, ECONOMIE: 1,5 milliards d'oliviers dans le monde, 2014.

D. Ollivier, C. Pinatel, V. Ollivier, and J. Artaud, Composition en acides gras et en triglycérides d'huiles d'olive vierges de 34 variétés et 8 Appellations d'Origine Françaises et de 2 variétés étrangères implantées en France: Constitution d'une banque de données, vol.119, pp.36-48, 2014.

M. Niaounakis and C. P. Halvadakis, Olive processing waste management: Literature review and patent survey, Waste Management Series, vol.5, 2006.

S. Dermeche, M. Nadour, C. Larroche, F. Moulti-mati, and P. Michaud, Olive mill wastes: Biochemical characterizations and valorization strategies, Process Biochem, vol.48, pp.1532-1552, 2013.

I. Leouifoudi, A. Zyad, A. Amechrouq, M. A. Oukerrou, H. A. Mouse et al., Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater, Food Sci. Technol, vol.34, pp.249-257, 2014.

R. Ghanbari, F. Anwar, K. M. Alkharfy, A. H. Gilani, and N. Saari, Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-A review, Int. J. Mol. Sci, vol.13, pp.3291-3340, 2012.

F. Visioli and E. Bernardini, Extra virgin olive oil's polyphenols: Biological activities, Curr. Pharm. Des, vol.17, pp.786-804, 2011.

M. E. Brewster and T. Loftsson, Cyclodextrins as pharmaceutical solubilizers, Adv. Drug Deliv. Rev, vol.59, pp.645-666, 2007.

K. Uekama, F. Hirayama, and T. Irie, Cyclodextrin drug carrier systems. Chemical Rev, vol.98, pp.2045-2076, 1998.

J. Szejtli, Past, present and future of cyclodextrin research, Pure Appl. Chem, vol.76, pp.1825-1845, 2004.

C. C. Ratnasooriya and H. P. Rupasinghe, Extraction of phenolic compounds from grapes and their pomace using beta-cyclodextrin, Food Chem, vol.134, pp.625-631, 2012.

M. A. Lopez-garcia, O. Lopez, I. Maya, and J. G. Fernandez-bolanos, Complexation of hydroxytyrosol with beta-cyclodextrins. An efficient photoprotection, Tetrahedron, vol.66, pp.8006-8011, 2010.

C. S. Mangolim, C. Moriwaki, A. C. Nogueira, F. Sato, M. L. Baesso et al., Curcumin-?-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application, Food Chem, vol.153, pp.361-370, 2014.

F. D. Ferreira, I. B. Valentim, E. L. Ramones, M. T. Trevisan, C. Olea-azar et al., Antioxidant activity of the mangiferin inclusion complex with ?-cyclodextrin, Food Sci. Technol, vol.51, pp.129-134, 2013.

I. Mourtzinos, D. P. Makris, K. Yannakopoulou, N. Kalogeropoulos, I. Michali et al., Thermal Stability of Anthocyanin Extract of Hibiscus sabdariffa L. in the Presence of ?-Cyclodextrin, J. Agric. Food Chem, vol.56, pp.10303-10310, 2008.

I. Mourtzinos, F. Salta, K. Yannakopoulou, A. Chiou, and V. T. Karathanos, Encapsulation of Olive Leaf Extract in ?-Cyclodextrin, J. Agric. Food Chem, vol.55, pp.8088-8094, 2007.

R. L. Carrier and L. A. Miller, Ahmed, I. The utility of cyclodextrins for enhancing oral bioavailability, J. Control. Release, vol.123, pp.78-99, 2007.

H. Zhang, Y. Hou, Y. Liu, X. Yu, B. Li et al., Determination of Mangiferin in Rat Eyes and Pharmacokinetic Study in Plasma After Oral Administration of Mangiferin-Hydroxypropyl-Beta-Cyclodextrin Inclusion, J. Ocul. Pharmac. Ther, vol.26, pp.319-324, 2010.

C. Manna, P. Galletti, G. Maisto, V. Cucciolla, S. Angelo et al., Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells, FEBS Lett, vol.470, pp.341-344, 2000.

G. Pereira-caro, B. Sarria, A. Madrona, J. L. Espartero, M. E. Escuderos et al., Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers, Int. J. Food Sci. Nutr, vol.63, pp.703-707, 2012.

E. Gallardo, B. Sarria, J. L. Espartero, J. A. Gonzalez-correa, L. Bravo-clemente et al., Evaluation of the Bioavailability and Metabolism of Nitroderivatives of Hydroxytyrosol Using Caco-2 and HepG2 Human Cell Models, J. Agric. Food Chem, vol.64, pp.2289-2297, 2016.

O. Khymenets, M. C. Crespo, O. Dangles, N. Rakotomanomana, C. Andres-lacueva et al., Human hydroxytyrosol's absorption and excretion from a nutraceutical, J. Funct. Foods, vol.23, pp.278-282, 2016.
DOI : 10.1016/j.jff.2016.02.046

A. Malapert, V. Tomao, O. Dangles, and E. Reboul, Effect of Foods and beta-Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo, J. Agric. Food Chem, vol.66, pp.4614-4620, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02091257

E. Reboul, M. Richelle, E. Perrot, C. Desmoulins-malezet, V. Pirisi et al., Bioaccessibility of carotenoids and vitamin E from their main dietary sources, J. Agric. Food Chem, vol.54, pp.8749-8755, 2006.
DOI : 10.1021/jf061818s

A. Goncalves, M. Margier, C. Tagliaferri, P. Lebecque, S. George et al., Pinoresinol of olive oil decreases vitamin D intestinal absorption, Food Chem, vol.206, pp.234-238, 2016.
DOI : 10.1016/j.foodchem.2016.03.048

URL : https://hal.archives-ouvertes.fr/inserm-01478510

A. Malapert, E. Reboul, M. Loonis, O. Dangles, and V. Tomao, Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Anal, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01709338

D. 'antuono, I. Garbetta, A. Ciasca, B. Linsalata, V. Minervini et al., Biophenols from Table Olive cv Bella di Cerignola: Chemical Characterization, Bioaccessibility, and Intestinal Absorption, J. Agric. Food Chem, vol.64, pp.5671-5678, 2016.

E. Nkhili, M. Loonis, S. Mihai, H. El-hajji, and O. Dangles, Reactivity of food phenols with iron and copper ions: Binding, dioxygen activation and oxidation mechanisms, Food Funct, vol.5, pp.1186-1202, 2014.

L. Turco, T. Catone, F. Caloni, E. Di-consiglio, E. Testai et al., Caco-2/TC7 cell line characterization for intestinal absorption: How reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol, vol.25, pp.13-20, 2011.

G. B. Gonzales, J. Van-camp, H. Vissenaekens, K. Raes, G. Smagghe et al., Review on the Use of Cell Cultures to Study Metabolism, Transport, and Accumulation of Flavonoids: From Mono-Cultures to Co-Culture Systems: Cell co-cultures for flavonoid research, Compr. Rev. Food Sci. Food Saf, vol.14, pp.741-754, 2015.

G. Corona, J. Spencer, and M. Dessi, Extra virgin olive oil phenolics: Absorption, metabolism, and biological activities in the GI tract, Toxicol. Ind. Health, vol.25, pp.285-293, 2009.

S. Kumar and A. K. Pandey, Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J, pp.1-16, 2013.

N. Huynh, J. Van-camp, G. Smagghe, and K. Raes, Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review, Int. J. Mol. Sci, vol.15, pp.19369-19388, 2014.

S. Wang, J. Zeng, B. Yang, and Y. Zhong, Bioavailability of caffeic acid in rats and its absorption properties in the Caco-2 cell model, Pharm. Biol, vol.52, pp.1150-1157, 2014.

W. C. Prasadani, C. M. Senanayake, N. Jayathilaka, S. Ekanayake, and K. N. Seneviratne, Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study, PLoS ONE, vol.12, 2017.

Y. Konishi and S. Kobayashi, Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers, J. Agric. Food Chem, vol.52, pp.2518-2526, 2004.

K. Tsukagoshi, T. Endo, and O. Kimura, Uptake of Hydroxy Derivatives of Benzoic Acid and Cinnamic Acid by Caco-2 cells via Monocarboxylic Acid Transporters, J. Pharm. Drug Res, vol.1, pp.9-18, 2016.

S. Guyot, S. Bernillon, P. Poupard, and C. M. Renard, Multiplicity of phenolic oxidation products in apple juices and ciders, from synthetic medium to commercial products, In Recent Advances in Polyphenol Research

F. Daayf, V. Lattanzio, . Eds, and . Wiley-blackwell, , pp.278-292, 2008.

T. Walle, T. S. Vincent, and U. K. Walle, Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells, Biochem. Pharmacol, vol.65, pp.1603-1610, 2003.

M. Shulman, M. Cohen, A. Soto-gutierrez, H. Yagi, H. Wang et al., Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-?-Cyclodextrin, PLoS ONE, 2011.

S. Lee, Y. H. Kim, H. Yu, N. Cho, T. Kim et al., Enhanced Bioavailability of Soy Isoflavones by Complexation with ?-Cyclodextrin in Rats, Biosci. Biotechnol. Biochem, vol.71, pp.2927-2933, 2007.

A. Soler, M. P. Romero, A. Macia, S. Saha, C. S. Furniss et al., Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line, Food Chem, vol.119, pp.703-714, 2010.

E. Pinho, M. Grootveld, G. Soares, and M. Henriques, Cyclodextrins as encapsulation agents for plant bioactive compounds, Carbohyd. Polym, vol.101, pp.121-135, 2014.

S. Ho, Y. Y. Thoo, D. J. Young, and L. F. Siow, Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food models on antioxidant stability, Food Sci. Technol, vol.85, pp.232-239, 2017.