Nash equilibrium from which one can start such that this

13
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Figure 5: An example with 5 players. The initial action profile (upper left panel) is a Nash equilibrium.
In the second action profile (upper right panel), efforts are “transferred” from one agent to
another in the triangle and yet, the profile remains in the Nash component. The final profile
(lower panel) is a specialized Nash equilibrium.

property holds.

Theorem 1 is nice in several respects. First, it provides a characterization of attractors by

relating them to topological properties of the network. Second, the relation we obtain is as

simple as it can be, since checking whether graphs are complete or not is a trivial exercise.

Third, the restriction to specialized equilibria hugely simplifies the problem. Indeed, however

complex a component might be (recall for instance the four-dimensional continuum in Figure

2), it is sufficient to identify the set of specialized Nash equilibria that it contains. These are

the only points that matter. Because specialized equilibria are maximal independent sets of

the network, they are easy to find, allowing for an easy algorithmic implementation.

4.1 Finding attractors

Theorem 1 provides a convenient way of checking whether a given component is an attractor

or not. However, it does not tell us how these components can be found. In this section

we provide a result which will allow to construct an algorithm finding every attractor. This

14



result is based on Proposition 2. Recall that Proposition 2 provides a sufficient condition for

existence of continua of equilibria. Thus, by finding all the maximal independent sets in a given

network and applying Proposition 2, we can construct components of equilibria. However,

since the condition is only sufficient, we might be losing some components. For instance, in

the 6-agents circle network, the maximal independent sets were {1, 4}, {2, 5}, {3, 6}, {1, 3, 5}
and {2, 4, 6}. Proposition 2 finds no continuum, since all maximal independent sets of size

2 differ from strictly more than one agent. But there is one, given by the component Λ =

{(α, β, 1−α−β, α, β, 1−α−β); 0 ≤ α, 0 ≤ β, α+β ≤ 1}, where the three maximal independent

sets of size 2 belong.

An algorithm based on finding all maximal independent sets to construct all components

of Nash equilibria, by checking whether these maximal independent sets satisfy Proposition

2, would wrongly consider the sets {1, 4}, {2, 5} and {3, 6} as three different components.

However, as we show now, this is not a problem when we seek to find all the attractors.

Proposition 5 Let Λ be an attractor and let M and M ′ be two maximal independent sets in

Λ of cardinality p. Then there exists a sequence M1, ...,Mk such that |M∩M1| = |Mi∩Mi+1| =
|Mk ∩M ′| = p− 1.

This Proposition, combined with Proposition 2, tells us that we might be overestimating

the number of different components of Nash equilibria, but not the number of attractors.

Since we have an algorithm to find all attractors in a given network, we decided to compute

them for all networks formed of N = 4 to N = 10 players, in order to get more insight on how

the network structure affects the number of attractors. Our results are in table 2. As can be

seen, the fraction of graphs with a single attractor is decreasing. However, we do not know if

this pattern continues as N grows, and if it does, to which fraction it converges.

4.2 Illustration and implications

Proposition 5 provides an algorithm to find all the potential candidates to being an attractor.

Theorem 1 then tells us how to determine whether it is an attractor or not. We illustrate how

to implement it on an example.

Example 1 Consider the 8-agents graph in Figure 6.

The maximal independent sets are the following:

M1 = {3, 4, 6, 7}, M2 = {1, 2, 3}, M3 = {1, 2, 8}, M4 = {6, 7, 8}, M5 = {5, 6, 8}.

Hence there are five specialized Nash equilibria that we denote by xi, i = 1, ..., 5, that are

associated to each maximal independent set. There are three connected components of Nash

equilibria containing at least one specialized Nash equilibrium:
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Number of different
attractors N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 5 18 91 674 8321 186324 7958132
2 1 3 20 171 2621 68159 3344981
3 1 8 171 6394 394664
4 4 199 18400
5 3 375
6 1 19

Total 6 21 112 853 11117 261080 11716571

Fraction of networks
with a single attractor 0.833 0.857 0.812 0.79 0.748 0.713 0.679

Table 2: Number of graphs having a given number of attractors. For instance, there are 853 non-
isomorphic graphs with 7 agents. Out of these, 674 graphs have a unique attractor, 171 have
two distinct attractors and 8 have three distinct attractors. The fraction of graphs having a
unique attractor is 0.79.
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1

4 8

35

7

Figure 6: An 8-agents graph

• a singleton Λ1 = {(0, 0, 1, 1, 0, 1, 1, 0)} containing x1:

• a continuum Λ2 = {(1, 1, 1− α, 0, 0, 0, 0, α) : α ∈ [0, 1]}, that contains x2 and x3.

• and another continuum Λ3 = {(0, 0, 0, 0, α, 1, 1 − α, 1) : α ∈ [0, 1]}, that contains x4

and x5.

There is no point looking for other components of Nash equilibria as they will not contain

any specialized Nash, and thus cannot be attractors.
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Figure 7: Left panel: component Λ1, (singleton); middle: component Λ2, right: component Λ3.
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• The set M1 is a maximal independent set of order 2. Therefore, Λ1 is an attractor (the

influence set of every agent i ∈M1 is empty).

A priori, nothing differentiates Λ2 from Λ3: the potential is equal to 3/2 along both com-

ponents and they have similar shapes. In order to determine their nature, our theorem says

that we only need to focus on the specialized Nash equilibria:

• For component Λ2 we have I(1, x2) = I(2, x2) = ∅. Thus {1} ∪ I(1, x2), {2} ∪ I(2, x2),

{1} ∪ I(2, x3) and {2} ∪ I(2, x3) are all singletons, making the induced subgraph complete

networks.

Next, I(3, x2) = {8}, thus {3} ∪ I(3, x2) = {3, 8} and the induced subgraph is a connected

pair and thus a complete network. This means that x2 is a local maximum of the potential.

Similarly, I(8, x3) = {3}. Hence x3 is also a local maximum of the potential. Since x2 and

x3 are the only specialized Nash equilibria in Λ2 and both are local maxima of the potential,

our theorem guarantees that Λ2 is an attractor.

• For component Λ3, we have I(6, x5) = I(8, x5) = ∅ and I(5, x5) = {7}, which makes x5 a

local maximum of the potential. Also I(6, x4) = ∅ and I(7, x4) = {5}. However I(8, x4) =

{3, 4}, which does not induce a complete graph (3 and 4 are not linked). As a result, our

main theorem claims that x4 is not a local maximum of the potential. Indeed, for xε =

(0, 0, ε, ε, 0, 1, 1, 1−2ε) we have P (xε) = 3
2 + ε2 > P (x). Thus the dynamics we consider would

lead individuals out of the component, following a direction that increases P .

We conclude that there are two attractors, Λ1 and Λ2.

We now illustrate how our results relate to the results in Bramoullé and Kranton (2007).

Corollary 1 An equilibrium x is an asymptotically stable point if and only if x is specialized

and associated with a maximal independent set of order 2.

The proof of this corollary relies on the fact that when focusing on isolated equilibria, the

first step of theorem 1 excludes interior isolated equilibria from being attractors, and on the

fact that the conditions of theorem 1 are trivially satisfied in that case: when M is a maximal

independent set of order 2, the influence set of every individual in M is empty, thus complete.

Note that this corollary is very close from Theorem 2 in Bramoullé and Kranton (2007).

There are two important differences: first they consider discrete-time BRD. Second, in their

settings, these asymptotically stable points are the only stable outcomes of the dynamics. In

particular many graphs have no stable outcomes. In contrast, as we stated in Remark 2, there

is always at least one attractor, for any δ. When δ = 1 we provide a constructive proof to

this statement:

Let a maximum independent set of an undirected graph G be a maximal independent set

of largest cardinality. Now, let x be a specialized Nash equilibrium associated to a maximum
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independent set of a network M(x). Then G[i, x] is complete ∀i ∈ M(x). Assume it is not

the case. This implies the existence of an individual i in M(x) and at least two individuals j1

and j2 in I(i, x) that are not linked. Furthermore, they are not linked to any other individual

in M(x) by definition. Thus, we can construct another specialized Nash equilibrium x′ such

that M(x′) = M(x) \ {i} ∪ {j1, j2}. The set M(x′) is also a maximal independent set, and

|M(x′)| > |M(x)|, a contradiction.

5 Stability - The Case of Imperfect substitutes

In this section we consider the case δ 6= 1, which was investigated in Bramoullé et al. (2014).

Let us briefly recall the results they obtained regarding stability. First, if interactions are low

enough, i.e. λmin(G) > −1/δ11, then the game has a unique (thus isolated) equilibrium. This

implies that it is an attractor because it must be a strict maximum of the potential. Second,

whenever interactions are higher, i.e. λmin(G) ≤ −1/δ, then if x is a Nash equilibrium that

is both isolated and such that no individual is weakly inactive, x is an attractor if and only if

λmin(GA(x)) > −1/δ.

Here, we pursue this analysis without restricting our attention to isolated points nor to

equilibria without weakly inactive agents. Although we do not get as sharp a characterisation

as for the case of perfect substitutes, we provide some useful results. Let Ã(x) := A(x)∪WI(x)

and GÃ(x) be the subgraph of G restricted to agents in Ã(x).

Proposition 6 Let x be a Nash equilibrium.

If λmin(GA(x)) < −1/δ, then x is not a local maximum of P .

If λmin(GA(x)) = −1/δ, then x is not a strict local maximum of P .

If λmin(GÃ(x)) > −1/δ then x is a strict local maximum of P and x is specialized.

If λmin(GÃ(x)) = −1/δ, then x is a local maximum of P .

This proposition is very close to Proposition 4 in Bramoullé et al. (2014). The distinction

with their result requires some comment that will help understand the main issue caused by

the presence of weakly inactive agents.

The importance of the lowest eigenvalue resides in the fact that its associated eigenvector

provides the deviation from x that will increase the most the potential. This value is thus

critical in determining whether an equilibrium x is a local maximum or not. When there are no

weakly inactive agents, this deviation is always admissible, in the sense that the action profile

remains in the state space. Indeed, every agent in A(x) plays an action in ]0, 1[, so that after

any small deviation their actions remain in ]0, 1[. A consequence is that the lowest eigenvalue

of the subgraph of active agents, i.e. GA(x), gives a necessary and sufficient condition.

11Recall that λmin(G) denotes the lowest eigenvalue of G.
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If some agents are weakly inactive, this direction could be non-admissible, and thus the

lowest eigenvalue of the subgraph of active players is no longer a sufficient indicator to deter-

mine stability. It remains a necessary condition, while the sufficient condition now relies on

the subgraph of active and weakly inactive agents, i.e. GÃ(x).

Now, whenever λmin(GA(x)) > −1/δ > λmin(GÃ(x)) many things can happen. As in the

previous section, we obtain our results by analyzing the behavior of the potential function.

In the case of perfect substitutes, we showed (Proposition 4) that it was sufficient to focus

on subgraphs of G. Here we rely on some equivalent property. Let M be a subset of N .

We denote by PM the restriction of P to the subgraph induced by vertices in M (so that

PN = P ).

Lemma 3 Let x be a Nash equilibrium. Then x is a local maximum of P if and only if the

restriction of x to Ã(x), xÃ, is a global maximum of P Ã.

Thus, strictly inactive agents can be ignored when trying to determine whether an equi-

librium is a local maximum. Moreover, while x is a local maximum, xÃ is a global maximum,

which makes it easier to check if an equilibrium x can be discarded. This lemma includes

the case δ = 1, in which case it says that one can focus on influence sets. This can be seen

by noticing that the subgraph induced by all agents in Ã(x) is precisely the union of all the

subgraphs G[Ck, x].

Based on this, we have the following theorem that helps determining if an equilibrium or a

component is an attractor. We define the set Z := {y ∈ [0, 1]N ; yi > 0⇒ yi + δ(Gy)i ≤ 1} as

the set of all acceptable profiles. The set Z includes all the Nash profiles, but it also includes

profiles in which aggregate efforts around some agents are lower than 1.

Theorem 2 Let x be any Nash equilibrium. The following statements are equivalent:

(i) x is a local maximum of the potential.

(ii) for any y ∈ Z, if A(y) ⊂ Ã(x) then
∑

i xi ≥
∑

i yi;

(iii) for any Nash equilibrium x′ such that A(x′) ⊂ Ã(x), we have SI(x′) ∩A(x) = ∅;

This theorem provides two necessary and sufficient conditions, but their interpretation is

not as straightforward as for the case δ = 1. Still, it is very useful to check if an equilibrium

is not a local maximum.

First, condition (ii) gives us a large set of profiles to choose from (those in Z) and counter-

examples can be found on the subgraph GÃ(x) instead of the entire network G. Let us

illustrate this on an example. Assume the network of Figure 8 represents a component of

active and weakly inactive agents lying in a bigger network, and that an effort profile x is
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a Nash equilibrium on the entire network with δ = 1/3. In order to check if it is a local

maximum, it is sufficient to focus on the subgraph Ã(x) that we have represented. The sum

of efforts at xÃ is 3. However, it is easy to find another profile involving the same set of

agents, such that the sum of efforts is greater. Even though this alternative profile is not a

Nash equilibrium, theorem 2 tells us that x is not a local maximum.

3/4 3/4 3/4 3/4

6/7 3/7 6/7

Figure 8: δ = 1/3. A subgraph containing two pairs and a six agents graph. The dark line means that
both agents in both pairs are linked to all six agents in the bottom graph. Upper left panel:
a Nash equilibrium x where the agents in the bottom graph are weakly inactive. Upper right
panel: a non-Nash profile where the sum of efforts exceeds that of x. This is sufficient to
conclude that x is not a local maximum. Lower Panel: A Nash equilibrium which is a local
maximum, where active agents are now strictly inactive.

Second, condition (iii) offers an alternative strategy. This one consists in looking for an

alternative Nash equilibrium by transforming some agents in Ã(x) into strictly inactive agents,

while all the active agents in the new equilibrium are already in Ã(x). Because the number
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of agents in Ã(x) is finite, this provides an algorithmic procedure to find the equilibria and

check whether they are local maxima. We describe this algorithm in the appendix.

Remark 4 Theorem 2 implies that a specialized Nash equilibrium x is a local maximum if

and only if G[ik, x] is complete for every k, when δ = 1. To see this, suppose first that for

some k0, G[ik0 , x] is not complete. Let j, j′ ∈ G[ik0 , x] be un-linked and construct the profile

y as:

yik = 1 ∀k 6= k0; yj = 1, yj′ = 1 and yi = 0 otherwise.

Clearly {j, j′, (ik)k 6=k0} is an independent set so that y ∈ Z. However
∑

i yi >
∑

i xi and x is

not a local maximum of P by (ii). Let us prove the reverse implication. Suppose that G[ik0 , x]

is complete for every k. Let x′ be a Nash equilibrium with A(x′) ⊂ Ã(x). Then for any k

we have ik /∈ SI(x′) because
∑

i∈G[ik,x] x
′
i ≤ 1. Consequently x is a local maximum of the

potential by (iii).

6 Alternative dynamics

In the previous sections, we characterized the attractors of ẋ = −x + Br(x). As mentioned

earlier, this dynamical system is sometimes used to study the asymptotic stability of Nash

equilibria. However, other dynamical systems are often examined, either for the same purpose,

or because they are related to the behavior of learning processes. In this section, we illustrate

how our results are useful for alternative dynamical systems.

6.1 Continuous-time dynamics

As the reader might have noticed, the analysis just exposed does not really rely on the

properties of the best-response function. Rather, it relies on the existence of a potential

function which plays the role of a Lyapunov function with respect to this dynamics. Thus,

any dynamical system which has this property will share exactly the same set of attractors.

Let V : X → RN be a Lipschitz map and suppose that the two following conditions hold.

Hypothesis 1 ∀x ∈ X, xi = 0⇒ Vi(x) ≥ 0; xi > 1⇒ Vi(x) < 0.

Let DP (x) :=
(
∂P
∂x1

(x), ..., ∂P∂xN (x)
)

.

Hypothesis 2 V is such that V (x) = 0 if x ∈ NE and

〈DP (x), V (x)〉 > 0, ∀x /∈ NE. (7)

Remark 5 The map V (x) = −x+Br(x) satisfies Hypothesis 1 and 2.
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Consider the following ordinary differential equation:

ẋ = V (x) (8)

Hypothesis 1 along with the fact that V is Lipschitz guarantee that the system (8) admits

unique forward solutions into [0, 1]N , from any x ∈ [0, 1]N . In other terms [0, 1]N is positively

invariant. This implies the existence of a semi-flow ϕ on [0, 1]N such as in (5). Hypothesis 1

is natural in our context, since individuals that are alone would choose to exert an effort level

of 1. Thus no one would increase its effort above 1 when efforts are substitute.

Hypothesis 2 guarantees that the potential P is a strict Lyapunov function for ẋ = V (x)

and thus Lemma 1 holds.

Proposition 7 Under Hypothesis 1 and 2, both Theorem 1 and Theorem 2 hold for the

dynamical system ẋ = V (x).

6.2 Discrete-time dynamics

In the learning literature, discrete-time dynamics have often be considered. Here, we explore

the connections between (BRD) and other standard discrete-time dynamics which make use

of the best response. We distinguish between systems where players revise their actions

simultaneously, and systems where they revise sequentially.

The first system is the best-response dynamics with incomplete adjustments (SimBRκ),

which was introduced by Fisher (1961), where players simultaneously adjust their action in

the direction of (and not necessarily to) the best response; the second is the best-response

with simultaneous updating and vanishing speeds of adjustments (SimBRκt), and the third

one is the sequential best-response where one player is picked at random at every period and

is given the opportunity to adjust his action (SeqBR).

(SimBRκ) Let κ ∈]0, 1]. The discrete-time best-response dynamics with simultaneous updating and

parameter κ is given by

xt+1 = (1− κ)xt + κBr(xt); (9)

(SimBRκt) Let (κt)t be a sequence of positive real numbers such that limt κt = 0 and
∑

t κt = +∞.

The vanishing discrete-time best-response dynamics with simultaneous updating is given

by

xt+1 = (1− κt)xt + κtBr(xt); (10)

(SeqBR) Let π ∈ ∆(N ) be a probability distribution with full support (π := mini π(i) > 0) and

It be a sequence of i.i.d random variables taking values in N with distribution π. The

discrete-time best-response random process with sequential updating is given by

xItt+1 = Bri(x
−It
t ), xit+1 = xit for i 6= It. (11)
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As we show with the following propositions, attractors for the sequential best-response

process and for the simultaneous vanishing best-response coincide with the attractors for

(BRD). However, the simultaneous best-response with parameter κ behaves differently: if

Λ is an isolated attractor for (BRD) (i.e. a maximal independent set of order 2) then Λ

is an attractor for (SimBRκ), for any κ ∈]0, 1]12. However, attractors for (BRD) are not

necessarily attractors for (SimBRκ), and some strange, disconnected non-equilibrium sets

can be attractors for (SimBRκ) while they are not for the (BRD). This is due to the non-

vanishing size of adjustment between subsequent iterations that these dynamics allow for.

Let x̂ be a specialized Nash equilibrium. Define p(x̂) := maxi∈A(x̂){|G[i, x̂]|} and p(Λ) :=

maxx̂∈Λ p(x̂).

Proposition 8 (SimBRκ) Assume Λ is an attractor for (BRD). If κ ≥ 2
p(Λ) then Λ is not

an attractor for (SimBRκ).

Since this dynamical system’s behavior is different, let us provide some details. The (BRD)

consists in marginal increments in the direction of the best response, while the SimBRκ makes

discrete adjustments towards the best response. These jumps are responsible for the difference

in behavior.

Whenever these jumps are small enough, the behaviors sometimes coincide, while they

always differ when these jumps become large. The differences are of two kinds. First, some

attractors for (BRD) are not attractors for (SimBRκ); second, attractors for (SimBRκ) are

not necessarily connected components (and thus cannot be attractors for (BRD)). Consider

the simplest network formed of a pair. There is a unique component of Nash equilibria, which

is an attractor for (BRD), given by Λ = {(1 − α, α), α ∈ [0, 1]}. It contains two specialized

Nash equilibria, (1, 0) and (0, 1), thus p(Λ) = 2. Proposition 8 tells us that attractors will

differ as soon as κ ≥ 1. Assume κ = 1. Then the dynamical system is given by xt+1 = Br(xt).

Assume that the process starts in a neighborhood of, say, (2
3 ,

1
3), which is a Nash equilibrium;

for instance at the profile x0 = (2
3 − ε1, 1

3 + ε2) for arbitrary small values of ε1 and ε2. Then

x1 = (2
3 − ε2, 1

3 + ε1), and x2 = (2
3 − ε1, 1

3 + ε2) = x0. In fact, x2n = x0 and x2n+1 = x1 for

any n, so that the system never goes back to (2
3 ,

1
3). However, as soon as κ < 1, the system

will go back to the initial equilibrium and the component Λ will be an attractor.

Now, consider the three agents complete network. Here again, there is a unique component

of Nash equilibria, which is an attractor for (BRD), given by Λ = {(α, β, 1− α− β), α, β, 1−
α − β ∈ [0, 1]}. Here, p(Λ) = 3 and thus the critical value is for κ = 2

3 . When κ ≥ 2
3 ,

the same reasoning as above illustrates why Λ is not an attractor for (SimBRκ). Moreover,

taking initial conditions (a, a, a) with a 6= 1/3 we can show that the (one-dimensional) system

12In Bramoullé and Kranton (2007), this statement was proved for κ = 1 but the proof can be adapted for
any κ ∈]0, 1].
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converges to the periodic orbit ( 1
1+3(1−κ) ,

1−κ
1+3(1−κ)). This set is non-connected and contains

only non-Nash profiles.

Proposition 9 (SimBRκt and SeqBR) The systems (BRD), (SimBRκt) and (SeqBR)

have the same attractors.

Note that (11) is stochastic and (10) is not time-homogeneous. Hence we must be careful

with the definitions of an attractor. We give precise statements and prove them in the

appendix.

This result suggests that our analysis is robust to variations of the dynamical system, as

long as the systems do not consist of discontinuities of non-vanishing size.
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7 Appendix

7.1 Proofs of Sections 2 and 3

Proof of Proposition 1. We first show that NE is a finite union of compact convex sets.

Let A be a subset of agents and NEA be the set

{x ∈ NE : xi = 0 ∀i /∈ A, xi + δ(Gx)i = 1 ∀i ∈ A} .

It is not hard to see that NEA is closed. Now let x, y ∈ NEA, λ ∈ [0, 1] and z = λx+(1−λ)y.

If i /∈ A, xi = yi = 0. Hence zi = 0. If i ∈ A

zi + (Gz)i = λ(xi + δ(Gx)i) + (1− λ)(yi + δ(Gy)i) = 1.

Clearly NE = ∪A∈P(N)NE
A where each NEA is compact and convex. As a consequence

there exist connected components of NE Λ1, ..., λL such that NE = ∪Ll=1Λl. �

Proof of Proposition 2. Let M = {m1, . . . ,mp−1,mp} and M ′ = {m1, . . . ,mp−1,m
′
p},

with mp 6= m′p. Then necessarily mp and m′p are linked. Indeed, because M is a maximal

independent set, every agent in N \M is linked to at least one individual in M . This is true

in particular for individual m′p. However, because m′p ∈ M ′, he cannot be linked to anyone

in {m1, . . . ,mp−1}. Thus he is linked to mp. Then, one can check that the profile x is a NE,

where xi = 0 if i ∈ N \ (M ∪m′p), xmi = 1 for all i ∈ {1, . . . p−1}, and xmp = α, xm′p = 1−α,

for any α ∈ [0, 1]. �

Proof of Lemma 1. We have ∂P
∂xi

(x) = 1− xi − δ(Gx)i. Thus

〈DP (x),−x+Br(x)〉 =
∑
i

∂P

∂xi
(x)(−xi +Bri(x−i)).

If i ∈ SI(x) then−xi+Bri(x−i) = 0. Also ∂P
∂xi

(x) = −xi+Bri(x−i) if i /∈ SI(x). Consequently

〈DP (x),−x+Br(x)〉 =
∑

i/∈SI(x)

(−xi +Bri(x−i))
2 ≥ 0.

If x /∈ NE, then this quantity is strictly positive. This proves the first point.

We now prove that P is constant on NEA. Let PA : RA → R be defined as

PA(z) =
∑
i

zi −
‖z‖2

2
− 1

2
δ 〈z,GAz〉 .

For x ∈ NEA, let xA = (xi)i∈A. We then have PA(xA) = P (x). Moreover, for i ∈ A,

∂PA

∂zi
= 1− zi − δ(GAz)i.
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By definition of NEA, we then have

{xA : x ∈ NEA} ⊂ {z ∈ RA : ∇zPA = 0}.

Now PA is C∞ and, by Sard’s Theorem, PA({xA : x ∈ NEA}) has Lebesgue measure zero

in RA. As an immediate consequence, PA is constant on {xA : x ∈ NEA} , which directly

implies that P is constant on NEA. Since NE is a finite union of sets on which P is constant,

P must remain constant on any connected component of NE. �

Proof of Lemma 2. Although this is a classical result from the dynamical system theory, the

proof might slightly differ with respect to the assumptions made. Hence we sketch the proof

in our settings for convenience. We prove this lemma for any dynamical system ẋ = V (x)

where V (.) satisfies Hypothesis 1 and 2 in section 6. This includes the case of ẋ = −x+Br(x).

First, w(x0) is a connected compact and invariant (possibly empty) set. Note that, for

any x0 ∈ X and any r > 1, ϕ(x0, t) ∈ [0, r]N for t large enough. Indeed, if xi ≥ r then

ẋi = Vi(x) < 0. That means that, for any x0 ∈ X, ω(x0) is nonempty and contained in

[0, 1]N . For any x ∈ ω(x0), we have P (x) = limt→+∞ P (ϕ(x0, t)) because P increases along

trajectories. Now ω(x0) being invariant directly implies that ϕ(x, t) ∈ ω(x0) and hence that

P (ϕ(x, t)) = P (x) = P (ϕ(x, 0)) for any t ≥ 0. This means that x ∈ NE by lemma 1. Thus

ω(x0) ⊂ NE. Since ω(x0) is nonempty and connected, it must necessarily be contained in a

connected component of NE, i.e. ω(x0) ⊂ Λl for some Λl in the decomposition of proposition

1. �

Proof of Proposition 3. First we prove the following lemma:

Lemma 4 Let Λ be a connected component of NE and assume that for any x ∈ Λ, x is a

local maximum of P . Then Λ is a local maximizer set of P .

Proof. By Lemma 1, P is constant on Λ. Let v := P (Λ). Assume by contradiction that there

exists a sequence (xn)n ∈ X \ Λ such that limn d(xn,Λ) = 0 and P (xn) ≥ v. By compactness

of Λ, we can assume without loss of generality that limn xn = x ∈ Λ. Let U be an open

neighborhood of x such that P (x) ≥ P (y), ∀y ∈ U . We have P (ϕ(xn, t) > v for t > 0. Let

tn be a sequence of real numbers such that tn ↓n 0. For n large enough and t small enough

ϕ(xn, t) ∈ U , a contradiction. �

Now we can prove the proposition. Let Λ be a connected component of Nash equilibria.

By Lemma 4, we only need to prove that Λ is an attractor if and only if it is an isolated local

maximizer set of P . Let us first prove the direct implication. Λ is connected and by Lemma

1, P is constant on Λ. Let v := P (Λ). If Λ was not a local maximizer set of P then there

would exist a sequence xn such that d(xn,Λ)→n 0 and P (xn) > v. Since Λ is isolated in NE
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we have xn ∈ X \NE and P (ϕ(xn, t)) > P (xn) > v for any t > 0. Hence d(ϕ(xn, t),Λ) 9 0

and Λ is not an attractor.

We now prove the reverse implication, namely that if Λ is a local maximizer set of P then it

is an attractor for ẋ = −x+Br(x). Since P is a strict Lyapunov function for ẋ = −x+Br(x),

the statement we want to prove is then a consequence of Proposition 3.25 in Benäım et al.

(2005). We adapt the proof in our context for convenience. Let Ur := {x ∈ U : P (x) > v−r}.
Clearly ∩rUr = Λ. Also ϕ(Ur, t) ⊂ Ur, for t > 0, r small enough13. This implies that

Λ = ∩r>0Ur contains an attractor A (see Conley (1978)). The potential being constant on Λ,

A cannot be strictly contained in Λ and therefore Λ is an attractor. �

7.2 Proofs of Sections 4 and 5

We first prove a lemma that will be useful in what follows.

Lemma 5 We have

• Let x ∈ NE and v be such that x+ v ∈ RN+ . Then

P (x+ v) = P (x) +
∑

i∈SI(x)

vi(1− δ(Gx)i))−
1

2

(
‖v‖2 + 〈v, δGv〉

)
.

• Let x and y be a Nash equilibria. Then

P (y)− P (x) =
1

2

 ∑
i∈SI(x)

yi(1− δ(Gx)i)−
∑

i∈SI(y)

xi(1− δ(Gy)i)


Proof. Let us prove the first point.

P (x+ v) = P (x) + 〈v,1〉 − 〈v, x〉 − 1

2
‖v‖2 − 1

2
δ (〈v,Gx〉+ 〈x,Gv〉+ 〈v,Gv〉)

= P (x) + 〈v,1− x− δGx〉 − 1

2

(
‖v‖2 + 〈v, δGv〉

)
= P (x) +

∑
i∈SI(x)

vi(1− δ(Gx)i)−
1

2

(
‖v‖2 + 〈v, δGv〉

)
.

For the second point, if y is a Nash equilibrium. Let v = y − x. Using the previous equality,

P (y)− P (x) =
∑

i∈SI(x)

vi(1− δ(Gx)i))−
1

2

(
‖v‖2 + 〈v, δGv〉

)
.

and

P (x)− P (y) =
∑

i∈SI(y)

−vi(1− δ(Gy)i))−
1

2

(
‖v‖2 + 〈v, δGv〉

)
.

13We need to make sure that r is small enough such that Ur = P−1([v − r, v]) ⊂ U
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Combining these two inequalities, we obtain

2(P (y)− P (x)) =
∑

i∈SI(x)

vi(1− δ(Gx)i)) +
∑

i∈SI(y)

vi(1− δ(Gy)i))

=
∑

i∈SI(x)

yi(1− δ(Gx)i))−
∑

i∈SI(y)

xi(1− δ(Gy)i))

which gives the result. �

Proof of Proposition 4. First assume that there exists k such that G[Ck, x] is not complete.

Then one of the two following cases occurs:

a) there exists j ∈ I(Ck, x) such that the restriction of G to Ck ∪ {j} is not complete. Let

then v be the eigenvector associated to the lowest eigenvalue λ of this graph with vj ≥ 0. We

then have

P (x+ v) = P (x)− 1

2

(
‖v‖2 + 〈v,Gv〉

)
= P (x)− 1

2
(1 + λ) ‖v‖2 > P (x),

because λ < −114. Thus x is not a local maximum of P .

b) otherwise there necessarily exist j1, j2 ∈ I(Ck, x) such that j1j2 /∈ G. Pick any i ∈ Ck and

let xε be defined by xεj1 = xεj2 = ε, xεi = 1− 2ε. We then have

P (xε) = P (x)− 1

2

(
4ε2 − 6ε2

)
> P (x),

which concludes the proof of the first implication.

Suppose now that G[Ck, x] is complete for any k. Then any j ∈ WI(x) belongs to exactly

one influence set. Let v be such that xi+vi > 0 for any i ∈ A(x) and vj ≥ 0 for any j /∈ A(x).

We must prove that P (x+ v) ≤ P (x). We have

P (x+ v) ≤ P (x)− 1

2

(
‖v‖2 + 〈v,Gv〉

)
≤ P (x)− 1

2

K∑
k=1

(
‖vk‖2 +

〈
vk,Gkv

k
〉)
≤ P (x),

where Gk := G[Ck, x] and vk is the restriction of v to the agents in Gk. The second inequality

is due to the fact that 〈v,Gv〉 is equal to
∑K

k=1

〈
vk,Gkv

k
〉

with the addition of positive terms

(the other links are between inactive agents, for which vj ≥ 0). The last inequality is due to

the fact that λmin(Gk) = −1, and
〈
vk,Gkv

k
〉
≥ λmin(Gk)‖vk‖2. �

Proof of Theorem 1.

We prove theorem 1 by showing the two following properties:

14Since λ(Kn) = −1, where Kn is the complete network of size n, and λ(G) < λ(Kn) for any non-empty
network G of size n different from Kn.
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Claim 1 Let Λ be an attractor for ẋ = −x+Br(x). Then Λ contains at least one specialized

Nash equilibrium

Claim 2 Let Λ be a connected component of NE containing some specialized Nash equilibria.

Then Λ is an attractor if and only if, for every specialized Nash equilibrium x that it contains,

x is a local maximum of P

Proof of Claim 1. Let Λ be an attractor, that we assume to be connected without loss of

generality. We need to prove that it intersects the set of specialized Nash equilibria. let x ∈ Λ

and assume without loss of generality that x is not specialized. Let A(x) = C1 ∪C2 ∪ ...∪CK
be the decomposition (6) according to the active agents in x. Since Λ is an attractor, every

G[Ck, x] is a complete graph by proposition 4. Since GA(x) is a union of complete graphs, one

of which is not a singleton (otherwise x would be specialized), we have λmin(GA(x)) = −1.

Let u ∈ R|A(x)| be a unit eigenvector associated with eigenvalue −1 and v ∈ RN be defined by

vi = ui ∀i ∈ A(x) and vj = 0 ∀j /∈ A(x). We then have P (x+λv) = P (x) by Lemma 5. Thus,

as long as x + λv ∈ RN+ , it is a Nash equilibrium. Indeed assume that this is not the case.

Then there would exist λ0 > 0 such that x + λ0v ∈ Λ and x + λnv /∈ NE for some sequence

(λn)n such that x+ λnv ∈ RN+ , λn > λ0 and limn λn = λ0. Also P (x+ λnv) = P (x+ λ0v) by

point (i) of Lemma 5, which implies that

P (ϕ(x+ λnv), 1/n)) > P (x+ λnv) = P (x+ λ0v).

This is in contradiction with the fact that x+ λ0v is a local maximum of P and therefore in

contradiction with the fact that Λ is an attractor.

Now let λ := max{λ > 0 : x + λv ∈ RN+}. Necessarily there exists i ∈ A(x) such that

xi + λvi = 0. Clearly x+ λv ∈ Λ and |A(x+ λv)| < |A(x)|. By reiterating this reasoning, the

set of active agents will be reduced until every component is a singleton, i.e. until reaching

some x̂ that is specialized. �

Proof of Claim 2. The first implication is a direct consequence of Proposition 3.

For the reverse implication, assume Λ is a connected component of Nash equilibria that

intersects the set of specialized Nash equilibria and suppose that every specialized Nash equi-

librium in Λ is a local maximum of P . Consider any x ∈ Λ with decomposition of actives

C1, ..., Ck. We must prove that G[Ck, x] is complete for all k = 1, ...,K, since that will

guarantee that x is a local maximum.

Pick any specialized Nash equilibrium x̂ and any continuous path x : [0, 1] → Λ such that

x(0) = x̂, x(1) = x. Denote by (Ctk)k=1,...,K(t) the decomposition of actives in x(t), that is

A(x(t)) = ∪K(t)
k=1 C

t
k and Gt

k := G[Ctk,x(t)].
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Along this path, the decomposition of actives (6) changes. However, note that if Ctk is com-

plete, it can only become an incomplete graph if a new agent enters Ctk. Indeed, if an agent

leaves Ctk, then the complete graph remains complete.

Assume first that ∀i ∈ N and ∀t < t′ we have i ∈ SI(x(t)) ⇒ i ∈ SI(x(t′)) (that is strictly

inactive agents always remain so along the path) then Gt
k is obtained from G0

k by possibly

removing some agents (agents in G0
k that become strictly inactive along the path). Thus for

any t ∈ [0, 1] and any k, Gt
k is complete, which proves the result.

Otherwise there exists 0 = t0 < t1 < t2 < ... < tN ≤ 1

such that

tn+1 := inf{t > tn : ∃i ∈ I(x(t)), ∃ε > 0 such that i ∈ SI(x(t′)) ∀t′ ∈]t− ε, t[}

These are the instants along the path when some strictly inactive agents become weakly

inactive (and hence enter some G[Ctk,x(t)]).

Consider the following property:

∀j ∈ SI(x(t)), ∃k ∈ {1, ...,K(t)} : Ctk ⊂ Nj , (P(t))

that is, at time t, any strictly inactive agent is linked to all agents of at least one connected

component of active agents. Note that the set {t : P(t) does not holds} is an open set.

Let n ∈ {0, ..., N −1}. We claim that if x(tn) is a local maximum of P and (P(tn)) holds then

x(t) is a local maximum for any t ∈ [tn, tn+1], and (P(t)) holds for any t ∈ [tn, tn+1]. Since

x(0) = x̂ is a local maximum of P by assumption and P(0) holds since x̂ is a specialized Nash

equilibrium, this will prove the result.

Note that for t ∈]tn, tn+1[, every strictly inactive agent remains strictly inactive so that

Gt
k remains complete. Therefore x(t) is a local maximum. Suppose that (P(t)) does not

hold for some t ∈]tn, tn+1]. We will show that this allows to construct a specialized Nash

equilibrium profile x̃ which belongs to Λ and is not a local maximum of the potential. This

will contradict the hypothesis that every specialized Nash equilibrium is a local maximum of

P . The arguments which follow are illustrated on Figure 9.

If (P(t)) does not hold for some t ∈]tn, tn+1], then necessarily there would exist some

t∗ ∈ [tn, tn+1[15 such that (P(t)) holds for t ∈ [tn, t
∗] and does not hold for t ∈]t∗, t∗ + ε[, for

sufficiently small ε > 0. In that case there would exist j∗ ∈ SI(x(t∗)) and n∗ ≥ 1 such that

{1, ..., n∗} = {k ∈ {1, ...,K(t∗)} : Ct
∗
k ⊂ Nj∗}

15Carefully observe that if (P(t)) holds for t ∈ [tn, tn+1[ then P(tn+1) also holds, since no agent can be
active at time tn+1 while being weakly inactive for t ∈]tn+1 − ε, tn+1[.
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and i1 ∈ I(Ct
∗

1 ), ..., in∗ ∈ I(Ct
∗
n∗) such that j∗ is not linked to any of the in and in ∈ Ctn for

t ∈]t∗, t∗ + ε[. 16.

We now construct a specialized Nash equilibrium x̃ belonging to Λ which is not a local

maximum of the potential. Note that x̃ is not necessarily on the path (x(t))t∈[0,1].

Assume for simplicity that n∗ = 1. Pick any l1 ∈ Ct∗1 . For k = 2, ...,K(t∗), choose lk ∈ Ct
∗
k

which is not linked to j∗. Let x̃ be defined as follows:{
x̃lk = 1 for k = 1, ...,K(t∗)
x̃i = 0 otherwise (in particular, x̃j∗ = 0).

Then x̃ belongs to Λ and is a specialized Nash equilibrium (any strictly inactive agent is

connected to every agent in at least one Ct
∗
k , and consequently is linked to at least one of the

lk). However G[l1, x̃] is not complete, because it contains both j∗ and i1, who are not linked

together. Thus x̃ is not a local maximum of the potential. This proves that P(t) holds for

t ∈ [tn, tn+1]. A construction in the same spirit allows us to reach the same conclusion when

n∗ > 1.17

We finally need to prove that x(tn+1) is a local maximum of P , that is G
tn+1

k is complete for

k = 1, ...,K(tn+1). Suppose that agents j1, ..., jP go from strictly inactive to weakly inactive

at time tn+1. By property P(tn + 1) there exists a partition (J1, ..., JR) of {j1, ..., jP } (with

R ≤ P ) and k1, ..., kR such that

C
tn+1

kr
⊂ Njp , ∀jp ∈ Jr.

Note that since jp is linked to every agent in C
tn+1

kr
and is not strictly inactive at time tn+1

we necessarily have Njp ∩ Ctn+1

k = ∅ for k 6= kr. Now choose i1, ..., iK(tn+1) in respectively

C
tn+1

1 , ..., C
tn+1

K(tn+1) and consider a profile x∗ defined as follows: x∗ik = 1 and x∗i = 0 otherwise.

Let us prove that x∗ is specialized. Consider any path going from x(tn+1) to x∗ by continuously

transferring effort from agents in C
tn+1

k \ {ik} to ik. Then the sum of effort in Ck remains

equal to one. Now let us partition the weakly inactive and strictly inactive agents at time

tn+1 in three categories and check that they remain active or weakly inactive (that is none of

them has strictly less than one among his neighbors):

16To sum up, at time t∗, j∗ is a strictly inactive agent who is linked to every agents in C1(t∗), ..., Cn∗(t∗).
However agents i1, ..., in are not linked to j∗ and become active precisely after instant t∗ (so that i1 ∈ Ct1 for
t > t∗), which means that property P(t) does not hold any more after time t∗.

17If n∗ > 1 then the construction of x̃ needs to be modified. Pick any l∗n ∈ Ct
∗
n∗ . For k = n∗ + 1, ...,K(t∗),

choose lk ∈ Ct
∗
k which is not linked to j∗. Then define x̃ as follows:

x̃in = 1 for n = 1, ..., n∗ − 1
x̃lk = 1 for k = n∗, ...,K(t∗)
x̃i = 0 otherwise (in particular, x̃j∗ = 0).

Then the conclusion follows from the same fact: G[ln∗ , x̃] contains both j∗ and in∗ who are not linked
together.

31



j∗

2/3
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1/6

l2

l1

i1

Ct∗
1

Ct∗
2

j∗
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l2

l1

i1

G([l2, x̃)
G[l1, x̃]

Figure 9: Illustration of the construction of x̃ when n∗ = 1. Left panel: the profile x(t) is a Nash
equilibrium. Agent j∗ is strictly inactive, and linked to every agent in the component
Ct∗

1 , and not to every agent in component Ct∗
2 . Agent i1 belongs to I(Ct∗

1 ). This is the
configuration which should arise if property P(t) did not hold after time t∗. Right panel:
With such a configuration, we can construct the profile x̃, where black circles represent
agents exerting an effort of 1 and white circles represent agents exerting 0 effort. This profile
is a Nash equilibrium and it is specialized. Agent j∗ now belongs to G[l1, x̃], which is not
complete since i1 also belongs to G[l1, x̃]. Thus x̃ is not a local maximum of the potential,
which contradicts the hypothesis.

∗ agents j1, ..., jP are connected to every agent in exactly one of these components so that

they remain weakly inactive along the path;

∗ agents in I(C
tn+1

k ) \ {j1, ..., jP } remain weakly inactive along the path, as they are

connected to every agent in C
tn+1

k ;

∗ at last strictly inactive agents remain strictly inactive or at least weakly inactive agents

along the path, because they are linked to at least one of the ik.

Consequently x∗ is specialized and G[ik, x
∗] is complete by assumption. However we have

G
tn+1

k = G[ik, x
∗]. This concludes the proof. �

Proof of Proposition 5. Suppose that Λ is an attractor and let x, x′ be two specialized

Nash equilibria (with corresponding maximal independent sets M,M ′). Let x(·) : [0, 1] → Λ

be a continuous path such that x(0) = x and x(1) = x′ and Dt(x) be the decomposition in

(disjoint) complete subraphs of agents in N \ SI(x(t)). Define

T1 := inf{t > 0 : Dt(x) 6= D0(x)}, Tk+1 := inf{t > 0 : Dt(x) 6= DTk(x)}

We assume that the path we chose is such that this sequence is finite: DTK (x) is the decompo-

sition corresponding to x′. Note that it can be implicitely assumed without loss of generality

that for any t any maximal independent set M ∈ Dt(x) (i.e. that can be constructed in by

putting in each complete subgraph exactly one agent at one) is on the path. At time Tk, two

mutually exclusive events can occur:
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(i) (at least) one agent becomes strictly inactive (i.e. inactive at time Tk and strictly

inactive at time t > Tk). In that case DTk(x) 6= DT+
k ;

(ii) (at least) one agent stops being strictly inactive (i.e. strictly inactive for t < Tk and not

strictly inactive at time Tk). Here DTk(x) 6= DT−k

Case (i) is not really relevant because any maximal independent set that can be constructed

at time T+
k already existed at time Tk. As a consequence proving our claim amounts to

showing that, for any k for which case (ii) occurs there exists a pair maximal independent

sets M−k ∈ DT−k (x) and Mk ∈ DTk(x) such that |M−k ∩Mk| = p− 1.

Pick a pair of maximal independent set M−k ∈ DT−k , M̂k ∈ DTk and assume they dif-

fer from exactly m agents that stop being strictly inactive precisely at time Tk: M−k =

{i1, i2, im, im+1..., ip} and M̂k = {j1, j2, jm, im+1..., ip}). Since they all become weakly inac-

tive together at instant Tk, each jl simultaneously enters into the influence set of some active

players. They cannot enter in the same influence set, otherwise they would have to be linked,

which is a contradiction. Thus they belong to m distinct influence sets. As a consequence we

can construct another maximal independent set Mk ∈ DTk(x) where only j1 is active, that is

|M−k ∩Mk| = p− 1. This concludes the proof. �

Proof of lemma 3. Cleary if x is local maximum of P then xÃ is a local maximum of

P Ã. Now suppose that there exists a sequence (xn)n in RN+ such that limn x
n = x and

P (xn) > P (x). Let zn be defined as zni := xni for i ∈ Ã(x) and zni = 0 for i ∈ SI(x).

P (zn)− P (xn) = −
∑

i∈SI(x)

xni +
1

2

∑
i∈SI(x)

(xni )2 +
∑

i∈SI(x)

xni (Gxn)i

=
∑

i∈SI(x)

xni

(
xin
2
− 1 + (Gxn)i

)

Now by definition of SI(x),

lim
n→+∞

(
xin
2
− 1 + (Gxn)i

)
= −1 + (Gx)i > 0.

Hence, P (zn) ≥ P (xn) > P (x) = P Ã(xÃ) for large enough n, a contradiction. This concludes

the proof. �

Before proving Theorem 2, let us prove a preliminary result. Recall that Z = {y ∈
[0, 1]N ; yi > 0 ⇒ yi + δ(Gy)i ≤ 1}. Then for any x ∈ Z, P (x) ≥ 1

2

∑
i xi. Furthermore,

P (x) = 1
2

∑
i xi if and only if x ∈ Z is such that yi > 0⇒ yi + δ(Gy)i = 1. This implies that

P (x) = 1
2

∑
i xi for any x ∈ NE.
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Proof: We have

P (x) =
∑
i∈A(x)

xi −
1

2

∑
i∈A(x)

xi(xi + δ(Gx)i) ≥
1

2

∑
i

xi

for any x ∈ Z, as xi(xi + δ(Gx)i) ≤ xi for any i ∈ A(x). Now the equality holds if and only

if xi + δ(Gx)i = 1 for any i ∈ A(x).

Proof of Theorem 2.

If x′ is a Nash equilibrium such that A(x′) ⊂ Ã(x) then by second point of Lemma 5 we have

P (x′)− P (x) = −1

2

∑
i∈SI(y)

xi(1− δ(GÃy)i),

thus P (x′) ≥ P (x) with equality if and only if A(x) ∩ SI(x′) = ∅.

• Let us prove that (ii) implies (iii). Under (ii) we have P (x′) = 1
2

∑
i x
′
i ≤ 1

2

∑
i xi = P (x).

Hence P (x) = P (x′), which means that A(x) ∩ SI(x′) = ∅, that is (iii) holds.

• Suppose now that (iii) holds. We then have P (x) = P (x′) for any Nash equilibrium x′ such

that A(x′) ⊂ Ã(x). In other terms, xÃ is a global maximum of P Ã. By Lemma 4 this derives

(i).

• At last Let us prove that (i) implies (ii). Pick y ∈ Z ′ such that A(y) ⊂ Ã(x). Suppose by

contradiction that
∑

i yi >
∑

i xi. We then have P (y) ≥ 1
2

∑
i yi > P (x). Let u = y − x. For

any ε ∈ [0, 1] we have x+ εu ∈ S and, by first point of Lemma 5,

P (x+ εu)− P (x) = −ε
2

2

(
‖u‖2 + 〈u, δGu〉

)
.

In particular, 0 < P (y)−P (x) = −1
2

(
‖u‖2 + 〈u, δGu〉

)
, which means that

(
‖u‖2 + 〈u, δGu〉

)
<

0 and concludes the proof that (i)⇒ (ii). �

Algorithm implementing Theorem 2:

Consider a network G and an equilibrium x.

STEP 1: Find the set Ã(x) and form the network GÃ(x) by deleting agents that are strictly

inactive in x. Form all the different possible subsets of agents in Ã(x), including the empty

set. Index these subsets by i.

For each subset i:

STEP 2: Construct the subgraph Gi
Ã(x) by deleting the agents in subset i from GÃ(x) and

compute its lowest eigenvalue λmin(Gi
Ã(x)).

• STEP 2.1: If λmin(Gi
Ã(x)) > −1/δ then there is a unique equilibrium y on Gi

Ã(x) where

every agent is active. It is obtained by inverting the matrix I + δGi
Ã(x) and summing the
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lines. Set yj = 0 for all the agents that have been deleted, check if this new profile is a Nash

equilibrium on G and check if at least one agent j who has been deleted is strictly inactive

at that profile.

- STEP 2.1.1: If both conditions are true, then x is not a local maximum.

- STEP 2.1.2: If at least one condition is not true, turn to subset i+ 1 and go to STEP 2

• STEP 2.2: If λmin(Gi
Ã(x)) ≤ −1/δ, then turn to subset i+ 1 and go to STEP 2

If all subsets have been tested, then x is a local maximum.

Obviously this algorithm can be adapted in case we do not have an equilibrium to start

with: every time the algorithm goes to STEP 2.1.1, then compute the sum of efforts of the

corresponding equilibrium and store the value. At the end of the program, compare all values.

The equilibrium with highest value is a global maximum.

7.3 Proofs of Section 6

Proof of Proposition 7. The proofs of Lemma 1, Lemma 2 and Proposition 3 carry through

naturally for the dynamics ẋ = V (x) under Hypothesis 1 and 2. The proofs of Theorem 1

and Theorem 2 only rely on these three results. �

Proof of Remark 5. The form of the best responses (1) directly implies that Hypothesis 1

holds. The proof that (BRD) satisfies Hypothesis 2 can be found in Bramoullé et al. (2014)

for instance but we provide it for convenience. It amounts to showing that, for any x /∈ NE
we have

〈DP (x),−x+Br(x)〉 =
∑
i

(1− xi − δ(Gx)i)(−xi +Bri(x−i)) > 0.

Let i be such that xi 6= Bri(x−i). Then

• if BRi(x−i) > 0, then Bri(x−i) = 1 − δ(Gx)i. This implies (1 − xi − δ(Gx)i)(−xi +

BRi(x−i)) = (1− xi − δ(Gx)i)
2 > 0, since xi 6= Bri(x−i).

• if Bri(x−i) = 0, then 1 − δ(Gx)i ≤ 0 < xi (since xi 6= Bri(x−i)) and (1 − xi −
δ(Gx)i)(−xi +BRi(x−i)) = −xi(1− xi − δ(Gx)i) > 0.

This concludes the proof. �

Proof of Proposition 8. Let x̂ ∈ Λ be a specialized Nash equilibrium and î ∈ A(x̂) be such

that |G[̂i, x̂]| = p(Λ). Let x∗ be defined by

x∗i = 1 if i ∈ A(x̂) \ {̂i}, x∗i = 1/p if i ∈ G[̂i, x̂] and x∗i = 0 otherwise.
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Then x∗ ∈ Λ. Define now x0 as the following: x0,i := x∗i for i /∈ G[̂i, x̂] and x0,i 6= 1/p if

i ∈ G[̂i, x̂]. Then ∀t ∈ N we have

xt,i = x∗i ∀i /∈ G[̂i, x̂]; xt,i = xt,j ∀i, j ∈ G[̂i, x̂],

hence xt only depends on the quantity zt defined as the common value of the xt,i, when

i ∈ G[̂i, x̂]. We now show that, lim inft→+∞ |zt − 1/p| > 0, which will conclude the proof.

Note that

zt+1 =

{
(1− κ)zt + κ(1− (p− 1)zt) = (1− pκ)zt + κ if zt ≤ 1

p−1 ,

(1− κ)zt if zt >
1
p−1

As a consequence if |zt − 1/p| < 1
p(p−1) then zt+1 = (1 − pκ)zt + κ. Thus |zt+1 − 1/p| =

|1− pκ||zt − 1/p|. If κ ≥ 2/p then lim inft→+∞ |zt − 1/p| > 0.18 �

Proof of Proposition 9. We now prove the following claims, which formally rephrase the

statement of Proposition 9: let Λ be a compact connected set. Then:

(i) Λ is an attractor for (BRD) if and only if it is an attractor19 for (SimBRκt): there exists

an open neighborhood U of Λ and T0 > 0 such that for every T ≥ T0 we have

lim
t→+∞

sup
x∈U

d(φt(T, x),Λ) = 0,

where φt(T, x) denotes the value of the (unique) solution of (10) such that x(T ) = x.

(ii) If Λ is an attractor for (BRD), with basin of attraction of Λ. Then

P
(

lim
t→+∞

d(xt,Λ) = 0 | x0 ∈ U
)

= 1

On the other hand if Λ is not an attractor for (BRD) then given any open neighborhood

U of A, there exists x ∈ U such that lim inft→+∞ d(xt,Λ) > 0 if x0 = x.

Proof of (i): First note that, given any bounded set U , there exists some positive constant

c′ > 0 (that might depend on U) such that, if xt ∈ U we have the following inequality:

P (xt+1)− P (xt) ≥ κt 〈−xt +Br(xt) | 1− xt −Gxt〉 − κ2
t c
′.

18It is actually not hard to prove that (zt)t then converges to the periodic orbit
(

1
1+p−κp ,

1−p
1+p−κp

)
19Note that (SimBRκt) is a non-homogeneous discrete-time dynamical system and the definition of attractor

must be adapted accordingly.
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Suppose that Λ is a local maximizer of P and pick an open neighborhood U of P such that

P (x) < P (Λ) for any x ∈ U \ Λ.

Let V (a) := {x ∈ U : P (x) > P (Λ)− a}20 and Vn := V (2−n). We claim that there exists

an increasing family (Tn)n∈N such that if xT0 ∈ V0 then xt ∈ Vn and for any t ≥ Tn. This will

conclude the proof that Λ is an attractor. Since d(Vn \ Vn+2, NE) > 0 there exists a constant

cn > 0 such that

〈−y +Br(y) | 1− y −Gy〉 > cn

for any y ∈ Vn\Vn+2. Let τn be an increasing sequence of real numbers such that cnκt−c′κ2
t ≥

cnκt/2 for any t ≥ τn. We now construct the sequence (Tn)n as follows: let T0 := τ0. Given

Tn, define Tn+1 as the following:

Tn+1 = max{τn+1, Tn + sn},

where sn := min{s > 0 :
∑Tn+s

Tn
κt >

1
2ncn
}. By contruction, if xTn ∈ Vn then xTn+1 ∈ Vn+1.

Indeed if xt ∈ Vn+1 for some t ≥ Tn then xs ∈ Vn+1 for any s ≥ t. Suppose now that

xTn+1 /∈ Vn+1. Then

P (xTn+1) ≥ P (xTn) + cn/2

Tn+sn∑
t=Tn

κt ≥ P (Λ)− 1

2n
+

1

2n+1
= P (Λ)− 1

2n+1
,

a contradiction. This concludes the proof.

Suppose now that Λ is not a local maximizer of P , let U be an open neighborhood of Λ and

T0 > 0. Choose x ∈ U such that P (x) > P (Λ) and let V := {y ∈ U : P (y) ≥ P (x)}. Since

we have d(V,NE) > 0, by continuity of the best responses there exists a constant c > 0 such

that for any y ∈ V we have

〈−y +Br(y) | 1− y −Gy〉 > c

Hence, if xt ∈ V we have

P (xt+1)− P (xt) ≥
c

t
− c′

t2

Choose now T > T0 large enough so that c
T − c′

T 2 > 0. Clearly lim inft d(xt,Λ) > 0 and (7.3)

does not hold. �

Proof of (ii). We first note that the potential is (strictly) increasing with time as long as

the process does not reach a Nash equilibrium: more precisely we claim that

P (xt+1) ≥ P (xt); P(P (xt+1) > P (xt) | xt /∈ NE) > π

20Note that V (a) is a decreasing (as a goes to zero) family of open sets whose intersection is equal to Λ
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To prove this, suppose that x /∈ NE, pick i such that xi 6= Bri(x−i) and consider x′ defined as

x′i = Bri(x−i) = (1− (Gx)i)+, x′j = xj for j 6= i. It is sufficient to show that P (x′) > P (x).

P (x′)− P (x) = (yi − xi)
(

1− (Gx)i −
1

2
(xi + yi)

)
=

{
1
2(yi − xi)2 if 1− (Gx)i > 0,

xi
(

1
2xi + (Gx)i − 1

)
if 1− (Gx)i ≤ 0

In both cases P (x′)−P (x) > 0, which concludes the proof of the claim. Now let x0 = x ∈ U .

Since P (xt) is an increasing sequence it must converge. Let P ∗ < P (Λ). Is is sufficient to

prove that P (limt→+∞ P (xt) ≤ P ∗) = 0. On the event {limt→+∞ P (xt) ≤ P ∗}, by continuity

of the best responses, there exists some constant c > 0 and some agent i(t) ∈ N such that

|xi(t)t −Bri(t)(x−i(t)t )| ≥ c > 0 for any t ≥ 0. However we proved that, for any t ≥ 0,

P (xt+1)− P (xt) ≥
1

2
‖xt+1 − xt‖2,

which implies that

P
(
P (xt+1)− P (xt) ≥

1

2
c2

)
≥ π

for any t. This contradicts the fact that limt P (xt) = P ∗ and the first part is proved.

Now to prove the second statement pick x ∈ U such that P (x) > P (Λ) and x0 = x. Then

P (xt) ≥ P (x0) for any t ≥ 0. Hence lim inft→+∞ P (xt) ≥ P (x0) > P (Λ) which proves the

result. �
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