A. , K. Postec, A. Grinsard, E. Lesongeur, F. Prieur et al., Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfatereducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, Int. J. Syst. Evol. Microbiol, vol.60, pp.33-38, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00609631

R. M. Allen and H. P. Bennetto, Microbial fuel-cells, Appl. Biochem. Biotechnol, vol.3940, 1993.

S. T. Bates, D. Berg-lyons, J. G. Caporaso, W. A. Walters, R. Knight et al., Examining the global distribution of dominant archaeal populations in soil, ISME J, vol.5, pp.908-917, 2011.

C. Boileau, R. Auria, S. Davidson, L. Casalot, P. Christen et al., Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth, Biotechnol. Biofuels, vol.9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443237

J. Brosius, T. J. Dull, D. D. Sleeter, and H. F. Noller, Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli, J. Mol. Biol, vol.148, pp.107-127, 1981.

H. Cao, Y. Wang, O. O. Lee, X. Zeng, Z. Shao et al., Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge, vol.5, pp.980-993, 2014.

T. Cerqueira, D. Pinho, H. Froufe, R. S. Santos, R. Bettencourt et al., Sediment microbial diversity of three deep-sea hydrothermal vents southwest of the Azores, Microb. Ecol, vol.74, pp.332-349, 2017.

G. J. Dick, K. Anantharaman, B. J. Baker, M. Li, D. C. Reed et al., The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats, 2013.

L. E. Doyle and E. Marsili, Methods for enrichment of novel electrochemically-active microorganisms, Bioresour. Technol, 2015.

J. Einen, I. H. Thorseth, and L. Øvreås, Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy, FEMS Microbiol. Lett, vol.282, pp.182-187, 2008.

G. E. Flores, J. H. Cambpell, J. D. Kirshtein, J. Meneghin, M. Podar et al., Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge, Environ. Microbiol, vol.13, pp.2158-2171, 2011.

Q. Fu, N. Fukushima, H. Maeda, K. Sato, and H. Kobayashi, Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C, Biosci. Biotechnol. Biochem, vol.0, pp.1-7, 2015.

Q. Fu, H. Kobayashi, H. Kawaguchi, T. Wakayama, H. Maeda et al., A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability, Environ. Sci. Technol, vol.47, pp.12583-12590, 2013.

P. R. Girguis and J. F. Holden, On the potential for bioenergy and biofuels from hydrothermal vent microbes, 2012.

A. Godfroy, EXOMAR cruise, RV L'Atalante [WWW Document, 2005.

P. T. Ha, T. K. Lee, B. E. Rittmann, J. Park, and I. S. Chang, Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell, Environ. Sci. Technol, vol.46, pp.3022-3030, 2012.

J. Hinks, M. Zhou, and J. Dolfing, Microbial electron transport in the deep subsurface, pp.81-102, 2017.

M. P. Hogarth, The development of the direct methanol fuel cell, 1995.

J. A. Huber, H. V. Cantin, S. M. Huse, D. B. Mark-welch, M. L. Sogin et al., Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts: Epsilonproteobacteria in vents of the Mariana Arc, FEMS Microbiol. Ecol, 2010.

C. Koch and F. Harnisch, Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem, vol.3, pp.1282-1295, 2016.

C. Konn, J. L. Charlou, N. G. Holm, and O. Mousis, The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the MidAtlantic Ridge, Astrobiology, vol.15, pp.381-399, 2015.

B. Kristall, D. S. Kelley, M. D. Hannington, and J. R. Delaney, Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: A petrological and geochemical study, Geochem. Geophys. Geosystems, vol.7, 2006.

A. Kumar, L. H. Hsu, P. Kavanagh, F. Barrière, P. N. Lens et al., The ins and outs of microorganismelectrode electron transfer reactions, Nat. Rev. Chem, vol.1, p.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01542755

E. Legin, A. Copinet, and F. Duchiron, Production of thermostable amylolytic enzymes by Thermococcus hydrothermalis, Biotechnol. Lett, vol.20, pp.363-367, 1998.

B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller et al., Microbial fuel cells: Methodology and technology, Environ. Sci. Technol, vol.40, pp.5181-5192, 2006.

B. G. Lusk, Q. F. Khan, P. Parameswaran, A. Hameed, N. Ali et al., Characterization of electrical current-generation capabilities from thermophilic bacterium Thermoanaerobacter pseudethanolicus using xylose, glucose, cellobiose, or acetate with fixed anode potentials, Environ. Sci. Technol, vol.49, pp.14725-14731, 2015.

C. W. Marshall and H. D. May, Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica, Energy Environ. Sci, vol.2, p.699, 2009.

W. Martin, J. Baross, D. Kelley, and M. J. Russell, Hydrothermal vents and the origin of life, Nat. Rev. Microbiol, vol.6, pp.805-814, 2008.

B. J. Mathis, C. W. Marshall, C. E. Milliken, R. S. Makkar, S. E. Creager et al., Electricity generation by thermophilic microorganisms from marine sediment, Appl. Microbiol. Biotechnol, vol.78, pp.147-155, 2007.

V. Michotey, S. Guasco, D. Boeuf, N. Morezzi, B. Durieux et al., Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters, Mar. Pollut. Bull, vol.65, pp.525-537, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739805

M. L. Miroshnichenko and E. A. Bonch-osmolovskaya, Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents, Extremophiles, vol.10, pp.85-96, 2006.

A. Poli, I. Finore, I. Romano, A. Gioiello, L. Lama et al., Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5, 2017.

M. O. Schrenk, W. J. Brazelton, and S. Q. Lang, Serpentinization, carbon, and deep life, Rev. Mineral. Geochem, vol.75, pp.575-606, 2013.

U. Schröder, F. Harnisch, and L. T. Angenent, Microbial electrochemistry and technology: terminology and classification, Energy Env. Sci, vol.8, pp.513-519, 2015.

N. Sekar, C. Wu, M. W. Adams, and R. P. Ramasamy, Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C, Biotechnol. Bioeng, vol.114, pp.1419-1427, 2017.

P. Sengodon and D. B. Hays, Microbial fuel cells. Future Fuel Technologies, 2012.

N. A. Shehab, J. F. Ortiz-medina, K. P. Katuri, A. R. Hari, G. Amy et al., Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula, Bioresour. Technol, vol.239, pp.82-86, 2017.

L. Shi, H. Dong, G. Reguera, H. Beyenal, A. Lu et al., Extracellular electron transfer mechanisms between microorganisms and minerals, Nat. Rev. Microbiol, vol.14, pp.651-662, 2016.

L. Shi, T. C. Squier, J. M. Zachara, and J. K. Fredrickson, Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes, Mol. Microbiol, vol.65, pp.12-20, 2007.

P. M. Shrestha and A. Rotaru, Plugging in or going wireless: strategies for interspecies electron transfer, Front. Microbiol, vol.5, 2014.

S. F. Stoddard, B. J. Smith, R. Hein, B. R. Roller, and T. M. Schmidt, rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development, Nucleic Acids Res, vol.43, pp.593-598, 2015.

K. Takai, S. Nakagawa, A. Reysenbach, and J. Hoek, Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, pp.185-213, 2006.

R. Uzarraga, R. Auria, S. Davidson, D. Navarro, and Y. Combet-blanc, New cultural approaches for microaerophilic hyperthermophiles, Curr. Microbiol, vol.62, pp.346-350, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01888771

C. Vetriani, J. W. Voordeckers, M. Crespo-medina, C. E. O'brien, D. Giovannelli et al., Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap), ISME J, vol.8, pp.1510-1521, 2014.

R. Wirth, Colonization of black smokers by hyperthermophilic microorganisms, Trends Microbiol, vol.25, pp.92-99, 2017.

K. C. Wrighton, P. Agbo, F. Warnecke, K. A. Weber, E. L. Brodie et al., A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells, ISME J, vol.2, pp.1146-1156, 2008.

K. C. Wrighton, J. C. Thrash, R. A. Melnyk, J. P. Bigi, K. G. Byrne-bailey et al., Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell, Appl. Environ. Microbiol, vol.77, pp.7633-7639, 2011.

M. Yamamoto, R. Nakamura, T. Kasaya, H. Kumagai, K. Suzuki et al., Spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields, Angew. Chem. Int. Ed, vol.56, pp.5725-5728, 2017.

Y. D. Yilmazel, X. Zhu, K. Kim, D. E. Holmes, and B. E. Logan, Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari, Bioelectrochemistry, vol.119, pp.142-149, 2018.

L. Zhang, M. Kang, J. Xu, J. Xu, Y. Shuai et al., Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge, Sci. Rep, vol.6, 2016.