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The organic geochemical IP 25 (Ice Proxy with 25 carbon atoms) has been used as a proxy for Arctic sea ice
in recent years. To date, however, the role of degradation of IP 25 in Arctic marine sediments and the
impact that this may have on palaeo sea ice reconstruction based on this biomarker have not been inves-
tigated in any detail. Here, we show that IP 25 may be susceptible to autoxidation in near-surface oxic sed-
iments. To arrive at these conclusions, we �rst subjected a puri�ed sample of IP 25 to autoxidation in the
laboratory and characterised the oxidation products using high resolution gas chromatography–mass
spectrometric methods. Most of these IP 25 oxidation products were also detected in near-surface sedi-
ments collected from Barrow Strait in the Canadian Arctic, although their proposed secondary oxidation
and the relatively lower abundances of IP 25 in other sediments probably explain why we were not able to
detect them in material from other parts of the region. A rapid decrease in IP 25 concentration in some
near-surface Arctic marine sediments, including examples presented here, may potentially be attributed
to at least partial degradation, especially for sediment cores containing relatively thick oxic layers repre-
senting decades or centuries of deposition. An increase in the ratio of two common phytoplanktonic ster-
ols – epi-brassicasterol and 24-methylenecholesterol – provides further evidence for such autoxidation
reactions given the known enhanced reactivity of the latter to such processes reported previously. In
addition, we provide some evidence that biodegradation processes also act on IP 25 in Arctic sediments.
The oxidation products identi�ed in the present study will need to be quanti�ed more precisely in down-
core records in the future before the effects of degradation processes on IP 25-based palaeo sea ice recon-
struction can be fully understood. In the meantime, a brief overview of some previous investigations of
IP25 in relatively shallow Arctic marine sediments suggests that overlying climate conditions were likely
dominant over degradation processes, as evidenced from often increasing IP 25 concentration downcore,
together with positive relationships to known sea ice conditions.
1. Introduction

Over the past decade, the Arctic sea ice diatom biomarker IP 25

(Ice Proxy with 25 carbons atoms; Belt et al., 2007 ) has emerged
as a useful proxy for the past occurrence of seasonal (spring) sea
ice when detected in Arctic marine sediments (for a review see
Belt and Müller, 2013 ). Consistent with its origin (i.e., sea ice-
associated or sympagic diatoms; Brown et al., 2014 ), IP25 is a com-
mon component of surface sediments across the Arctic (Müller
et al., 2011; Stoynova et al., 2013; Xiao et al., 2013, 2015;
Navarro-Rodriguez et al., 2013; Ribeiro et al., 2017; Köseog � lu
et al., 2018), while its variability in downcore abundance is gener-
ally believed to re�ect temporal changes to spring sea ice cover,
especially when its concentration pro�le is considered alongside
those of other biomarkers indicative of open-water or ice-edge
conditions (e.g., Müller et al., 2009, 2011; Belt et al., 2015), through
a combined IP 25-phytoplankton biomarker index (PIP 25) (Müller
et al., 2011), or a multivariate biomarker approach (Köseog � lu
et al., 2018). To date, however, the majority of IP 25-based studies
have focused either on surface sediment analysis or on long-term
(multi-centennial or longer) records. Thus, surface sediment anal-
yses have addressed aspects of proxy calibration, generally by
comparison of IP 25 and other biomarker content with satellite-
based measurements of sea ice conditions (Müller et al., 2011;
Navarro-Rodriguez et al., 2013; Stoynova et al., 2013; Xiao et al.,
2013, 2015 ), while temporal studies have concentrated mainly
on the reconstruction of sea ice conditions on a multi-centennial
scale during the Holocene (e.g., Vare et al., 2009; Belt et al.,
2010; Müller et al., 2012; Berben et al., 2014, 2017; Hörner et al.,
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2016, 2017; Stein et al., 2017), recent glacial/interglacial intervals
(Müller and Stein, 2014; Hoff et al., 2016), the Mid-Pleistocene
Transition ( Detlef et al., 2018 ), and even longer timeframes extend-
ing back to the Pliocene/Pleistocene boundary and the late Mio-
cene (Stein and Fahl, 2013; Knies et al., 2014; Stein et al., 2016).
One key attribute of IP 25 as a sea ice proxy is its apparent relative
stability in sediments. Indeed, the identi�cation of IP 25 in sedi-
ments several million years old ( Knies et al., 2014; Stein et al.,
2016) has been attributed, in part, to such stability, and is sup-
ported by laboratory-based investigations, where it has been
shown to be signi�cantly less reactive towards degradation process
such as photo-oxidation and autoxidation, at least compared to
other common phytoplanktonic lipids (Rontani et al., 2011,
2014). As such, sedimentary signals have been interpreted as
re�ecting climatic (sea ice) conditions rather than diagenetic arte-
facts, although the possibility of some diagenetic over-printing of
the environmental signal has been noted (e.g., Belt and Müller,
2013; Polyak et al., 2016 ). In contrast, temporal investigations cov-
ering recent decades or centuries are less common, although some
studies from North Iceland ( Massé et al., 2008; Andrews et al.,
2009), East Greenland (Alonso-García et al., 2013; Kölling et al.,
2017), the Barents Sea (Vare et al., 2010; Köseog� lu et al., 2018 ),
northern Baf�n Bay ( Cormier et al., 2016 ) and the Chukchi-
Alaskan margin ( Polyak et al., 2016 ) have been reported. Such
studies are somewhat different from those carried out on surface
sediments (typically 0–1 cm) or longer timeframe investigations
generally conducted on material from gravity/piston cores since,
in some cases, at least, they likely result from analysis of material
that spans the oxic/anoxic (redox) sediment boundary. However,
such boundary layers are not generally identi�ed (reported), even
though they are likely found in the upper few centimetres of box
cores or multi-cores, which re�ect accumulation over decades or
recent centuries for many Arctic Shelf regions (e.g., Stein and
Fahl, 2000; Darby et al., 2006; Mudie et al., 2006; Maiti et al.,
2010; Vare et al., 2010 ). On the other hand, in the central Arctic
Ocean, such a layer may re�ect substantially longer-term accumu-
lation due to much lower sedimentation rates (e.g., Stein et al.,
1994a,b).

The rate and extent of degradation of sedimentary organic com-
pounds is strongly dependent on the molecular structure of the
substrate, protective effects offered by association of organic mat-
ter with particle matrices, and the length of time accumulating
particles are exposed to molecular oxygen in sedimentary pore
waters ( Henrich, 1991; Hartnett et al., 1998 ). The main degradative
processes in the oxic layer of sediments are aerobic biodegradation
and autoxidation. Numerous organisms, including bacteria, fungi
and micro- and macrofauna, are responsible for the aerobic
biodegradation of organic carbon in sediments (Fenchel et al.,
1998) and almost all of these organisms have the enzymatic capac-
ity to perform a total mineralization of numerous organic sub-
strates (Kristensen, 2000 ). Although autoxidation of organic
matter involving spontaneous free radical reaction of organic com-
pounds with O 2 has been rather under-considered in the marine
realm, it is now known that autoxidative processes can act very
intensively on vascular plant debris in Arctic sediments (Rontani
et al., 2017). This high autoxidation ef�ciency likely re�ects the
enhanced photooxidation of senescent vascular plants in the
region (thus yielding high amounts of hydroperoxides), together
with high lipoxygenase activity (a potential source of radicals;
Fuchs and Spiteller, 2014 ). Indeed, the latter mechanism has
recently been observed in sinking particles dominated by ice algae
(Amiraux et al., 2017) and in particles discharged from the
Mackenzie River ( Galeron et al., 2018 ).

The principal aim of the current study, therefore, was to inves-
tigate whether we could provide evidence for oxidative degrada-
tion processes acting on IP 25 in near-surface Arctic sediments
and thus, potentially, on any resultant palaeo sea ice reconstruc-
tions. To achieve this, we �rst carried out laboratory-based oxida-
tion of puri�ed IP 25 and carried out product identi�cation using
high resolution mass spectral analysis. Since IP 25 was shown previ-
ously to be relatively resistant to oxidation (Rontani et al., 2014 ),
more powerful oxidizing conditions were used. We then investi-
gated the occurrence of the same oxidation products in sediment
samples taken from box cores retrieved from three regions of the
Canadian Arctic. To complement the IP 25-based �ndings, we
also measured the ratios of two common algal sterols –
epi-brassicasterol and 24-methylenecholesterol – to provide fur-
ther evidence of different oxidative pathways under oxic and
anoxic conditions. Geochemical analysis of the box cores revealed
variable redox boundary depths, which provided further context
for interpreting the biomarker data.
2. Experimental

2.1. Sediment and sea ice algal sampling

Investigations of in situ degradation processes were performed
on sediment material and sea ice algal aggregates. Sediment mate-
rial was obtained from three locations within the Canadian Arctic
Archipelago (CAA) on board the CCGS Amundsen in 2005 and
2007 (Vare et al., 2009; Belt et al., 2010, 2013 ). Sampling locations
correspond to Barrow Strait (STN 4), Viscount Melville Sound
(STN 308) and the western Amundsen Gulf (STN 408) (Fig. 1 ). In
each case, box cores were collected, sectioned on board, with sub-
samples (1 cm resolution) then being freeze-dried before storage
between –20 �C and +4 �C prior to analysis. Regular monitoring of
IP25 concentration in these sediments stored under such conditions
(since their collection) has not revealed any signi�cant degradation
(i.e. < 10%;Cabedo-Sanz et al., 2016). Previous reports of sedimen-
tation rates from the study area (e.g., 0.15 cm/yr for the Barrow
Strait (STN 4) core ( Belt et al., 2010 )) and preliminary additional
210Pb data (S. Schmidt, personal communication) suggest that
box cores (ca. 20 cm) from the region typically represent decades
to centuries of accumulation. A sample of �oating sea ice algal
aggregates was obtained from Resolute Passage (western Barrow
Strait) in 2012 as described by Brown et al. (2014) .

Redox boundary layers in each of the box cores were identi�ed
using the change (reduction) in Mn content as described previously
(Vare et al., 2009; Brown, 2011 and References cited therein). Using
this approach, redox boundaries were identi�ed at ca. 2 cm in the
box core from Barrow Strait (STN 4) and at ca. 11 cm and ca. 8 cm
in box cores from Viscount Melville Sound (STN 308) and the west-
ern Amundsen Gulf (STN 408), respectively (L. Vare, personal
communication).

2.2. IP25 isolation

A sample of IP25 (ca. 99%) was obtained by extraction of a multi-
kg quantity of sediment from Barrow Strait in the Canadian Arctic
(STN 4; Fig. 1) and puri�cation by a combination of open column
chromatography (SiO 2; hexane) and Ag + HPLC as described previ-
ously in detail by Belt et al. (2012) .

2.3. Production of IP25 oxidation products

All procedures were carried out on a ca. 10–50 mg scale.
Oxidation of IP 25 using RuCl3 and tert -butyl hydroperoxide in
cyclohexane at room temperature for 16 h (Seki et al., 2008 )
produced 3,9,13-trimethyl-6-(1,5-dimethylhexyl)-tetradec-1-en-
3-ol ( 1) and 3,9,13-trimethyl-6-(1,5-dimethylhexyl)-tetradec-2-
en-1-ol ( 2) with yields of 5% and 2%, respectively.



Fig. 1. Map showing the sampling locations.

75
OsO4 oxidation of IP 25 in anhydrous dioxane/pyridine
(McCloskey and McClelland, 1965 ) afforded 3,9,13-trimethyl-6-
(1,5-dimethylhexyl)-tetradecan-1,2-diol (6 ) as the major product
(ca. 45%) together with smaller amounts of 2,8,12-trimethyl-5-
(1,5-dimethylhexyl)-tridecanoic acid (7 ) (ca. 6%) resulting from
diol cleavage and subsequent oxidation of the aldehyde thus
formed.

The structures of all IP 25 oxidation products are shown in
Appendix A . Due to the very low amounts of IP 25 available, com-
pounds 1, 2, 6 and 7 could not be produced in suf�cient amounts
to permit quanti�cation, although comparison of their mass spec-
tra and retention times with compounds detected in sediments
con�rmed their identi�cation.

2.4. Induction of autoxidation in solvent

Autoxidation experiments were performed under an atmo-
sphere of air in 15 ml screw-cap �asks containing IP 25 (10 mg),
tert -butyl hydroperoxide (200 ml of a 6.0 M solution in decane),
di- tert -butyl nitroxide (1.2 mg) and hexane (2 ml). After stirring,
the �ask was incubated in the dark at 65 �C. A relatively high
temperature was selected in order to accelerate the autoxidation
reactions. Aliquots (200 ml) were withdrawn from the reaction
mixture after incubation for different times. Each sub-sample
was evaporated to dryness under a stream of nitrogen and
analyzed by gas chromatography–electron ionization quadrupole
time of �ight mass spectrometry (GC–QTOFMS) after NaBH 4

reduction (see Section 2.5) and derivatization (see Section 2.8)
for identi�cation of hydroxylated oxidation products.

2.5. Reduction of oxidation products

Hydroperoxides resulting from IP 25 oxidation were reduced to
the corresponding alcohols by reaction with excess NaBH 4 in
diethyl ether:methanol (4:1, v:v, 10 mg/mg of residue) at room
temperature (1h). After reduction, a saturated solution of NH 4Cl



(10 mL) was added cautiously to remove any unreacted NaBH 4. The
pH was then adjusted to 1 with dilute HCl (2N) and the mixture
shaken and extracted with hexane:chloroform (5 ml, 4:1, v:v;
� 3). The combined extracts were dried over anhydrous Na 2SO4, �l-
tered and evaporated to dryness under a stream of nitrogen.
2.6. Aerobic biodegradation of phytoplankton sterols

Aerobic biodegradation of phytoplankton cells was performed
using the upper layer (0–1 cm) of Arctic sediments collected in July
2016 from Davis Strait (70 �29 055.5600N, 59�31 030.2400W) during the
GreenEdge cruise on board the CCGS Amundsen as bacterial inocu-
lum. Enrichment cultures were incubated in the dark in 250 ml
Erlenmeyer �asks containing 50 ml portions of an enrichment
medium consisting of LB medium (20 ml) and phytoplankton sus-
pension (10 ml) (10 mg dry weight) as carbon source. Samples
were maintained at 2 �C (a temperature close to that of Arctic
waters) and agitated using a reciprocal shaker for different times.
The amounts of 24-methylenecholesterol and epi-brassicasterol
in the sediment inoculum were negligible relative to those in the
phytoplankton suspension. These phytoplankton cells (mainly
composed of diatoms) were collected in Commonwealth Bay (East
Antarctica, 66 �56 0S; 142�27 0E) during the IPEV-COCA2012 cruise in
January 2012 as described previously (Rontani et al., 2014 ). After
incubation, phytoplankton material was recovered by �ltration
on GF/F �lters and saponi�ed as described in Section 2.7.
2.7. Sediment and sea ice algal treatment

Sediments from box cores (i.e., STN 4, 308, 408) or sea ice algae
(19.3 mg dry weight) were placed in MeOH (15 ml) and hydroper-
oxides were reduced to the corresponding alcohols with excess
NaBH4 (70 mg, 30 min at 20 �C). Following the reduction step,
water (15 ml) and KOH (1.7 g) were added and the mixture saponi-
�ed by re�uxing (2 h). After cooling, the contents of the �ask were
acidi�ed with HCl to pH 1 and extracted three times with dichlor-
omethane (DCM) (30 ml). The combined DCM extracts were dried
over anhydrous Na 2SO4, �ltered and concentrated to give a total
lipid extract (TLE). Since IP 25 oxidation product content was quite
low relative to other lipids, accurate quanti�cation required fur-
ther separation of the TLE using column chromatography (silica;
Kieselgel 60, 8 cm � 0.5 cm i.d.). IP25 was obtained by elution with
hexane (10 ml) and its oxidation products by subsequent elution
with DCM (10 ml). Additional elution with MeOH (10 ml) was car-
ried out to recover the more polar lipid compounds. Relative IP 25

content was determined using the method of Vare et al. (2009)
and Belt et al. (2010) and some uncalibrated data (STN 308) were
presented previously by Brown (2011) . Here, all previous GC–MS
data were re-analyzed and converted to absolute concentrations
using instrumental response factors derived from solutions of
known IP 25 concentration ( Belt et al., 2012 ). Biomarker data were
further normalised to total organic carbon (TOC) to accommodate
possible changes in burial ef�ciency. TOC data were obtained
Table 1
Pseudo �rst order degradation rate constants of epi-brassicasterol and 24-methylenecholester

kBra (h� 1)a r2

Autoxidation in algal cells (seawater + Fe 2+)c 2.9 � 10� 4 0
Aerobic biodegradation of algal cells 3.5 � 10� 3 0
Degradation in sediments from station 308 d 2.0 � 10� 6 0

a Pseudo �rst order degradation rate constant of epi-brassicasterol.
b Pseudo �rst order degradation rate constant of 24-methylenecholesterol.
c Rontani et al. (2014) .
d First 10 cm.
following removal of inorganic carbonate from sediment material
according to the method of Berben et al. (2017) .

2.8. Derivatization of hydroxyl-containing products

In order to analyze for hydroxylated products (i.e. alcohols and
carboxylic acids), DCM- and MeOH-eluted fractions were deriva-
tized by dissolving them in 300 ml pyridine/ bis-(trimethylsilyl)tri
�uoroacetamide (BSTFA; Supelco; 2:1, v:v) and silylated (50 �C, 1
h). After evaporation to dryness under a stream of N 2, the deriva-
tized residue was re-dissolved in 100 l l BSTFA (to avoid desilyla-
tion of fatty acids), together with an amount of co-solvent (ethyl
acetate) dependent on the mass of the TLE, and then analyzed
using GC–QTOFMS.

2.9. GC–QTOFMS analyses

Accurate mass spectra were obtained with an Agilent
7890B/7200 GC–QTOFMS System (Agilent Technologies, Parc Tech-
nopolis - ZA Courtaboeuf, Les Ulis, France). A cross-linked 5%
phenyl-methylpolysiloxane (Macherey Nagel; Optima 5-MS
Accent) column (30 m � 0.25 mm, 0.25 l m �lm thickness) was
employed. Analysis was performed with an injector operating in
pulsed splitless mode at 280 �C and the oven temperature pro-
grammed from 70 �C to 130 �C at 20 �C/min, then to 250 �C at
5 �C/min and then to 300 �C at 3 � C/min. The carrier gas (He) was
maintained at 0.69 � 105 Pa until the end of the temperature pro-
gram. Instrument temperatures were 300 �C for transfer line and
230 �C for the ion source. Accurate mass spectra were recorded
across the range m/z 50–700 at 4 GHz with nitrogen as collision
gas (1.5 ml/min). The QTOFMS instrument provided a typical reso-
lution ranging from 8009 to 12,252 from m/z 68.9955 to 501.9706.
Per�uorotributylamine (PFTBA) was utilized for daily MS calibra-
tion. Structural assignments were based on interpretation of accu-
rate mass spectral fragmentations and con�rmed by comparison of
retention times and mass spectra of oxidation products with those
of authentic compounds, when available.

3. Results

3.1. Autoxidation and biodegradation rates of epi-brassicasterol, 24-
methylenecholesterol and IP25

Autoxidation rates of 24 a-methylcholesta-5,22E-dien-3 b-ol
(epi-brassicasterol) and 24-methylcholesta-5,24(28)-dien-3 b-ol
(24-methylenecholesterol) were previously measured in phyto-
plankton cells ( Rontani et al., 2014 ). In order to compare biodegra-
dation rates of these two sterols, phytoplanktonic cells were
incubated in the presence of sediment inoculum under oxic condi-
tions. We observed a strong depletion of both sterols (close to 90%
after incubation for 1 month at 2 �C), although their biodegrada-
tion rates were quite similar ( Table 1). The pseudo-�rst order rate
constant (k) for the biodegradation of each sterol was obtained
from the gradient of the regression lines determined according to
ol during in vitro incubations and in Arctic oxic sediments.

n k24-Me (h� 1)b r2 n

.80 4 1.1 � 10� 3 0.85 4

.95 4 3.6 � 10� 3 0.93 4

.86 6 3.3 � 10� 6 0.94 6



Fig. 2. TOFMS mass spectra of HBI alcohol trimethylsilyl derivatives of: (A) 3,9,13-trimethyl-6-(1,5-dimethylhexyl)-tetradec-1-en-3-ol ( 1), (B) 2,6,10,14-tetramethyl-7-(3-
methylpent-4-enyl)-pentadecan-2-ol ( 4) and (C) 2,6,10,14-tetramethyl-9-(3-methylpent-4-enyl)-pentadecan-6-ol ( 5).
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Fig. 3. Downcore plots of IP 25 concentration and the epi-brassicasterol/24-
methylenecholesterol (Bra/24-Me) ratio for the three stations investigated. (The
dashed lines represent the redox boundaries).
the relationship ln(C/C o) = –kt, where C is the concentration of an
analyte at the time of sampling, C o is the initial concentration,
and t corresponds to the duration of the incubation. For these
experiments, a microbially mediated change in the sterol content
is supported by the near invariance of the concentration of
24-ethylcholesta-3b ,5a,6b-triol, a well-known autoxidation product
of sitosterol ( Rontani et al., 2009 ).

Incubation of hexane solutions of IP 25 in the presence of
tert -butyl hydroperoxide and di- tert -butyl nitroxide at 65 �C, with
subsequent NaBH4-reduction and silylation, yielded several HBI
alcohol TMS derivatives (resulting from the reduction and the
silylation of the corresponding, hydroperoxides, respectively) that
could be identi�ed by GC–QTOFMS. Speci�cally, the formation
of 3,9,13-trimethyl-6-(1,5-dimethylhexyl)-tetradec-1-en-3-ol (1 )
and 3,9,13-trimethyl-6-(1,5-dimet hylhexyl)-tetradec-2-en-1-ol ( 2)
was supported by comparison of their accurate mass spectra
(Fig. 2A) and retention times with those of reference compounds
prepared by oxidation of puri�ed IP 25 (see Section 2.3). Furthermore,
2,6,10,14-tetramethyl-9-(3-methylpent-4-enyl)-pentadecan-2-ol
(3), 2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadecan-2-ol
(4) and 2,6,10,14-tetramethyl-9-(3-methylpent-4-enyl)-penta-
decan-6-ol ( 5) could be tentatively ident i�ed on the basis of their a
ccurate mass fragmentations ( Fig. 2B and C).

3.2. Degradation of IP25, epi-brassicasterol and 24-
methylenecholesterol in Arctic sediments

IP25 concentrations ( Supplementary Table S1 ) and the ratio epi-
brassicasterol/24-methylenecholesterol (Bra/24-Me) were moni-
tored in the upper sections (up to ca. 20 cm) of three short sedi-
ment cores collected from different regions of the Canadian
Arctic, which possessed contrasting near-surface redox properties.
Thus, sediments from Viscount Melville Sound (STN 308) and the
western Amundsen Gulf (STN 408) exhibited a thick oxic layer
(11 cm and 8 cm, respectively), while the redox boundary was
much shallower (ca. 2 cm) in the box core from Barrow Strait
(STN 4). After an increase in the �rst 3 cm, IP 25 concentration
(expressed relative to TOC) decreased substantially in the
3–11 cm sections of (oxic) sediments from Viscount Melville Sound
(STN 308). Similarly, a reduction in IP 25 concentration was identi-
�ed in the top 3 cm of oxic sediments from the western Amundsen
Gulf (STN 408) before a subsequent increase (ca. 3–11 cm) and
then decrease (Fig. 3). In contrast, IP 25 concentration remained rel-
atively constant in the case of Barrow Strait (STN 4) sediments
(Fig. 3). Concerning the two main sterols, the ratio Bra/24-Me
remained relatively constant in anoxic sediments from Barrow
Strait (STN 4), although it increased steadily in oxic sediments from
Viscount Melville Sound (STN 308) (Fig. 3 ). Sediments from the
western Amundsen Gulf (STN 408), Bra/24-Me increased strongly
in the �rst 4 cm, before decreasing and then stabilizing (Fig. 3 ).

Next, we aimed to identify IP 25 autoxidation products in the
DCM fractions of the TLEs of different sediments by comparison
of accurate mass fragmentations and retention times with the oxi-
dation products characterised during the thermal incubation reac-
tions. Using this approach, we detected compounds 1, 3, 4 and 5 in
sediments from Barrow Strait (STN 4), which also contained the
highest concentrations of IP 25 (Fig. 4). The combined relative abun-
dance of these compounds (estimated on the basis of similar
TOFMS responses to that of IP25) reached 8.8% of the amount of
IP25 in the 1–2 cm layer and then decreased rapidly to 1.2% in
the 3–4 cm horizon. In addition, 2,6,10,14-tetramethyl-7-(3-methyl-
penten-4-yl)-pentadecan-6-ol ( 8), which was absent in the incu-
bation experiments, was also identi�ed, albeit tentatively ( Fig. 4B).
In contrast, since the mass spectrum of the TMS derivative of the
saturated tertiary C 25 HBI alcohol (C-7) had already been reported
(Robson, 1987), we were able to investigate if the corresponding
mono-unsaturated oxidation product was also present; however,
no characteristic fragmentation ions corresponding to oxidation at
C-7 of IP25 could be identi�ed. Analysis of extracts by GC–QTOFMS
did, however, enable us to detect 3,9,13-trimethyl-6-(1,5-dimethyl
hexyl)-tetradecan-1,2-diol ( 6) in sediments from Barrow Strait
(STN 4) and the western Amundsen Gulf (STN 408) (Fig. 5 ), while
traces of 2,8,12-trimethyl-5-(1,5-dimethylhexyl)-tridecanoic acid
(7) could be identi�ed in Barrow Strait (STN 4) and Viscount
Melville Sound (STN 308) sediments (Fig. 6 ). These two compounds
were formally identi�ed by comparison of their accurate mass
spectra (Fig. 7) and retention times with those of standards. On
the other hand, we failed to detect compounds 1–8 in �oating
sea ice algal aggregates from Resolute Passage despite the presence
of relatively large amounts of IP 25 within these samples ( Brown
et al., 2014).

4. Discussion

4.1. Autoxidation of IP25

According to our product identi�cations, autoxidation of IP 25

involves hydrogen atom abstraction by peroxyl radicals on the
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allylic carbon C-22 and the tertiary carbon atoms C-2, C-10 and
C-14. Subsequent oxidation of the resulting radicals together with
hydrogen abstraction from other substrate molecules leads to the
formation of various hydroperoxides (Fig. 8 ). These labile com-
pounds were reduced to their corresponding alcohols (1 –5) during
NaBH4-reduction and silylated prior to analysis by GC–QTOFMS.
The failure to detect any autoxidation product resulting from reac-
tion with either of the tertiary carbons C-6 or C-7 is likely due to
increased steric hindrance during hydrogen abstraction by the
bulky tert- butylperoxyl radicals employed during the incubation.
Indeed, when comparing our data from laboratory and environ-
mental samples, we note that the relative abundances of IP 25 oxi-
dation products are very different in Arctic sediments (Fig. 4 B)
compared to those from incubations in solvent (Fig. 4 A), likely
re�ecting the contrasting nature of the peroxyl radicals involved
during autoxidation. For example, the bulky tert- butylperoxyl rad-
ical pertinent to the laboratory-based incubations probably favours
the attack of the less hindered external carbon atoms of IP 25 (i.e. C-2
and C-14), while the unknown (structurally) peroxyl radicals act-
ing in sediment seem to be less sensitive to such steric hindrance.
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This conclusion is further supported by the detection of an
additional oxidation product in sediments (Fig. 4 B), tentatively
attributed to 2,6,10,14-tetramethyl-7-(3-methylpenten-4-yl)-
pentadecan-6-ol ( 8), which was absent in the incubation experiments
(Fig. 4A).
Finally, although each of 1–5 could be readily identi�ed during
the incubation reactions, they were only ever present in low abun-
dances and none accumulated over time. We attribute this to the
likely secondary oxidation of primary hydroperoxides to polar
and oligomeric compounds ( Fig. 8), which are not detectable using
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the GC–QTOFMS method employed here. This kind of secondary
oxidation was described previously for other HBIs (Rontani et al.,
2014).

4.2. Degradation of epi-brassicasterol and 24-methylenecholesterol

Due to the different positions of the double bonds in their
alkyl chains (see Appendix A ), an enhanced autoxidative and
photooxidative reactivity of epi-brassicasterol compared to
24-methylenecholesterol would be expected. Indeed, the C–H bond
energy for allylic hydrogens is lower for internal double bonds than
it is for terminal double bonds (77 kcal/mol vs 85 kcal/mol)
(Schaich, 2005), thus making allylic hydrogen abstraction more
favourable in epi-brassicasterol. Moreover, on the basis of degrada-
tion rates of singlet oxygen ( 1O2) with terminal and internal double
bonds (4.0 � 103 and 7.7 � 103 M� 1 s� 1, respectively; Hurst et al.,
1985), Type II photosensitized oxidation of epi-brassicasterol
should also be favoured compared to 24-methylenecholesterol.
However, in natural settings, it was previously reported
that autoxidation ( Rontani et al., 2014 ) and photooxidation
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(Rontani et al., 2012, 2016) processes act more intensively on 24-
methylenecholesterol than on epi-brassicasterol, at least in mixed
phytoplanktonic assemblages. These differences in reactivity can
be attributed to the involvement of intra-cellular compartmental-
ization effects, which may signi�cantly modify the reactivity of
lipids towards autoxidative and photooxidative processes accord-
ing to their location in phytoplanktonic cells (Rontani, 2012 ). This
enhanced reactivity of 24-methylenecholesterol towards autoxida-
tion in phytoplanktonic cells suggests that an increase in the
Bra/24-Me ratio may be a good indicator of autoxidation processes
in sediments, especially as the main autoxidative products of these
two sterols are unspeci�c and labile 7 a/b-hydroperoxysteroids
(Christodoulou et al., 2009; Rontani et al., 2009 ).

In contrast to autoxidation reactions, aerobic microbial degra-
dation of D5-sterols involves two processes: side-chain elimination
and ring opening ( Rostoniec et al., 2009). The degradation is initi-
ated by oxidation of the 3 b-hydroxyl moiety and isomerization of
the D5 double bond to the D4 position ( Sojo et al., 1997). Further
degradation of the resulting 4-steren-3-one proceeds via hydroxy-
lation at C 26 to initiate side-chain degradation, or oxidation of rings
A and B resulting in the cleavage of the ring structure (9,10-seco-
pathway; Philipp, 2011 ). In the case of cholesterol, the degradation
of the 26-hydroxylated alkyl chain may be carried out after
oxidation to the corresponding acid by classical sequences of
b-oxidation ( Rostoniec et al., 2009). In contrast, in the case of
epi-brassicasterol and 24-methylenecholesterol, due to the pres-
ence of a methyl or methylene group at C-24, the involvement of
alternating b-decarboxymethylation ( Cantwell et al., 1978 ) and
b-oxidation sequences is needed ( Fig. 9). The very close degrada-
tion rates of these two sterols observed after incubation of phyto-
planktonic cells in the presence of sediment inoculum under oxic
conditions ( Table 1) may be attributed to the involvement of a
2,3-enoyl-CoA isomerase ( Ratledge, 1994). Indeed, these widely
distributed enzymes may catalyze the isomerisation of the
methylidene double bond to the C24-25 position in the case of
24-methylenecholesterol (Fig. 9 ), thus permitting the involvement
of a similar degradation process of the alkyl side-chain in the case
of the two sterols.

Under anoxic conditions, ring cleavage of D5-sterols may be
mediated by oxygen-independent enzymatic processes (Chiang
et al., 2007). In the case of cholesterol, only hydroxylation of the
side chain at C-25 has been shown to occur, with the resulting ter-
tiary alcohol not oxidized further (Chiang et al., 2007 ). For sterols
with more substituted or unsaturated side chains, such as sitos-
terol, fucosterol and isofucosterol, similar degradation rates were
observed following incubation of cells of the microalga Nan-
nochloropsis salina in anoxic sediment slurries ( Grossi et al.,
2001). This suggests that changes to the sterol side chain have little
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Fig. 8. Proposed mechanisms for the autoxidative degradation of IP 25.
impact on the overall degradation rates under anoxic conditions.
As such, in the absence of any reported experimental data, it is rea-
sonable to propose similar anaerobic degradation rates for epi-
brassicasterol and 24-methylenecholesterol, especially given their
common ring structure. Overall, therefore, aerobic and anaerobic
bacterial degradation processes should not induce signi�cant
changes to the Bra/24-Me ratio in sediments.

4.3. Degradation of IP25, epi-brassicasterol and 24-
methylenecholesterol in Arctic sediments

Due to the extremely low rate of autoxidation of IP 25 in solution,
even at higher temperature (e.g., 65 �C), it was suggested previ-
ously that it should be largely unaffected by autoxidative degrada-
tion processes in the Arctic, at least in comparison with lipids of
similar structure such as other HBIs with greater unsaturation
(Rontani et al., 2014 ). However, here we show that autoxidative
degradation of IP 25 may occur under more ‘forced’ conditions and
such processes may also take place in Arctic surface sediments.
Indeed, due to recent evidence of strong lipoxygenase activity (a
well-known source of radicals; Fuchs and Spiteller, 2014 ) in bacte-
ria associated with ice algae (Amiraux et al., 2017 ) and in terres-
trial particulate organic matter discharged from Arctic rivers
(Galeron et al., 2018 ), autoxidative degradation reactions can even
be dominant in Arctic sediments (Rontani et al., 2012, 2017),
despite the low temperatures. The autoxidation of IP 25 in sedi-
ments possessing a thick oxic layer, where the contact of ice algal
detritus with oxygen may be relatively long, therefore represents a
viable degradation pathway of this biomarker in near-surface
sediments.
Consistent with this suggestion, the decrease in IP 25 concentra-
tion observed in the oxic layer of sediments from Viscount Melville
Sound (STN 308) (between 3 and 10 cm) and the western Amund-
sen Gulf (STN 408) (between 0 and 3 cm) (Fig. 3 ) may potentially
be attributed to the involvement of oxic degradation processes
such as aerobic biodegradation (Robson and Rowland, 1988 ) or
autoxidation, and this last suggestion is supported further by the
increase of the Bra/24-Me ratio within the same sediments
(Fig. 3). In contrast, the strong decrease in Bra/24-Me observed in
the bottom of the oxic layer of sediments from the western
Amundsen Gulf (STN 408) is potentially due to an input of fresh
algal material (with a low Bra/24-Me ratio) during this period. This
suggestion is supported by the observation of a 10-fold increase in
phytoplanktonic sterol concentration in the 6–7 cm horizon com-
pared to the 4–5 cm layer. Further, Brown (2011) proposed that
rapid decreases in sedimentary IP 25 concentration in some other
cores from the Canadian Arctic could potentially re�ect degrada-
tion processes, more generally. In contrast, the more consistent
concentration of IP 25 in anoxic sediments from Barrow Strait
(STN 4) and the western Amundsen Gulf (STN 408) (Fig. 3 ) is likely
indicative of enhanced resistance to oxidation under such condi-
tions. Unfortunately, we were not able to detect the primary autox-
idation products of IP 25 in sediments other than from Barrow Strait
(STN 4), likely due to: (i) their further oxidation (as suggested from
the incubation reactions), especially in the oxic layers of cores from
Viscount Melville Sound (STN 308) and the western Amundsen
Gulf (STN 408) and (ii) the detection limits of GC–QTOFMS analy-
ses. However, despite the general resistance of IP 25 towards free
radical oxidation, as reported previously (Rontani et al., 2011,
2014), the detection of compounds 1, 3, 4 and 5 (Fig. 4) shows that



Fig. 9. Proposed mechanisms for the aerobic bacterial degradation of the alkyl side-
chain of epi-brassicasterol and 24-methylenecholesterol.
this HBI alkene can be susceptible to autoxidation in Arctic sedi-
ments, an environment where such processes have previously been
shown to be enhanced for some other lipids (Rontani et al., 2012,
2017). Further, this vulnerability towards autoxidation may be
especially prevalent in cases where sequestered ice algal material
experiences long residence times in the oxic layer.

Interestingly, compounds 6 and 7 could be detected in anoxic
sediments from Barrow Strait (STN 4) and oxic sediments from Vis-
count Melville Sound (STN 308) and the western Amundsen Gulf
(STN 408) (Figs. 5 and 6). We attribute the formation of such com-
pounds to aerobic or anaerobic bacterial metabolism of IP 25. In
contrast, a mechanism involving autoxidative production (via
epoxidation and subsequent hydrolysis; Schaich, 2005) is dis-
carded on the basis of: (i) the detection of only one pair of enan-
tiomers of compound 6 in sediments ( Fig. 5) and (ii) the lack of
compounds 6 and 7 observed during our in vitro autoxidation
experiments. Aerobic bacterial degradation of IP 25 may be initiated
either via attack on the double bond or by the same mechanisms
associated with n-alkane metabolism (i.e., attack of terminal
methyl groups; Morgan and Watkinson, 1994 ). Oxidation across
the double bond in IP 25 can produce diol 6 via the corresponding
epoxide 9 (Soltani et al., 2004 ) (Fig. 10). Previously, it was demon-
strated that various pristenes and phytenes (also isoprenoid alke-
nes) can be rapidly biodegraded by sedimentary bacteria under
anaerobic conditions, mainly by hydration reactions (Rontani
et al., 2013). Enzymes that catalyze the addition of water to iso-
lated and electron-rich carbon-carbon double bonds are termed
hydratases and display a high degree of enantioselectivity (Resch
and Hanefeld, 2015 ). In the case of IP25, addition of water to the
C23-24 double bond results in the formation of 3,9,13-trimethyl-
6-(1,5-dimethylhexyl)-tetradecan-2-ol (10 ) (Fig. 10), which subse-
quently oxidises to the corresponding ketone (11 ). Mechanisms
involving hydration of the enol forms of the keto group have been
proposed for the anaerobic metabolism of isoprenoid ketones by
denitri�ers ( Rontani et al., 1999, 2013). Hydration of the enol form
under kinetic control of the ketone 11 affords the diol 6 (Fig. 10).
This diol may be subsequently cleaved to form 2,8,12-trimethyl-
5-(1,5-dimethylhexyl)-tridecanal (12 ), which may then be fully
metabolized via 2,8,12-trimethyl-5-(1,5-dimethylhexyl)-
tridecanoic acid ( 7) by alternating b-oxidation and
b-decarboxymethylation sequences (Cantwell et al., 1978;
Rontani and Volkman, 2003 ). These interesting results suggest that
IP25 may be also affected by bacterial degradation processes in
Arctic sediments, although the extent to which this occurs remains
to be determined.

4.4. Implications for palaeo sea ice reconstruction

The identi�cation of some degradation pathways of IP 25 in some
Arctic marine sediments raises potentially important questions
regarding the use of this biomarker as a reliable proxy measure
of past sea ice. However, the failure to investigate the occurrence
of any of the degradation products described herein in previous
studies, prevents a comprehensive evaluation of the importance
of IP25 degradation from being made at this stage. In the meantime,
analysis of an extensive set of surface sediments from different
Arctic regions has revealed excellent agreement between IP 25 con-
tent and known sea ice cover (e.g., Müller et al., 2011; Stoynova
et al., 2013; Navarro-Rodriguez et al., 2013; Xiao et al., 2013,
2015; Belt et al., 2015; Köseog� lu et al., 2018; Ribeiro et al., 2017),
while IP 25 data obtained from several short core records (typically
covering recent decades to centuries) show generally good agree-
ment with known sea ice conditions derived either from historical
records or satellite data ( Alonso-García et al., 2013; Weckström
et al., 2013; Cormier et al., 2016 ), including examples where IP 25

concentration increases with depth (e.g., Massé et al., 2008;
Andrews et al., 2009; Vare et al., 2010; Cabedo-Sanz and Belt,
2016). However, in a recent study from the Chukchi-Alaskan
margin, a decline in IP 25 abundance in near-surface sediments
was suggested to indicate a combined in�uence of diagenesis and
long-range sediment transport (Polyak et al., 2016 ). Further, the
previously reported surface sediment datasets (and their relation-
ship to known sea ice cover) might need re-examination in light of
the evidence described herein for at least partial IP 25 degradation
in some near-surface sediments.

Interestingly, although there is a clear decline in IP 25 concentra-
tion with depth in the box core from Viscount Melville Sound (STN
308) ( Fig. 3), a similarly continuous negative trend was not appar-
ent in the cores from either Barrow Strait (STN 4) or the western
Amundsen Gulf (STN 408) ( Fig. 3), despite the detection of IP 25 oxi-
dation products in both cases ( Fig. 5D). This suggests that climatic
in�uences likely exceeded those from degradation, although the
possible impact of bioturbation, a feature in some near-surface
sediments, cannot be totally ruled out at this stage. However,



Fig. 10. Proposed mechanisms for the aerobic and anaerobic bacterial degradation of IP 25.
preliminary 210Pb data suggest that bioturbation is negligible in
cores from Barrow Strait (STN4) and Viscount Melville Sound
(STN308), and con�ned to the (at most) upper 2 cm in the core
from the western Amundsen Gulf (STN408) (S. Schmidt, personal
communication).

For longer records (i.e. those beyond recent centuries), a com-
mon feature in many IP 25-based sea ice reconstructions has been
a reduction in IP 25 concentration over time, especially during the
Holocene (e.g., Vare et al., 2009; Belt et al., 2010; Fahl and Stein,
2012; Müller et al., 2012; Hörner et al., 2016; Kölling et al.,
2017; Stein et al., 2017). Such changes have generally been inter-
preted as re�ecting an increase in sea ice extent or duration from
the warm early Holocene through neoglacial conditions towards
present, an interpretation generally supported with other paleocli-
matic proxy data. The often higher IP 25 concentrations observed in
older sections of the same (or related) records, covering the
Younger Dryas stadial (ca. 12.9–11.5 kyr BP) (Cabedo-Sanz et al.,
2013; Müller and Stein, 2014; Belt et al., 2015; Méheust et al.,
2015; Jennings et al., 2017) and the Last Glacial Maximum (LGM;
e.g., Müller and Stein, 2014; Hoff et al., 2016) provide further
evidence of substantial climatic overprinting within biomarker
pro�les.

Resolving the relative contributions of climatic in�uence and
diagenetic alteration on downcore IP 25 (and other biomarker)
distributions is likely to remain a challenge from an analytical per-
spective, however, not least because, on the basis of our new



results described here, the oxidation products of IP 25 are unlikely
to accumulate in suf�cient amounts to enable their quanti�cation
(or even detection), especially since IP 25 content itself is often quite
low in Arctic marine sediments. On the other hand, the measure-
ment of certain biomarker ratios such as Bra/24-Me may prove
useful for assessing such degradation processes, especially when
used alongside IP25 concentration pro�les; however, the potential
for changes in environmental conditions to also in�uence such
ratios should also be considered. Further, the measurement of
redox boundary layers in upper sections of sediment cores might
also provide additional insights into the nature of different degra-
dation processes.

Finally, it is interesting to note that we were not able to detect
any IP25 oxidation products in our sample of sea ice algae, which
supports conclusions from previous studies that it is largely resis-
tant to abiotic alteration in the host matrix (Rontani et al., 2014 )
and also in the water column soon after ice melt (Brown et al.,
2016; Rontani et al., 2016).
5. Conclusions

This study represents the �rst attempt to evaluate, via oxidative
product identi�cation, the possible fate of IP 25 in Arctic sediments.
Laboratory-based autoxidation of the Arctic sea ice diatom biomar-
ker IP25 results in the formation of a series of oxidation products
that could be characterised using high resolution GC–MS methods.
Some of the same oxidation products could also be identi�ed in
sediment material from the Canadian Arctic although their accu-
mulation was very low, likely due to further oxidation. The detec-
tion of bacterial metabolites of IP 25 showed that this HBI alkene
may also be affected by aerobic and/or anaerobic degradation pro-
cesses in sediments. We suggest that complementary evidence for
autoxidation and biodegradation processes may potentially be
obtained from measurement of certain phytoplankton sterol ratios,
although these may also be in�uenced by changes to the overlying
climatic conditions.

Although degradation of IP 25 has, to date, not been considered
in detail within IP 25-based sea ice reconstructions, our initial over-
view of previous studies suggests that climatic contributions to
sedimentary IP 25 distributions likely exceed the impact of sedi-
mentary degradation, at least in the albeit still limited number of
case studies thus far reported. On the other hand, oxidative degra-
dation may have a signi�cant impact on IP 25 concentration in some
near-surface material, especially in cases where the oxic layer rep-
resents relatively long time intervals. In any case, we suggest that
such degradation processes should be considered more carefully in
future sea ice reconstructions based on IP 25.
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