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Abstract 22	

Hydroxytyrosol bioaccessibility and absorption by the intestinal cells have been studied using an 23	

in vitro digestion model and Caco-2 TC7 monolayers cells in culture, in the presence or absence 24	

of β-cyclodextrin and foods. Hydroxytyrosol was either provided as a pure standard or in an 25	

alperujo powder.	The presence of foods significantly decreased hydroxytyrosol bioaccessibility 26	

and absorption (-20% and -10%, respectively), while β-cyclodextrin had no effect. Moreover, the 27	

presence of other compounds from alperujo in the intestine compartment reduced hydroxytyrosol 28	

absorption by Caco-2 cells compared to pure standard (-60%). The final bioavailability of 29	

hydroxytyrosol, defined as its quantity at the basolateral side of cultured cell monolayers compared 30	

to the initial amount in the test meal, was 6.9±0.4%, 31.1±1.1% and 40.9±1.5% when 31	

hydroxytyrosol was from alperujo, or a standard administered with or without food, respectively. 32	

Our results show that conversely to foods, β-cyclodextrin does not alter hydroxytyrosol 33	

bioavailability. 34	

 35	

 36	

Chemical compounds 37	

Hydroxytyrosol (PubChem CID: 82755) 38	

b-cyclodextrin (PubChem CID: 444041) 39	

 40	

  41	
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1 Introduction 42	

Two-phase olive pomace, also called alperujo, is one of the most abundant industrial 43	

Mediterranean pollutants. It is produced in large quantity in two-phase centrifuge mills and is 44	

composed of olive vegetation water and solid olive pieces 1. Two-phase centrifuge mills allow 45	

reducing the water consumption and then the quantity of olive mill wastes compared to both 46	

traditional and three-phase centrifuge systems. Alperujo pollutant character is especially due to its 47	

high phenolic content. Interestingly, previous studies have demonstrated the great interest of these 48	

phenolic compounds because of their high health benefits 2. 49	

In order to valorize these co-products, the phenolic composition of alperujo has been extensively 50	

characterized, thus confirming that it can be an interesting source of valuable compounds for the 51	

nutraceutical, cosmetic and food industries. The major phenolic compounds identified into olive 52	

mill wastes were hydroxytyrosol (HT) and tyrosol, both belonging to the phenyl alcohol family, 53	

as well as p-hydroxycinnamic acids such as caffeic acid and derivatives 3, 4. These molecules 54	

display a catechol unit that confers them a reducing (electron-donating) character tightly related to 55	

their bioactivity (e.g., their antioxidant potential) 5. HT has received a health claim by the European 56	

Food Safety Agency (EFSA) due to its high ability to scavenge reactive oxygen species and to 57	

reduce the risks of cardiovascular disease 6-8. However, the electron-donating properties of olive 58	

phenols make them sensitive to oxidation. Hence, investigating the influence of the food matrix, 59	

including food ingredients used for formulation purposes, on the stability and bioavailability of 60	

olive phenols is a relevant issue. 61	

Cyclodextrins (CDs) are natural cyclic oligosaccharides made of D-glucose units bound by α-1,4 62	

linkages and mainly used in the agro-food and pharmaceutical industries to form inclusion 63	

complexes (IC) with bioactive compounds, to enhance their stability and solubility 9, 10. β-CD (7 64	

D-glucose units) is the most used CD because of its low price, its availability and its ability to 65	
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form inclusion complexes with a large range of medium-sized compounds (MM < 800 g/mol) 11. 66	

β-CD can also be used to facilitate polyphenol extraction from plants, such as resveratrol from 67	

grape pomace 12-14, and were suggested to be suitable to extract bioactives such as triterpenes from 68	

alperujo 15. However, its ability to interact with polyphenol bioavailability is not known. 69	

In vitro digestion studies can be carried out to assess the bioaccessibility of a given compound, i.e. 70	

the fraction of the ingested dose that is transferred from the food matrix to the aqueous phase or to 71	

mixed micelles (combining bile acids and lipid digestion products). This fraction is considered as 72	

available for subsequent absorption by the enterocytes, which can be investigated using the Caco-73	

2 cell model. Bioaccessibility and intestinal absorption are two critical steps governing a 74	

compound bioavailability, i.e. the fraction of the ingested dose (native forms + metabolites) that 75	

reaches the general blood circulation and/or target tissues 16. 76	

In this work, we investigated the effects of β-CD, alperujo matrix and foods (represented by a test 77	

meal containing pureed potatoes, minced beef and refined olive oil) on the bioaccessibility and the 78	

intestinal absorption of HT (from a standard powder and from a local alperujo). 79	

 80	

2 Materials and Methods 81	

2.1. Supplies 82	

β-CD was given from Roquette Freres (Lestern, France). HT (purity > 98%) was kindly provided 83	

by Pr. Francesco Visioli (IMDEA, Madrid, Spain). Tyrosol and gallic acid were supplied from 84	

Sigma-Aldrich Co (St Louis, USA). Pepsin, porcine pancreatin, porcine bile extract, water, formic 85	

acid, ethanol and acetonitrile were purchased from Sigma-Aldrich (Fontenay sous Bois, France). 86	

Dulbecco's modified Eagle's medium (DMEM) containing 4.5 g/L glucose and trypsin-EDTA (500 87	

mg/L and 200 mg/L, respectively), non-essential amino acids, penicillin/streptomycin and PBS 88	

were purchased from Life Technologies (Illkirch, France). Fetal bovine serum (FBS) came from 89	
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PAA (Vélizy Villacoublay, France). Olive pomace was collected from the Castelas mill equipped 90	

with a two-phase centrifuge system (Baux-de-Provence, France). Foods were purchased from a 91	

local supermarket.  92	

 93	

2.2. Preparation of the alperujo sample  94	

Alperujo (Aglandau variety, 72% of moisture, stored in cheesecloth canvas) was manually pressed, 95	

then filtered on celite and passed through 0.45µm and 0.2µm paper filters (VWR). Ethanol was 96	

added to a final proportion of 42% to precipitate proteins (removed by centrifugation). After 97	

ethanol evaporation under vacuum, the protein-free aqueous phase from alperujo was frozen at -98	

20°C. 99	

 100	

2.3. Preparation of the inclusion complexes 101	

In aqueous solution, HT is known to bind β-CD with a 1:1 stoichiometry and a binding constant ≈ 102	

40 M-1 17. Hence, the inclusion complex was prepared from an equimolar solution of HT and β-103	

CD (5 mM) in water. The concentration was chosen high enough to allow a substantial formation 104	

of the inclusion complex (≈ 20%), despite the relatively low affinity of HT for β-CD in aqueous 105	

solution. The equimolar HT:β-CD solution was stirred at 200 rpm for 1h at room temperature, then 106	

freeze-dried. The inclusion complex in a solid form (powder) was kept in amber flask at -20°C 107	

until use.  108	

The total phenol concentration of the protein-free aqueous phase of alperujo was assessed using 109	

Folin-Ciocalteau method and diluted to reach a total phenol concentration of 5 mM in gallic acid 110	

equivalent 18. Then, β-CD was added to the sample in the same concentration and the solution was 111	

stirred at 200 rpm for 1h at room temperature. After freeze-drying, the aqueous phase of alperujo 112	
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+ β-CD sample was stored as a powder at -20°C in amber glass. For comparison, an alperujo 113	

extract without β-CD was also freeze-dried and store as a powder in similar conditions.  114	

 115	

2.4. Simulated digestion  116	

The test meal, when present, was composed of pureed potatoes (6.7 g), cooked minced beef (1.2 117	

g) and refined olive oil (0.2 g). HT and alperujo samples with or without β-CD were added so as 118	

to reach 7 mg of HT in the meal. The simulated digestion was carried out as described previously 119	

(Figure 1) 19. All analyses were run in quadruplicate. Aliquots from oral, gastric and duodenal 120	

steps were taken up and frozen at -80°C until use. 121	

 122	

2.5. Cell culture and uptake experiments 123	

The human colon adenocarcinoma cell line Caco-2 TC7 was cultured on transwell membrane (six-124	

well plate, 1 mm pore size polycarbonate membrane; Becton Dickinson) to obtain confluent and 125	

differentiated cell monolayers as previously described 20. 126	

Cytotoxicity of digestion samples on Caco-2 TC7 was primarily evaluated to determine the 127	

suitable dilution of the phenolic aqueous fractions from in vitro digestion in HBSS before adding 128	

them to the apical side of cell monolayers. These results showed that 1/20 and 1/10 dilutions were 129	

required for HT and alperujo samples, respectively. To avoid any interference with DMEM or 130	

serum components, the phenolic aqueous fractions were diluted in HBSS and Caco-2 cells received 131	

HBSS in both chambers 12h before the experiments. At the beginning of each experiment, cell 132	

monolayers were washed twice with 1 mL of PBS and received 1 mL of diluted aqueous fraction. 133	

Finally, cell monolayers were incubated at 37°C for 2h, 4h and 6h. After the incubation period, 134	

apical and basolateral solutions were harvested. Cell monolayers were washed twice with 1 mL of 135	

PBS and scraped in 0.5 mL of PBS. All samples were stored at -80°C until use.  136	
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 137	

2.6. Analyses of HT and alperujo samples 138	

2.6.1. Extraction of HT and alperujo samples 139	

Phenolic compounds were extracted from salivary, gastric and duodenal steps as follows: 0.3 mL 140	

ethanol containing the internal standard was added to 0.2 mL of sample. The internal standards 141	

were tyrosol and gallic acid for HT and alperujo samples, respectively, as gallic acid was not found 142	

in the alperujo extracts 21. n-Hexane (0.2 mL) was then added and the mixture was homogenized 143	

for 10 min using a vortex blender at maximal speed. After centrifugation (2500 rpm for 10 min at 144	

4°C), the lower phase was collected and the sediment further extracted with 0.3 mL ethanol and 145	

additional vortexing for 10 min. The two ethanol phases were pooled, evaporated to dryness using 146	

a Speed-Vac®, and the dried extracts dissolved in 200 µL H2O and frozen at -80°C before analysis. 147	

Apical media from cell culture experiments were directly injected into UHPLC-DAD-MS system 148	

for analysis. Basolateral media (1900 µL) were primarily dried using a Speed-Vac® and the 149	

residues dissolved in 80 µL H2O.  150	

The PBS fractions containing harvested cells (500 µL) were sonicated with 50 µL of internal 151	

standard for 10 min at room temperature and centrifuged at 7000 rpm for 10 min at 4°C 22. 152	

Supernatants were recovered and evaporated to dryness, then dissolved in 50 µL H2O and frozen 153	

at -80°C before analysis.  154	

 155	

2.6.2. Chromatographic analysis 156	

All extracts were analyzed by UHPLC-DAD-MS using an Acquity UPLC® system linked to both 157	

a diode array detector and a Bruker Daltonics HCT Ultra Ion Trap mass spectrometer equipped 158	

with an Electron Spray Ionization (ESI) source operating in negative mode. The separation was 159	

performed on an Acquity C18 BEH column (50x2.1 mm i.d., 1.7 µm). The solvents were (A) 160	
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water/formic acid (99.5/0.5) and (B) acetonitrile. For alperujo analyses, the proportions of solvent 161	

B used were: 0-10 min: 1-20%, 10-12 min: 20-30%, 12-14 min: 30-100%. The injection volume 162	

was 1 µL for all samples and 10 µL for cells and basolateral extracts. The column temperature was 163	

kept at 35°C. Along the 3 steps of the gradient, the flow rate was 0.30, 0.35 and 0.40 mL/min. 164	

Chromatograms were acquired at 280 nm. The spectroscopic detection was performed in the range 165	

200-800 nm with a resolution of 1.2 nm. HT concentrations were estimated from a calibration 166	

curve (peak area vs. concentration) constructed with HT standard with R² values greater than 0.99. 167	

Homovanillyl alcohol and homovanillyl alcohol glucuronide were quantified as HT equivalent 21. 168	

For HT analyses, the same conditions were used and the flow rate was constant at 0.30 mL/min. 169	

The proportions of B were: 0 – 2.4 min: 1-30%, 2.4 – 3 min: 30-100%.  170	

 171	

2.6.3. Mass spectrometry 172	

ESI mass spectra were obtained in the following conditions: ionization energy = 50 or 100 eV, 173	

capillary voltage = 2 kV, source temperature = 365°C. The drying gas was introduced at a flow 174	

rate of 10 L/min and the skimmer voltage was 40V. Scans were performed in the m/z range 100 – 175	

2000. 176	

 177	

2.6.4. Calculation and statistics 178	

All the in vitro experiments were run in quadruplicate. Results were expressed as means and 179	

standard deviations. Differences between means were assessed using ANOVA followed by the 180	

post-hoc Tukey test for parametric data. P values under 0.05 were considered significant. The 181	

bioavailability was assessed by the ratio between the amount of phenolic compounds in the 182	

basolateral side and the initial amount added to the apical side or to the meal. 183	

 184	
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3 Results  185	

3.1. HT bioaccessibility in the oral, gastric and duodenal compartments 186	

The digestion of the HT in the 3 compartments was assessed with free HT and β-CD-bound HT 187	

(HTCD). The influence of the meal on HT bioaccessibility was also evaluated with the HTCD 188	

complex. Figure 2 shows the percentage of remained HT in each compartment. In the mouth 189	

compartment, β-CD seems to act as a protective agent for HT within the meal, HT recovery being 190	

87.6 % (± 1.2) and 96.4 % (± 1.1) for HT and HTCD respectively (p < 0.0001). In the absence of 191	

food (HTCD-FF), β-CD provided a weaker but still significant protective effect. In the gastric 192	

compartment, HT recoveries in this step were 91.3 % (± 2.7), 94.9 % (± 1.9) and 97.7 % (± 2.7) 193	

for HT, HTCD and HTCD-FF, respectively. No significant benefit of β-CD was observed. 194	

Conversely, the presence of food had a negative effect on HT recovery (HTCD vs HTCD-FF, p < 195	

0.05). Finally, except for the HTCD condition, the stability of HT was not significantly different 196	

in the duodenal compartment at pH 6 compared to the gastric one. The total apparent losses in the 197	

aqueous fractions were 37.2 % (± 1.0), 33.6 % (± 0.9) and 13.5 % (± 3.2) for HT, HTCD and 198	

HTCD-FF respectively. There was thus no difference regarding HT bioaccessibility between free 199	

HT and its β-CD complex. However, the absence of food significantly improved HT 200	

bioaccessibility compared to the other conditions (p < 0.0001).  201	

Figure 3 presents the bioaccessibility of HT from an alperujo powder during the same digestion 202	

steps. There was no significant influence of β-CD on HT recovery from alperujo in the different 203	

compartments. As for pure HT, no degradation was observed in the mouth while an important loss 204	

was observed in the duodenal compartment. HT recovery from alperujo samples in the gastric 205	

compartment and in the aqueous phase decreased from 77.2 % (± 2.8) to 52.6 % (± 2.3) and from 206	

76.4 % (± 2.7) to 50.3 % (± 1.2) for alperujo and alperujo-CD, respectively. Overall, HT recovery 207	
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from alperujo samples decreased along digestion (p < 0.0001). The stability of HT into the alperujo 208	

samples appeared less important than for pure HT (p < 0.001). 209	

 210	

3.2. HT absorption by Caco-2 TC7 cells 211	

The absorption and metabolism of HT were studied using differentiated Caco-2 TC7 cell 212	

monolayers. Bioavailability was determined as the quantity of targeted compounds in the 213	

basolateral side vs. the initial amount added to the meal. The aqueous fractions obtained from the 214	

precedent digestion studies were used to study HT absorption into the enterocytes after a 1/10 or 215	

a 1/20 dilution for alperujo and HT samples, respectively. Thus, the cells received about 5.1-5.3, 216	

6.0 and 6.7 µg per well of HT from meals containing HT, HTCD or alperujo and from HTCD-FF, 217	

respectively. Chromatograms of the different fractions are presented on Figure 4A. UPLC-DAD-218	

MS analyses allowed to identify homovanillyl alcohol (HVA) as a O-methylether metabolite of 219	

HT, giving a parent ion [M-H]- at m/z 167 and a fragment ion at m/z 153 (HT). Figure 4 (B, C, D, 220	

E panels) shows the quantity of HT and HVA recovered at the apical and basolateral sides of the 221	

cells. Each quantity was expressed as a percentage of the initial HT concentration at the apical 222	

side. For all conditions, a significant decrease of the HT content was observed at the apical side 223	

(more than 85%, p > 0.05) after 6h incubation. Concomitantly, a significant increasing quantity of 224	

HT was recovered at the basolateral side (>40%). The curve profiles highlight the time-dependent 225	

transport of HT from the apical to basolateral side. No significant difference was observed at the 226	

basolateral side between the three HT samples. HVA was the only HT metabolite observed in our 227	

conditions. It was mainly recovered at the apical side reaching about 32.8± 1.2%, 37.5± 4.1% and 228	

40.3± 2.5% of the initial HT content for the HTCD-FF, HTCD and HT conditions, respectively. 229	

The lower percentage of HVA that appeared in the aqueous fraction without meal was due to the 230	

higher initial quantity of HT in this condition.  231	
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In the case of HTCD-FF, the initial HT amount was higher (+26%) compared to other conditions. 232	

The final HT amounts at the basolateral side were about 2.2 µg for HT and HTCD and 2.9 µg for 233	

HTCD-FF, respectively. Thus, the absorption of native HT from HTCD-FF increased over 30% 234	

(p < 0.0001) compared to conditions containing foods. The transport of HT through the intestinal 235	

barrier was also concentration-dependent. The same amount of HVA was approximately produced 236	

whatever the initial HT concentration. The amount of native HT at the basolateral side reached 237	

65.7± 2.1%, 63.9± 1.4% of the initial apical content for HT and HTCD, and 71.0± 0.8% for HTCD-238	

FF. The analysis of cell contents revealed neither HT nor HT metabolite: more than 99% of HT 239	

and its metabolite were recovered in the apical and basolateral compartments.  240	

The absorption of HT from alperujo samples by Caco-2 cells was also evaluated, as shown in 241	

Figure 5. Chromatograms of the different fractions are presented on Figure 5A. The initial HT 242	

amount was around 6 µg per well at the apical side of the cells. The general curve profile indicates 243	

a time-dependent transport of HT. No significant difference regarding the amounts of both HT and 244	

its metabolite was found between alperujo and alperujo-CD samples in all culture media over time. 245	

About 0.88 ± 0.05 µg and 0.91 ± 0.04 µg of HT were recovered at the basolateral side for alperujo 246	

and alperujo-CD conditions, respectively. So, 14.4 ± 0.8% and 15.0 ± 0.5% of the initial apical 247	

HT amount from alperujo samples crossed the cell monolayers (p > 0.05). Despite the higher HT 248	

load in the alperujo conditions (about 6 µg vs 5.1-5.3 µg for alperujo conditions, HT and HTCD), 249	

the amount of HT absorbed was about 2.5-fold less important than for HT and HTCD conditions, 250	

i.e. the absorption rate decreases by more than 60% (p < 0.0001). Homovanillyl alcohol 251	

glucuronide (HVA-GlcU) was identified according to its molecular ion [M-H]- at m/z 343 and its 252	

fragment ions [M-H-GlcU]- at m/z 167 (HVA) and 153 (HT), characteristic of the homovanillyl 253	

moiety. This HT metabolite was only found in the basolateral compartment and was estimated at 254	

6.7 ± 0.8% and 7.3± 0.9% of the initial apical HT amount for alperujo and alperujo-CD, 255	
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respectively. The total amount of unmetabolized HT at the basolateral side was 68.8 ± 1.5% and 256	

69.8 ± 2.6 % for alperujo and alperujo-CD, respectively. So, β-CD had no significant effect on the 257	

HT metabolism rate. In these conditions and conversely to the standard samples, a low amount of 258	

HT was recovered into Caco-2 cells. Moreover, the total recovery of HT in these three 259	

compartments exceeds 110 % after 6h of incubation (p < 0.0001). This may be explained by the 260	

fact that a partial metabolization of other compounds from alperujo could generate HT. 261	

 262	

4 Discussion 263	

 264	

This work evaluated for the first time in a comprehensive manner the effect of the presence of β-265	

CD and/or foods on both HT bioaccessibility and HT uptake by intestinal cells. 266	

The first step of HT digestion occurs in the mouth. Mastication favors interactions between the 267	

phenolic compounds, food, saliva and dioxygen. In this compartment, the protective effect of β-268	

CD observed in our study may be linked to its ability to build a protective shell around HT, thereby 269	

limiting its contact with potential food prooxidants such as iron species. In the stomach, food 270	

disintegration intensifies due to the periodic and synchronized contractions of its wall, the acidic 271	

environment and the enzymatic activity 23. The in vitro digestion of HT standard confirmed that 272	

HT is stable in the acidic conditions of the gastric compartment, which is in accordance with 273	

previous data 24. The recovery of HT after the gastric step was almost total, in agreement with 274	

Pereira-Caro et al. who obtained a recovery rate higher than 99 % in their in vitro digestion study 275	

without food 25. In our work, the small loss (lower than 5%) in the gastric compartment may be 276	

due to interactions between HT and the food matrix.  277	

In our duodenal conditions, pure HT recovery did not significantly decrease. Several studies have 278	

shown that HT was not stable in neutral or mildly alkaline conditions. In their work on the 279	
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digestion of phenolic compounds from olive oil, Soler et al. observed a loss of HT in alkaline 280	

conditions 26. Corona et al. also observed that the amounts of HT and its derivatives progressively 281	

decreased during digestion by pancreatin (pH 7.5), reaching a total apparent loss of 20.3% after 282	

2h for HT. This value took into account the formation of 3,4-dihydroxyphenylacetic acid 283	

(DOPAC) as a side-product of HT 27. In our cases, no DOPAC formation was observed. We 284	

suggest that the total apparent losses in the aqueous fractions were the result of the partition of HT 285	

after the centrifugation step.  286	

The comparative study of the HT standard and the HTCD sample showed a slight effect of β-CD 287	

on the final bioaccessibility of HT. β-CD is mainly used in the pharmaceutical industry to protect 288	

bioactive compounds and increase their water solubility and consequently their bioavailability 28. 289	

As a cyclic starch derivative, β-CD may be partially hydrolyzed during digestion. However in vivo, 290	

β-CD only partly digested in the upper gastrointestinal tract and can reach the large intestine where 291	

it is metabolized by the microflora fermentation 29, 30. Besides possible β-CD digestion, dilution is 292	

the major factor triggering the release of the guest compound from a CD complex 31. This factor 293	

should be very important in our study because HT has only a weak affinity for b-CD (binding 294	

constant < 102 M-1 17, data not shown). Overall, the bioaccessibility of HT from HTCD was not 295	

significantly increased compared to the free HT standard without β-CD.  296	

In the absence of food, the bioaccessibility of HT was increased by almost 20% compared to the 297	

same sample in the presence of food. Many macromolecular food components can bind phenolic 298	

compounds and retain them within the food matrix. In this work, potato is a source of starch, which 299	

is known to retain phenolic compounds 32. Similarly, beef is rich in proteins, which have a general 300	

affinity for phenols 33, 34. The clear influence of the food matrix on the bioaccessibility of dietary 301	

plant phenols such as HT outlines the importance of including real meal components in in vitro 302	

digestion studies.  303	
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The study with alperujo samples was carried out in the presence of food. In each compartment, 304	

HT from alperujo samples was generally less bioaccessible than from free standard. Indeed, 305	

although alperujo samples are protein-free, they contain fibers and sugars, which could interact 306	

with the meal components and the digestive enzymes (possibly slowing down protein and starch 307	

digestion), thereby reducing the bioaccessibility of phenolic compounds 2. The apparent loss of 308	

HT bioaccessibility from alperujo powders (compared to the standard) was also higher (+10%). 309	

Again, no significant effect of β-CD was observed.  310	

Caco-2 TC7 cells were then chosen as a suitable model to follow the absorption of target 311	

compounds through the intestinal barrier. HT was brought to the cells as an aqueous fraction 312	

obtained from our previous digestion study. The study of HT and its b-CD complex within a meal 313	

revealed that HT was largely absorbed through Caco-2 cells and partly metabolized into 314	

homovanillyl alcohol due to the catechol-O-methyltransferase (COMT) activity of the enterocytes. 315	

Most of the HT recovered at the basolateral side was unmetabolized (over 60%) and HVA was 316	

recovered in the two culture media, especially in the apical compartment. These data are in 317	

agreement with previous results. Indeed, Manna et al. (2000) observed that 25% of HT reached 318	

the basolateral side of Caco-2 cells after 1h, 90% of which being unmetabolized. They also 319	

identified HVA as a metabolite. They determined that HT reaches the basolateral side through 320	

passive diffusion and that this transport was time- and concentration-dependent 35. Corona et al. 321	

also observed 90% of unmetabolized HT at the basolateral side of the cells after the phenolic 322	

compounds were added to the apical side from a standard buffered solution 27. Finally, Mateos et 323	

al. observed that 59% of HT from apical side (initial concentration = 50 µM) reached the 324	

basolateral side after 4h of incubation, with almost 20% recovered as O-methylether and 80% as 325	

unmetabolized HT 36. In our study, for HT, HTCD and HTCD-FF conditions, the transport of 326	

unmetabolized HT from the apical to the basolateral side of Caco-2 cells ranged from 25.4 ± 1.5% 327	
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to 42.3 ± 0.8% over 2 to 6h. The difference regarding HT absorption rates in our study compared 328	

to previous data is likely explained by the fact that HT was just dissolved in an aqueous buffer 329	

(HBSS or PBS) in previous studies, while we used a more complex mixture obtained from in vitro 330	

digestion.  331	

In the case of HT from alperujo powders, we observed the appearance of HVA-GlcU as a HT 332	

metabolite. Moreover, the transport of HT from the apical to basolateral side ranged from 8.4 ± 333	

0.6% to 14.7± 0.5% over 2 to 6h. This lower transport rates compared to HT standard conditions 334	

can be the result of a competition between HT and other alperujo components to cross the intestinal 335	

cells. The same phenomenon was observed when comparing the absorption of pure diosmetin and 336	

diosmetin from a rosemary extract 37. Interestingly, a small amount of HT from alperujo was 337	

recovered into the harvested Caco-2 cells and the total recovery of HT exceeded 100%. If 338	

metabolized, HT-glucoside that is also present in alperujo extract could be a source of HT, which 339	

would explain this result.  340	

Finally, it is interesting to compare two methods to calculate the in vitro bioavailability of HT, by 341	

making a ratio with either the initial HT apical content during the absorption experiments (Table 342	

1) or the initial HT amount brought via the meal (Table 2). The second method allows to correct 343	

the common overestimation of the in vitro bioavailability when considering uniquely the 344	

absorption step and not the whole digestion process. The second values were decreased by more 345	

than 25% and 50% for HT standard and alperujo samples, respectively. This analysis confirmed 346	

that HT was more bioavailable when it was brought as a pure standard form than as a plant extract. 347	

The absence of food also participated in increasing the final HT bioavailability. HT bioavailability 348	

from the alperujo samples was lower, likely because of possible interactions between HT and other 349	

alperujo components and/or competition between them for absorption by Caco-2 cells 26. 350	

 351	
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In summary β-CD, which can be used to enhance phenol stability during storage, did not modified 352	

the bioaccessibility and the bioavailability of HT from alperujo, in the presence or in the absence 353	

of foods. It would be interesting to extend this result to modified β-CDs such as 2-hydroxypropyl- 354	

β-CD, which can also be used to complex bioactive compounds 15. Conversely to β-CD, 355	

interactions with food components (probably potato starch and beef proteins) were shown to 356	

decrease HT bioaccessibility. These interactions had a strong impact on HT final bioavailability, 357	

the HT amount absorbed by the intestinal cells being strongly dependent on the bioaccessible HT 358	

content. Besides, HT was more bioaccessible and better absorbed by enterocytes from a pure form 359	

than from an alperujo powder, in which it likely competes with other phenolic compounds at 360	

different steps of the digestion-absorption process. HVA was the only metabolite observed when 361	

HT was from a pure standard and HVA-GlcU was detected when HT was provided via alperujo 362	

powders. The low bioavailability of HT reflected its high metabolization in the intestine.  363	

Our data have dietary significance as plant phenol supplements are usually consumed within a 364	

meal and under the form of complex mixtures, rather than individual supplements taken at fast. 365	

 366	
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Tables 

 

Table 1. Bioavailability of phenolic compounds as percentage of HT initial apical amount.  

 

Samples HT HVA HVA-GlcU 
HT 42.6 ± 2.5 22.2 ± 2.5 	

HTCD 41.4 ± 3.0 23.4 ± 2.0 	
HTCD-FF 43.0 ± 0.7 17.5 ± 0.6 	
Alperujo 14.4 ± 0.8 	 6.7 ± 0.8 

Alperujo-CD 15.0 ± 0.5 	 7.3 ± 0.9 
 

Values are expressed as mean ± SD of quadruplicate measurements. 
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Table 2. Bioavailability of the phenolic compounds as percentage of HT initial amount in the 

test meal.  

 

Samples	 HT HVA HVA-GlcU 
HT 31.1 ± 1.1 16.2 ± 1.3  

HTCD 30.9 ± 1.8 17.5 ± 1.4  
HTCD-FF 40.9 ± 1.5 16.7 ± 0.6  
Alperujo 6.9 ± 0.4 	 3.2 ± 0.3 

Alperujo-CD 7.3 ± 0.3 	 3.6 ± 0.4 
 

Values are expressed as mean ± SD of quadruplicate measurements. 
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Figure legends 

 

Figure 1. In vitro digestion procedure 

HT = hydroxytyrosol, β-CD = β-cyclodextrin. 

 

Figure 2. Bioaccessibility of hydroxytyrosol from standard powder in each digestive compartment 

Samples were taken at the beginning of the experiment (T0) and at the end of the oral, gastric and 

duodenal digestion steps. 

HT = hydroxytyrosol standard added to a meal, HTCD = HT-β-cyclodextrine complex added to a 

meal, HTCD-FF = HTCD complex without food. Values are expressed as mean ± SD of 

quadruplicate measurements. Different letters indicate a significant difference according to Tukey 

test (p ≤ 0.05) between all conditions for each compartment. Different symbols indicate a 

significant difference according to Tukey test (p ≤ 0.05) between all compartments for each 

condition. 

 

 
Figure 3. Bioaccessibility of hydroxytyrosol from alperujo powder in each digestive compartment 

Samples were taken at the beginning of the experiment (T0) and at the end of the oral, gastric and 

duodenal digestion steps. 

Alperujo = hydroxytyrosol from alperujo. Alperujo-CD = hydroxytyrosol from alperujo phenolic 

compound - β-cyclodextrine complex. Values are expressed as mean ± SD of quadruplicate 

measurements. Different letters indicate a significant difference according to Tukey test (p ≤ 0.05) 

between all conditions for each compartment. Different symbols indicate a significant difference 

according to Tukey test (p ≤ 0.05) between all compartments for each condition.   
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Figure 4. Absorption and metabolism by Caco-2TC7 cells of hydroxytyrosol from standard 

samples  

The aqueous fractions obtained from in vitro digestion of pure hydroxytyrosol (HT) samples were 

added to the apical side of cell monolayers. HT and its metabolites were monitored over time. 

(A) UHPLC chromatograms of cells culture media: (a) Apical media at T=0h; (b) Apical media at 

t= 6h; (c) Basolateral media at 6h. HVA = homovanillyl alcohol, IS = internal standard.  

(B) Quantity of HT at the apical side; (C) Quantity of HT at the basolateral side; (D) Quantity of 

HVA at the apical side; (E) Quantity of HVA at the basolateral side. All results are expressed in 

percent of the initial HT amount at the apical side.  

(◆) HT meal; (●) HTCD meal; (▲) HTCD-FF. Values are expressed as mean ± SD of 

quadruplicate measurements. 

 

Figure 5. Absorption and metabolism by Caco-2 TC7 cells of hydroxytyrosol from alperujo 

samples 

The aqueous fractions obtained from in vitro digestion of alperujo samples were added to the apical 

side of the cell monolayers. Hydroxytyrosol (HT) and its metabolites were monitored over time. 

(A) UHPLC chromatograms of cells culture media: (a) Apical media at T=0h; (b) Cell monolayer 

content at t=6h; (c) Basolateral media at 6h. HVA-GlcU: homovanillyl alcohol glucuronide, IS = 

internal standard. 

(B) Quantity of HT at the apical side; (C) Quantity of HT and homovanillyl alcohol glucuronide 

(HVA-GlcU) at the basolateral side; (D) Quantity of HT in the cytosolic compartment of Caco- 2 

TC7 cells. All results are expressed in percent of the initial HT amount at the apical side. (●) 

HT from alperujo, (◆) HT from alperujo-CD; (▲) HVA-GlcU from alperujo (■) HVA-GlcU 

from alperujo-CD. Values are expressed as mean ± SD of quadruplicate measurements. 
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