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Mapping the Ultrafast Vibrational Dynamics of all-trans and 13-Cis 
Retinal Isomerization in Anabaena Sensory Rhodopsin 

Partha Pratim Roy,a  Youshitoka Kato,b Rei Abe-Yoshizumi,b, c Elisa Pieri,d Nicolas Ferré,d Hideki 
Kandori b,c and Tiago Buckup*, a 

Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a 

well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein 

that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn 

(13C). In this work, we apply impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to 

shed more light on how the structural changes take place in the excited state within the same protein environment. Our 

findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions 

in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane 

wag (at about 805 cm-1) for 13C than for AT isomer, which hints at a pre-distortion of the 13C in the ground state. Evolution 

of the Raman frequency after interaction with actinic pulse shows a blue shift for the C=C stretching and CH3 rocking mode 

for both isomers. For AT, however, the blue shift is not instantaneous as observed for the 13C isomer, rather it takes more 

than 200 fs to reach the maximum frequency shift. This frequency blue shift is rationalized by a decrease of the effective 

conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the 

AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum 

chemical calculations.

Introduction 

Photo-induced isomerization of retinal protonated Schiff base 

(RPSB) powers many fundamental biological processes like 

photosynthesis, vision, gene expressions by initiating the 

photocycle via the conversion of light energy to chemical 

potential.1-8 Retinal derivative, which serves as the central 

element for these photo-chemically triggered biological activity, 

is found to be covalently bound to a Lysine residue of the 

seventh helix of the protein membrane in all retinal pigments.9, 

10 Retinal is well known for its different structural isomeric 

forms in a variety of organisms e.g. 11-cis in visual rhodopsin, 

9-cis in iso-rhodopsin, all-trans in microbial retinal protein 

(MRP) and the widely varying reaction rates and the 

isomerization efficiencies in these proteins. For instance, the 

retinal isomerization in visual pigments takes place within 

100 fs11-14 with a quantum yield about 65%15 whereas it takes 

more than 0.6 ps to complete the isomerization with a yield 

<40% for MRP´s.16-18 On the other hand, the 

photo-isomerization of RPSB (all-trans) in solution happens in a 

much slower rate (~1 ps)19-21 and leads to the formation of a 

mixture of different stereo-isomers with a quantum yield of few 

percent for each subproduct.22 All these observations have 

been taken as an indication that the electrostatic interaction 

between the retinal chromophore and the amino acid residues 

of the surrounding protein steers the isomerization reaction. 

In recent decades, there have been extensive 

experimental12, 14, 23-29 and theoretical30-34 investigations 

performed to explore the underlying mechanism of this 

ultrafast isomerization reaction. Visual rhodopsin and 

bacteriorhodopsin (BR) are two retinal proteins which have 

been most thoroughly studied in this regard. In general, the 

retinal isomerization is believed to be initiated by a rapid 

reorganization of C-C bond length within few tens of 

femtosecond after the excitation, known as bond length 

alternation (BLA),32 to form the sub-picosecond reactive excited 

state coined as I intermediate.35 For BR, this state decays 

non-exponentially to form J intermediate35, 36 during the course 

of internal conversion (IC) which is associated with a weak 

spectral evolution.37, 38 Moreover, the cross section of the 

emission state has been found to be constant throughout the 

fluorescence lifetime.38 Both of these observations have been 

interpreted as a non-ballistic internal conversion. Retinal 

isomerization in visual rhodopsin, however, differs from that: 

Dramatic spectral evolution during the IC12, 14, 27 has been 

interpreted as a coherent isomerization reaction12, 14, 39 where a 
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nuclear wave packet generated by impulsive stimulated Raman 

scattering (ISRS) evolves in a ballistic fashion towards the 

ground state potential surface.  

This contrast between the nature and speed of the 

isomerization reactions for two different classes of retinal 

proteins has been often rationalized by the difference in the 

planarity of the ground state (GS) structures of RPSB bound 

inside the cavity of retinal pocket.40 Structural strains on RPSB 

inside different protein pockets, originate either due to distinct 

structural conformations of each isomer or due to the change in 

the electrostatic interaction between RPSB and the protein 

moiety. Structural investigations9, 40, 41 have shown that 11-cis 

GS isomer in visual rhodopsin is present as a non-planar, 

pre-twisted structure which facilitates the reaction to proceed 

rapidly.42 However, for BR neither NMR studies40, 43 nor the 

resonance Raman spectra44 indicates any evidence of such a 

pre-twisting for the GS all-trans isomer. Furthermore, a 

quantum chemical computational study42 of an artificially 

twisted retinal in gas phase showed sub-100 fs dynamics which 

further indicates the pre-straining alone can lead to a rapid 

isomerization process even in absence of any specific 

electrostatic interaction of RPSB with the surrounding. 

One systematic way to point out the reason would be to 

investigate RPSB of two different conformations under the 

same protein environment. Recently discovered Anabaena 

Sensory Rhodopsin (ASR) has been assisting to shed new light 

on this issue.7, 9, 45-47 Like other MRP’s, it comprises 13-cis, 

15-syn (13C) and all-trans, 15-anti (AT) in GS. Being a 

photochromic sensor, the isomeric ratio depends on the 

wavelength of external illumination light.45 When it is 

illuminated with an orange light (~590 nm) it forms a mixture 

(~40:60) of AT and 13C isomers in light adapted (LA) photo-

stationary equilibrium.46, 47 On the other hand, it adopts a 

thermally relaxed AT form under dark adapted (DA) condition. 

Within the photocycle (Fig. 1), each of the AT and 13C isomers 

undergoes isomerization around C13=C14 in sub-ps time scale 

that results in a hot photo-intermediate J (13-cis, 15-anti and 

all-trans, 15-syn, respectively). Later, it forms the 

K-photoproduct (KAT and K13C) within 100 ps via vibrational 

relaxation. Subsequently, both KAT and K13C undergo further 

isomerization around C15=N on a longer time scale (<nS) to 

generate the 13C and AT GS respectively (Fig. 1). Therefore, ASR 

is a unique member among the rhodopsin family which allows 

to compare the isomerization reaction in both directions (AT to 

13C and 13C to AT) of the photo-cycle within the same protein 

environment. This is extremely advantageous to evaluate the 

individual effect of GS conformation on the isomerization 

dynamics. Pump-probe spectroscopy has already showed the 

stark contrast in the reaction kinetics of AT and 13C isomer in 

ASR.46, 47 It has been observed that the 13C isomer shows a 

ballistic kinetics46 and the isomerization completes within 

100 fs, which is very similar to visual rhodopsin.46, 47 The AT 

isomer shows, however, about seven fold (about 750 fs)46, 47 

slower kinetics, which is reminiscent to BR. This large disparity 

in the reaction dynamics has been qualitatively explained by the 

quantum chemical excited trajectory calculation, which 

suggests the existence of a small barrier or plateau in the 

excited potential energy surface of AT isomer but not for the 

13C isomer.31 The quantum yield (QY) of the photoproduct after 

the isomerization for each direction is also very different: it is 

about 2.7 times higher for the AT than that of the 13C isomer.48 

Lower quantum yields with short excited state lifetimes (ESL), 

often observed also in other proteins, has often been 

interpreted as a discrepancy lacking clarification. Ultimately, 

the ESL and QY are two fundamentally independent quantities: 

While the former depends on the topology near the Franck-

Condon region and potential barriers in the ES surface, the 

latter depends on the shape of conical intersection (CI) seam 

and the wave packet trajectories. A potential way to address 

this persisting question is the comparison of isomer specific 

ultrafast structural changes in each case, which will give more 

insight into the molecular origin of this difference in potential 

energy surfaces. 

In the context of retinal isomerization mechanism, a few 

vibrational modes such as torsion, C=C and C-C stretching, 

hydrogen out of plane (HOOP) wags are well known to 

participate in this reaction. A detailed study of the origin and 

evolution of the vibrational modes in the ground and excited 

state has been reported mainly for visual rhodopsin,23, 28, 49 BR24, 

25, 50 and RPSB in solution.51-54 Low frequency torsional modes 

(<400 cm-1) are well accepted as one of the key features of ES 

wave packet dynamics. In particular, a set of rapidly damped 

low frequency coherences (100-400 cm-1) has been observed in 

the spectral region of stimulated emission and excited state 

absorption.28, 50, 52-57 Pump-impulsive vibrational spectroscopic 

studies28, 53, 56 on RPSB both in solution and inside the protein 

environment have shown that these modes are activated only 

after the initial excited relaxation of RPSB. Beside the low 

frequency torsion, the HOOP wag (800-1000 cm-1) is the most 

frequently discussed vibrational mode. This out of plane mode, 

being Au/ A2 symmetric, is Raman inactive for RPSB of planar 

geometry which belongs to C2v (cis) or C2h (all-trans) point group 

and gets Raman activated, only when the RPSB adopts a 

distorted non-planar structure. Hence, the activity of this mode 

is an indicator of non-planarity or pre-twisting of the RPSB in GS, 

as well as of the degree of distortion during the isomerization 

due to the rotation around the isomerizing C=C bond.23, 28, 58 

Moreover, a number of experimental observations28, 59 and 

quantum chemical computations32, 60 have also suggested that 

Figure 1: Schematic representation of the photocycle of AT and 13C isomer of ASR. 

After excitation, each isomer undergoes isomerization around C13=C14 bond in sub-

ps timescale to form the corresponding hot photo-product, JAT and J13C, which 

generate KAT and K13C within 100 ps, respectively. Subsequent isomerization around 

C15=N occurs on sub-ns time scale to complete the photo-cycle. 
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the phase and amplitude of the HOOP mode control the 

stereochemical outcome of the retinal photo-isomerization. 

Finally, high frequency (>1000 cm-1) wave packet dynamics have 

been very often interpreted as GS wave packet motion25, 61 with 

very few reports62, 63 proposed that the conformational changes 

during the isomerization result in the modulation of the 

amplitude and frequency of the high frequency fingerprint 

modes.  

In this work, we apply (multidimensional) time resolved 

vibrational spectroscopic techniques like degenerate four wave 

mixing (DFWM),50, 52 pump-degenerate four wave mixing 

(pump-DFWM)53, 64-66 and pump-impulsive vibrational 

spectroscopy (pump-IVS)28, 58, 65, 67 to compare the vibrational 

dynamics of AT and 13C isomers of ASR. Tracking the excited 

state evolution of the nuclear wave packet shows (i) a delayed 

appearance of low frequency (100-400 cm-1) modes and (ii) a 

blue shift for two characteristic high frequency modes: CH3 rock 

(~1000 cm-1) and C=C stretch (~1500 cm-1) modes. The delayed 

rise of the low frequency (100-400 cm-1) modes supports the 

indirect activation mechanism of the delocalized torsional 

modes by localized high frequency (>1000 cm-1) modes, such as 

C=C stretch, via internal vibrational energy redistribution 

(IVR).50, 53 Experimentally observed blue frequency shifts during 

the course of isomerization hints at an reduction of the effective 

π-conjugation length due to the formation of non-planar 90° 

twisted state. Most remarkably, AT shows a slower frequency 

shift than 13C, which according to our interpretation, indicates 

AT reaches this twisted state much later than the 13C isomer. In 

addition, a relatively stronger amplitude of the HOOP mode in 

the GS of 13C compared to AT has been observed both in 

non-resonant DFWM, IVS and spontaneous Raman spectra 

which indicate that the GS of the 13C isomer is more pre-

twisted than AT isomer of the RPSB in ASR. 

Experimental methods and analysis 

Sample preparation 

ASR sample was prepared according to the standard reported 

protocol.47 A purified sample was concentrated and dialyzed 

against a buffer solution containing 200 mM NaCl, 25mM Tris-

HCl to maintain pH 7.0 and 0.01% DDM (n-Dodecyl-β-D-

Maltopyranoside, Anagrade, Anatrace) was added to help the 

protein to get stabilized by forming micelles. For pump-probe 

experiments, the concentration of DDM was reduced (still 

above the CMC of DDM: 0.007%) compared to that used in the 

previous report,47 in order to minimize the formation of bubbles 

while circulating it through the flow cell during the 

measurement. 

Time-resolved experiments 

The experimental setup used for the pump-DFWM and 

pump-IVS study is shown in Fig. S1 and S2, respectively. Briefly, 

a regeneratively amplified Titanium-Sapphire laser system 

(795 nm, 1 kHz) was used as fundamental laser source. The 

output was equally divided into two home built non-collinear 

optical parametric amplifiers (nc-OPA’s) to generate the 

ultrashort actinic-pulse (AP) and degenerate 

pump/stokes/probe (DFWM) or push/probe (IVS) spectra 

(Fig. 2). In pump-DFWM and pump-IVS, the spectrum of the 

actinic pulse was spectrally resonant to the GS absorption 

(Fig. 2(a)), while the DFWM/IVS spectra overlapped with the 

photo-induced absorption (PIA) band of ASR (Fig. 2(b)). All 

pulses were compressed below 15 fs by a prism pair (Fig. S3). 

The energy of the actinic pulse beam was attenuated to 

100 nJ and focused to a spot with a diameter of 90 µm. The 

diameter of each of the DFWM/IVS beams was set to 50 µm and 

the energy to about 50 nJ. The delay between pump and push 

pulse (T) was controlled by a mechanical delay stage. For all 

measurements, the probe delay (τ) was scanned using a rapid 

scan approach. A single transient, with a length of 2 ps and time 

steps of 4 fs, was acquired in about 500 ms.  

The optical density (OD) of the ASR sample was around 0.7 

at 545 nm (λmax). The sample was circulated through a fused 

silica flow cell with path length a 0.5 mm by a motor-driven 

pump to ensure that illuminated volume of the sample was 

replenished between two consecutive laser shots. The flow rate 

was optimized during the measurement in order to avoid the 

formation of bubbles. The sample was kept in dark overnight for 

dark adapted (DA) measurements. For light adaptation, the 

Figure 2: (a) Ground state absorption spectra of ASR in dark (AT) and light adapted 

(mixture of AT and 13C) conditions are shown by black and orange lines, 

respectively. The spectrum of pure 13C isomer (blue dotted line) was derived by 

taking linear combination of the dark and light adapted absorption spectra using 

known isomeric ratio. Normalized difference absorption (ΔA) spectra at pump-

probe delay of 100 ps is shown by the magenta curve. Different characteristic 

bands: GSB (ground state bleach) and PIA (photo-induced absorption) are shown. 

Green and red (solid in (a) and line in (b)) curve represent the spectrum of the 

Actinic Pulse (AP) and degenerate pump/stokes/probe (DFWM) or push/probe (IVS) 

spectrum, respectively. (b) The pulse sequence used in pump-DFWM (top) and 

pump-IVS (bottom) experiments. 
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sample was illuminated for 1 hour with 500 mW from a LED 

source (Luxeon LXHL-PL01) centered at 590 nm. During the 

measurement of light adapted (LA) samples, the transparent 

sample reservoir was exposed to the same LED source to 

maintain LA photo-stationary state and it was covered with 

black paper during the measurement of DA. The GS absorption 

spectrum was measured before and after each set of time 

resolved measurements to ensure the isomeric ratio remains 

the same and also to check if any degradation of the sample 

happened during the span of a measurement (about 20 min). 

Signal analysis 

The non-oscillatory contributions in each of the DFWM and IVS 

transients were subtracted by a bi-exponential fitting 

(Fig. 3(a)-(b)). In each case, 1 ps of the transients was fitted, 

leaving out the initial 80 fs to avoid the coherent artefact. A 

typical algorithm66 was followed to convert the remaining 

oscillatory signals (Fig. 3(c)-(d)) from time domain to the 

spectral domain (Fig. 3(e)-(f)). The residuals were multiplied by 

a Gaussian window and subsequently zero padding was done 

before performing a fast Fourier transformation (FFT). 

The signal to noise ratio in (pump-) DFWM measurements 

was almost one order of magnitude better than that in (pump-) 

IVS measurements. For (pump-) DFWM measurements, each of 

transient was averaged 60 times whereas it was averaged 600 

times for (pump-) IVS measurement to achieve a comparable 

S/N ratio. This difference in the S/N ratio is because the 

self-heterodyne IVS signal suffers from the fluctuation of 

intensity of the local oscillator probe whereas the DFWM signal, 

being a homodyne technique, is background free. 

Figure 3 also shows the well-known effect of the homodyne 

detection in (pump)-DFWM on the decay of the oscillatory 

signal:65 Oscillatory contributions in the residual decay faster in 

the DFWM signal compared to IVS signal. The intrinsic 

interference between population grating and vibrational 

coherence results in a faster decay of the oscillation and 

consequently makes the FFT spectra broader (compare Fig. 3(e) 

and (f)). This also causes the small deviations in the spectral 

peak positions between DFWM and IVS FFT spectra (see e.g. 

Fig. 4), especially for those vibrational modes (e.g. 

1100-1400 cm-1) which are very closely spaced. 

 

Experimental results 

Non-resonant DFWM/IVS experiments 

DFWM and IVS experiments with almost non-resonant 

DFWM/IVS spectra (Fig. 2(a)) were carried out to capture the 

pure GS vibrational spectra. The FFT spectra obtained after the 

subtraction of non-oscillatory contributions from the transients, 

show the activity majorly in the high frequency region 

(>1000 cm-1) for both DFWM (Fig. 4(a)-(d)) and IVS (Fig. 4(e)-(h)) 

experiments. A weak activity in the low frequency region 

(<400 cm-1) was also observed, especially at the detection 

wavelength at 630 nm, where the relative amplitudes of the 

high frequency (>1000 cm-1) modes are lowered. This variation 

of relative intensity of the low and high frequency modes from 

the edge (590 nm) to the center (630 nm) detection wavelength 

of DFWM/IVS spectrum are in agreement with the natural 

spectral dependence of CARS-based schemes.68 

The comparison between the FFT spectra of DA and LA ASR 

shows mainly three characteristic features. Firstly, the modes 

which appear at 1003 and 1530 cm-1 in the DA DFWM FFT 

spectrum (Fig. 4(a) and (c)) shift to 1007 and 1539 cm-1 (Fig. 4(b) 

and (d)), respectively, for LA ASR. Secondly, the DFWM FFT 

spectrum of DA ASR shows two peaks around 1165 and 

1230 cm-1, while for LA ASR they appear at 1180 and 1300 cm-1. 

All these changes are also observed in IVS measurements 

(compare Fig. 4(e) and (g) to (f) and (h)). The modes around 

1100-1400 cm-1 also show in IVS qualitatively similar contrasts 

between DA and LA ASR as observed in DFWM. Three peaks at 

Figure 3: Transients obtained from (a) DFWM and (b) IVS measurements with the non-resonant DFWM/IVS excitation spectrum (i.e. in absence of actinic pulse) at detection 

wavelength 590 nm under dark adapted condition. The non-oscillatory signal was subtracted in each case by a bi-exponential fitting (red line) before FFT. The corresponding 

oscillatory signal, obtained after fitting DFWM and IVS transients, are shown in (c) and (d) respectively. Here, a Butterworth filter has been applied on the residuals to cut-off 

the low frequency component below 100 cm-1 in order to suppress noise. The corresponding FFT spectra obtained in DFWM and IVS experiments are shown in (e) and (f) 

respectively. 
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1161, 1215 and 1270 cm-1 for DA ASR (Fig. 4(e) and (g)) change 

to 1175, 1220, 1270 and 1340 cm-1 under LA condition (Fig. 4(f) 

and (h)). Finally, the modes appearing in the region of 

750-950 cm-1 (grey shaded area in Fig. 4), in particular the mode 

at about 806 (DFWM)/ 803 (IVS) cm-1, shows relatively stronger 

amplitude for LA ASR than for DA ASR. This is a very important 

result which will be discussed later. 

The observed GS fingerprint vibrational modes of RPSB have 

been already previously assigned.7, 44, 69-74 We hereby follow the 

same assignment of the main spectral peaks to specific 

vibrational motions (Table 1). For example, the mode around 

1000-1010 cm-1 is assigned to CH3 rock and that around 

1530-1540 cm-1 is assigned to C=C stretching mode. The 

multiple peaks in the region from 1100 to 1400 cm-1 are mostly 

known as the signature of the stretching vibration of different 

C-C bonds present in RPSB, sometimes coupled with C-C-H 

in-plane-rock modes. In addition, the low frequency modes 

(190, 300 cm-1) are usually assigned to the delocalized torsional 

modes whereas the Raman activity in the region 750-950 cm-1 

(grey shaded area in Fig. 4) is well known for the HOOP wags 

(Table 1). In addition, a non-resonant (λexc=785 nm) 

spontaneous Raman measurement (Fig. 4(i)-(j)) was performed 

to further corroborate the vibrational spectra obtained from 

the time resolved experiments (DFWM and IVS). While the 

non-resonant Raman results match very well most of the 

frequencies and respective shifts observed with DFWM/IVS 

(Fig. 4(a)-(h)), there are three major contrasts: (i) Different 

frequencies for modes in the spectral region between 1100 and 

1400 cm-1, (ii) Complete absence of low frequency modes 

(<750 cm-1) in the non-resonant Raman measurements (which 

were active in the DFWM/IVS measurements) and (iii) Different 

amplitude of the 803/805 cm-1 mode. 

Figure 4: The FFT spectra obtained after subtraction of the non-oscillatory components from the transients of DFWM (a-d) and IVS (e-h) experiment probed at 590 nm (a, b, e, 

f) and 630 nm (c, d, g, h). The left and right column represent the FFT spectra of DA and LA ASR respectively. The spontaneous Raman spectra of DA and LA ASR have been 

shown on the bottom graphs i and j respectively. The grey shaded area (750-950 cm-1) represents the characteristic frequency region of the HOOP modes of RPSB. 
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Separation of Isomer Specific Contribution 

While the spectral features observed for DA and LA ASR (Fig. 4) 

already mirror the different isomer concentrations, in the 

following a quantitative extraction of the pure AT and 13C 

spectra will be performed. In our previous report,75 we 

successfully showed the separation of the GS isomer specific 

contributions for two individual high frequency modes (CH3 rock 

and C=C stretch) by a single Gaussian fit. A Gaussian model was 

used instead of a Lorentzian model, since the former showed a 

better fitting quality. Here, we expand and present a more 

global approach (Fig. 5) to fit all the modes appear in the 

spectral region from 950-1600 cm-1 by a series of Gaussians:  

                           𝐹𝐹𝑇𝐴𝑇 𝐺𝑆 = ∑ 𝑎𝑖 ∗ 𝐺𝑖

𝑛

𝑖

 (𝜈𝑖 , 𝜔𝑖)                     (1) 

where each Gaussian (𝐺𝑖) represents an individual vibrational 

mode. The amplitude (𝑎𝑖), central frequency (𝜈𝑖) and width (𝜔𝑖) 

of each Gaussian was varied in this multi-Gaussian fit 

(equation 1). Since DA ASR contains exclusively the AT isomer 

(98%),46, 47 the multi-Gaussian fit (Fig. 5(a)) gives the parameters 

(𝑎𝑖 , 𝜈𝑖, 𝜔𝑖) for each of the vibrational modes of AT ASR. This 

information (FFTAT GS) can be used to disentangle the pure 

spectrum of 13C GS by a constrained fit: 

𝐹𝐹𝑇𝐿𝐴 𝐺𝑆 = ∑ 𝑎𝑗 ∗ 𝐺𝑗

𝑛

𝑗

 (𝜈𝑗 , 𝜔𝑗) + 𝑓 ∗ 𝐹𝐹𝑇 𝐴𝑇 𝐺𝑆       (2) 

Here, the fitted spectra (𝐹𝐹𝑇 𝐴𝑇 𝐺𝑆) obtained from the previous 

multi-Gaussian fit was kept constant and the parameters (𝑎𝑗 , 𝜈𝑗 , 

𝜔𝑗) of a new set of Gaussians, which represent the modes of the 

13C isomer, were varied to fit the LA non-resonant DFWM FFT 

spectrum (Fig. 5(b)). The factor f in equation (2) depends on the 

percentage (36%)46 of the AT isomer presented in the LA form. 

Since the DFWM signal is directly proportional to the square of 

the sample concentration, f should be equal to the square of the 

fraction of AT isomer present in LA ASR: (0.36)2=0.13. The fitted 

value obtained for the factor (f=0.14 ±0.02) matches this value 

Dark adapted (98% AT) Light adapted (64% 13C; 36% AT) 
Assignment of the modes 

DFWM IVS Spon. Raman DFWM IVS Spon. Raman 

200, 300, 520 190, 280 - 210, 350, 520 190, 280 - Delocalized torsion71, 74 

900 803, 890 802, 890 810, 900 803, 890 802, 890 Hydrogen out of plane wag7, 44, 73 

1003 1003 1002 1007 1007 1008 CH3 rock7, 69, 70, 73 

1165, 1230 
1161, 1215, 

1270 

1177, 1196, 1209, 

1271 
1180, 1300 

1185, 1202, 1305, 

1338 

1175, 1220, 1275, 

1340 
C-C stretch + C-C-H in plane rock7, 69, 70, 73 

1530 1530 1530 1530 1539 1539 C=C stretch7, 69, 70, 73 

Table 1: Comparison of the central frequencies (in cm-1) of the spectral peaks obtained from non-resonant DFWM, IVS and spontaneous Raman measurements. Assignment of 

the modes were done based on the literature. 

 

Figure 5: Multi-Gaussian fit of (a) DA and (b) LA non-resonant DFWM FFT 

spectra probed at 590 nm. The series of Gaussians represented by green curves 

in each graph. Black line in (b) represent the spectra of AT isomer which is kept 

constant during this constrained fit. 

Figure 6: The separated pure spectra of AT GS, 13C GS, KAT and K13 are represented 

by black, red, blue and orange line, respectively. The black dotted lines represent 

the central frequencies obtained for AT GS. 
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very well. The pure spectrum of the ground state of the 13C 

isomer is shown in Fig. 6. 

 The same approach can also be applied to obtain the 

spectrum of the K-photoproduct of each isomer (K13C and KAT, 

see Fig. 1). In order to obtain the DFWM signal of these 

photoproducts, each isomer was directly excited by an actinic 

pulse spectrally resonant with the respective GS absorption. 

The DFWM spectrum was still spectrally resonant with the 

photo-induced absorption (PIA) band (see Fig. 2) but delayed at 

T=100 ps after the AP. This particular delay was chosen as the 

formation of the vibrationally thermalized K-photoproduct 

(Fig. 1) is known to take place within 100 ps.46, 47 The 

pump-DFWM signal in this condition contains several 

contributions (Fig. 1). The signal of DA ASR after 100 ps, for 

example, contains contributions of the AT GS and of KAT, which 

are reasonably easy to separate in pump-DFWM and less in 

pump-IVS due to noise (not shown). The pump-DFWM signal of 

the LA ASR, however, is much more challenging: At 100 ps delay, 

it contains the signal of the GS of both isomers, as well as from 

both photoproducts. In order to extract the K13C, the spectra of 

AT, KAT and 13C must be used, which is inherently more 

susceptible to noise. With this information in mind, the pure 

spectra of four different stereo-isomers (GSAT, GS13C, KAT and 

K13C) appearing in the photo-cycle are depicted in Fig. 6 (see also 

Fig. S5). Several differences in spectral signatures of these four 

species can be observed. For example, the C=C stretching mode 

of 13C GS (1541 cm-1) gets blue shifted compared to that of AT 

GS (1530 cm-1). Also, isomerization at C13=C14 position causes 

the C=C stretching mode to shift in the higher frequency from 

AT GS (1530 cm-1) to KAT (1538 cm-1), whereas it shifts to the 

lower frequency from 13C GS (1541 cm-1) to its corresponding 

sub-ns photo-product K13C (1524 cm-1). Similar trend is also 

observed for the CH3 rock mode while for K13C, it gets blue 

shifted compared to 13C GS. The frequencies and amplitudes of 

modes in the spectral region between 1100 and 1300 cm-1 are 

very different for each isomer. Finally, it is important to note 

that the spectral peaks appearing in the region 1300-1450 cm-1, 

which have been assigned to C-C-H in plane rock mode 

(Table 1), do not change from 13C GS (1305, 1427 cm-1) to K13C 

(1307, 1427 cm-1), whereas a significant change is observed 

from AT GS to KAT. A single weak peak at 1408 cm-1 appears for 

AT GS whereas at least two strong peaks appear for KAT (1364, 

1446 cm-1) in this region. 

Pump-DFWM experiments in the sub-ps timescale 

In order to follow the isomerization reaction of both 13C and AT 

isomers in the excited state, pump-DFWM measurements were 

Figure 7: The evolution of pump-DFWM FFT spectra probed at 590 nm for (a) DA and (b) LA ASR with the actinic pulse delay. (c) The frequency shift of C=C stretch (left) and 

CH3 rocking (right) mode for DA ASR with different actinic pulse delay. The black dotted lines represent the central frequencies obtained for AT GS (Fig. 6). The frequency shifts 

of the corresponding modes in LA ASR are shown in Fig. S6 of ESI. 
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performed by varying the actinic pulse delay (T) up to about 1 ps 

(Fig. 7). Fourier-transformed spectra for DA and LA are 

displayed in Fig. 7(a) and (b), respectively. In both situations, 

two common changes can be observed after the arrival of the 

actinic pulse (T>0): (i) amplification of the high frequency modes 

(>1000 cm-1) and (ii) appearance of the strong low frequency 

modes (100-400 cm-1), in particular for LA ASR (Fig. 7(a)), which 

were very weak in the GS (Fig. 4). Moreover, a closer look on the 

high frequency (>1000 cm-1) modes (Fig. 7(c) and Fig. S6) shows 

a significant spectral shift with the actinic pulse delay. The major 

spectral shifts of DA and LA ASR happen within 800 and 200 fs, 

respectively, which match respective excited state lifetimes46, 47 

of the AT (750 fs)  and 13C (120 fs) isomers. The frequency 

evolution for each of the characteristic vibrational modes are 

described in detail in the following.   

 

C=C stretching and CH3 rock mode: Figure 7 (c) depicts the 

evolution of C=C stretch and CH3 rock modes for DA ASR. Here, 

a negative time delay means the actinic pulse comes after 

DFWM interaction which should basically give the GS vibrational 

spectra. Hence, the central frequencies of C=C stretch and CH3 

rock modes at T=-100 fs, which appear at 1530 and 1002 cm-1, 

match the GS frequencies displayed above (Fig. 4). At initial 

positive T-delays (until 200 fs), each of these modes shows a 

rapid blue shift and subsequently a slower red shift (see DA in 

Fig. 7(c) and Fig. S7(a) and (c)). Although the FFT spectra at T>0 

contains the major contribution of the transient species being 

resonantly probed at the corresponding time, a minor 

contribution of GS coherence, due to the non-resonant Raman 

interaction, still contaminates the signal. As a consequence, 

pump-DFWM FFT spectra at any positive actinic pulse delay (T) 

is not the pure spectra of the transient species formed within 

the corresponding time (T) after the initiation of the reaction by 

AP. Since the pure GS spectra of AT isomer is already known 

(Fig. 5 and 6), it is possible to extract the pure spectra of the 

transient species present at different actinic pulse delays by the 

aforementioned constrained multi-Gaussian fitting (Fig. 5 and 

Fig. S5). 

By applying this method, the frequency of C=C stretch and 

CH3 rock modes for AT is shown in Fig. 8 (a) and (c), respectively. 

AT shows a clear strong blue shift of 21 and 18 cm-1 for the C=C 

stretch and CH3 rock modes, respectively, at T=200 fs compared 

to that of GS species (T<0). At longer delays (T>200 fs), it 

undergoes a red shift to 1538 and 1005 cm-1. These two latter 

frequencies are the central frequencies of the C=C stretch and 

CH3 rocking modes, respectively, of previously extracted pure 

KAT (Fig. 6). The separation of all contributions to the transient 

LA ASR signal is more challenging than for DA ASR. Here, two 

ground state species are excited (AT and 13C), followed by two 

excited states and two photoproducts, which leads to much 

larger frequency uncertainties and ambiguous results. 

Therefore, the frequency shifts of the C=C stretch and CH3 rock 

modes for the LA ASR are shown without extraction (Fig. 8(b) 

and (d), respectively). A similar trend is observed as for AT, i.e. 

an initial blue shift takes place followed by a red shift. However, 

the blue shift is much smaller and the whole dynamics is much 

faster in the LA than for AT (compare e.g. Fig. 8(a) to (b)). The 

maximum of the blue shift appears at much earlier actinic pulse 

delay (about T=40 fs) compared to AT form (about T=200 fs). 

 

Fingerprint (1100-1400 cm-1) region: As observed for the GS 

spectra (Fig. 4, 6), the fingerprint region around 1100-1400 cm-1 

(Fig. 9) shows a congested spectrum after the actinic excitation, 

particularly for AT ASR. The double peak feature (1165 and 

1230 cm-1) before time zero merges to single major peak 

Figure 8: The excited state evolution of C=C stretching (a, b) and CH3 rock modes 

(c, d) obtained for the pure AT isomer (a, c) and LA (b, d) form ASR. The central 

frequencies of pure GS (AT and 13C) and K-photo intermediates (KAT and K13C) are 

shown by black, red, blue and orange dotted lines respectively in each graph. Probe 

detection wavelength was 590 nm. 

Figure 9: The evolution of finger print (1100-1400 cm-1) modes in the pump-DFWM 

FFT spectra for (a) AT and (b) LA ASR at different actinic pulse delay (T) probed at 

590 nm. The vertical lines in (a) and (b) represent the corresponding central 

frequencies of AT and 13C GS, respectively. 
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(1193 cm-1) along with a minor peak (1330 cm-1) at T=100 fs for 

AT ASR. Afterwards, the major peak shows a red shift till 200 fs 

which is followed by, a slow monotonous blue shift until the 

formation (200 to 800 fs) of the hot-intermediate, commonly 

known as J-species in literature. Subsequently, it undergoes a 

small red shift during vibrational relaxation on a much longer 

time scale (1 to 100 ps) to form the thermally relaxed 

photoproduct (KAT). This contrasts to the signal of LA ASR, where 

the major peak at ~1181 cm-1 undergoes a blue shift initially 

(T=40 fs) to 1187 cm-1 and does not shift afterwards within the 

excited state lifetime (<120 fs) of the 13C isomer. It only shows 

a small (1187 to 1183 cm-1) red shift during the photoproduct 

vibrational relaxation (~1 ps to 100 ps), similar to the AT isomer. 

 

Low frequency (<400 cm-1) torsion and HOOP modes: As shown 

in Fig. 4, the low frequency modes below 400 cm-1 are absent or 

very weak in GS. However, a delayed activation of these low 

frequency modes (Fig. 7(a) and (b)) is observed after the 

excitation with the AP. This is in contrast to the activity of the 

high frequency modes, whose amplitude rises as soon as the AP 

arrives (Fig. S8). This contrasting activity of low frequency 

(<400 cm-1) modes is further evidenced in Fig. 10 at several 

actinic pulse T-delays. A significant relative amplification of the 

low frequency modes (190, 300 cm-1), compared to the high 

frequency (>1000 cm-1) modes, is observed at T>0 for DA and LA 

ASR. Here it is important to note that LA ASR shows a much 

stronger low frequency activity than DA ASR. 

The evolution of the amplitude of the low frequency modes 

is different from other modes. While high frequency modes (e.g. 

C=C stretch) show an instantaneous rise in the activity at very 

early actinic pulse T-delays, low frequency (e.g. 190 cm-1) 

activity shows a delayed rise for LA ASR (Fig. 7). The FFT 

amplitude of the low frequency (190 cm-1) modes takes about 

100 fs to reach the maxima whereas that of C=C stretching 

mode reaches the maxima within the experimental time 

resolution after the actinic excitation (T=20 fs). In addition, the 

exponential rise time (70 ±20 fs) of low frequency (190 cm-1) 

modes matches the exponential decay time (60 ±40 fs) of C=C 

stretch mode (Fig. S8). Moreover, no significant evolution of 

HOOP modes (800-1000 cm-1) is observed in our 

measurements. This will be further discussed and investigated 

later. 

Discussion 

Ground state Raman activity 

A strong Raman activity of the vibrational modes mainly in the 

high frequency (>1000 cm-1) region of the spectra has been 

observed in non-resonant experiments (Fig. 4). The convolution 

of the GS absorption spectrum with the non-resonant 

DFWM/IVS excitation spectrum (Fig. 2), gives a FWHM of about 

500 cm-1 and, therefore, there is a negligible induction 

probability of a vibrational coherence above 500 cm-1 in the ES 

potential surface. Hence, all modes with frequencies well over 

500 cm-1 in these non-resonant measurements, including 

HOOP, CH3-rock, C-C and C=C modes, are assigned to GS 

manifold. This is further supported by the spontaneous Raman 

spectra (Fig. 4(i) and (j)), which show a good correlation with the 

FFT spectra obtained from time resolved experiments for 

frequencies well over 500 cm-1. However, the weak but 

detectable Raman activity observed in the low frequency region 

(200 and 300 cm-1) in both DFWM and IVS signal, does not 

appear in any spontaneous Raman spectra. If this low frequency 

activity originates from GS, it should definitely be visible in the 

spontaneous Raman measurements. Therefore, we assign all 

low frequency (<400 cm-1) activity detected with DFWM/IVS to 

the excited state manifold. A detailed discussion about the 

origin and activation mechanism of these mode will be 

presented in next section. 

The extraction of the pure GS spectra of AT and 13C isomer 

(Fig. 6) enables us to make a quantitative comparison. The 

central frequencies of C=C stretch and CH3 rock modes are 

shifted about 11 cm-1 (1530 vs 1541 cm-1) and 4 cm-1 (1002 vs 

1006 cm-1), respectively, between AT to 13C ASR. This is in good 

agreement with reported values for ASR.46 A similar increase of 

high frequency modes from all-trans to cis isomer has also been 

reported recently for chanello-rhodopsin58 and visual 

rhodopsin,49 which further corroborates the separation of the 

Sample 
CH3 rock 

[cm-1] 

C-C stretch +  
C-C-H in plane  

[cm-1] 

C=C 
stretch 
[cm-1] 

AT-RPSB in methanol52 1010 1160, 1205 1565 

Bacteriorhodopsin (AT) 50 1008 1165, 1210 1530 

Visual rhodopsin (AT)49  - 1167, 1322 1541 

Visual rhodopsin (11-cis) 49 - 1173, 1275, 1313, 1363 1550 

Chanello-rhodopsin (AT)58 1011 1161, 1208, 1281 1531 

Chanello-rhodopsin (13-cis)58 1017 1157, 1196, 1301, 1369 1545 

ASR (AT) This report 1002 1164, 1229 1530 

ASR (13-cis) This report  1006 1094, 1180, 1305 1541 

Figure 10: The relative amplification of low frequency modes probed at 590 nm 

before (black, T<0) and after (red, T>0) the arrival of actinic pulse for DA (a, c) and 

LA (b, d) ASR. 

Table 2:  Comparison of the selected fingerprint vibrational modes for all-trans and 

cis isomers found for ASR in this report and those reported for retinal protonated 

Schiff base (RPSB) in solution and different proteins: bacteriorhodopsin, visual 

rhodopsin and chanello-rhodopsin. 
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pure spectra of ASR. Furthermore, the C-C stretch region shows 

multiple distinguishable peaks between AT and 13C ASR 

(Table 1). Two peaks around 1165 and 1230 cm-1, observed for 

AT ASR (Fig. 6), are quite common for the retinal chromophores 

in AT conformation in other proteins (Table 2). On the other 

hand, the appearance of a distinguishable mode above 

1300 cm-1 for 13C ASR is a general marker of cis form (Table 2).49, 

58 In addition, the C-C stretch mode which appears at 1180 cm-1 

in case of 13C ASR, has been attributed as an indicator for the 

formation of 13C-isomer of BR.76 

The activity of HOOP modes (800-1000 cm-1) in GS (grey 

shaded region in Fig. 4) has been interpreted as an indirect 

indicator of a distorted non-planar structure of RPSB.71, 77 The 

relative amplitude of the HOOP modes, particularly at about 

805 cm-1, is higher in LA (major component is 13C) ASR 

compared to DA (98% AT) ASR. This observation is consistent in 

each (DA vs LA) of the spectra measured by three different 

spectroscopic techniques (DFWM, IVS and spontaneous 

Raman). All these together, hints at the presence of a 

non-planar structure for the 13C isomer, although it is much less 

distorted than the 11-cis isomer in visual rhodopsin. 44, 69, 71, 77 A 

detailed assignment of H-wag modes is, however, necessary in 

order to specify the region of distortion in the long retinal chain. 

The complete assignment of H-wag modes for ASR has not been 

reported yet but it is well known for BR from the resonant 

Raman study by Smith et al.70 In that report, a mode at 800 cm-1 

was assigned to C14-H out-of-plane wag and showed strong 

amplitude for 13C isomer whereas it almost disappears for AT 

isomer, similar to ASR isomers in our study. Later, solid state 

NMR data78, 79 indicated a difference in the structural rigidity 

along the C13=C14-C15 moiety between AT and 13C isomers 

inside the retinal pocket of BR. Following the same line, our 

observation can be interpreted as both isomers are pre-twisted 

around or close to C13=C14 bond of retinal chromophore but 13C 

isomer is significantly more distorted than AT.  

The exact position of this distortion and the differences 

between the two isomers can be further numerically 

investigated by applying a classical (harmonic) atomistic force 

field and performing molecular dynamics simulations of ASR 

embedded in a membrane model (see ESI). The geometry of AT 

and 13C GS inside the retinal pocket shows that both isomers 

are equally distorted around the C13=C14 bond, i.e. the dihedral 

angle of C12-C13-C14-C15 is found to be +191.6° and 11.7° (Table 

S1) for AT and 13C isomer, respectively. This is in good 

agreement with the value (~13°) previously reported by 

QM/MM geometry optimization calculations.31 These new 

calculations, however, shows that the isomers significantly 

differ around the neighboring C14-C15 bond (dihedral C13-C14-C15-

N): While AT is nearly planar (177.1°) around the C14-C15 bond, 

the 13C is almost 10° twisted (189.5°). This relatively larger pre-

twist around C14-C15 bond for 13C isomer corroborates very well 

the experimental observation of higher amplitude of C14-H wag 

as discussed above in the previous paragraph. 

Finally, a brief comparison of vibrational signatures of GS 

isomer with its corresponding K-photoproducts (Fig. 6) helps to 

further rationalize the frequency shifts in terms of 

conformational differences. The conformational changes alter 

the delocalization of δ and π-electron density for the macro-

molecule like RPSB, which explains the frequency shift of CH3 

rock, C-C and C=C stretch and C-C-H in-plane rock modes. The 

changes in the frequency and amplitude of C-C-H in-plane rock 

(1300-1400 cm-1) modes (Fig. 6) are important as these are 

reported to be affected by the torsion around the active C=C 

bond.62 Although the frequency of this mode changes from AT 

GS (1408 cm-1) to KAT (1364, 1446 cm-1), it remains almost the 

same for 13C GS (1305, 1427 cm-1) and for K13C (1307, 1427 cm-

1), indicating a very similar strain around the C13=C14 bond for 

the latter two isomers. These results also corroborate FTIR 

results which illustrated that isomerization causes larger 

rotation around the active C13=C14 bond in the AT compared 

to the 13C isomer.73 

Excited state evolution of high frequency modes (1000 cm-1) 

The pump-DFWM measurements captured the sub-ps 

frequency shifts of high frequency modes. In general, the C=C 

stretch and CH3 rock modes showed a blue shift and subsequent 

red shift for both AT and LA (major 13C) ASR. Since the DFWM 

spectra, used for this measurement, covers the region 

(580-720 nm) where both excited state absorption and 

stimulated emission of ASR overlaps,46, 47 there are two possible 

origins for the observed frequency shifts: (i) the excited state 

evolution of the nuclear wave packet or (ii) the vibrational 

relaxation of the GS wave packet, generated by stimulated 

emission pumping (SEP) process.24, 38, 66 For the latter, we would 

expect a red shift just after the excitation for an anharmonic 

ground state potential.24 This is because the GS wave packet, 

generated via SEP, in the higher lying vibrational states is lower 

in frequency than a relaxed GS wave packet, generated via non-

resonant ISRS in the lower lying vibrational states. On the 

contrary, we observed a blue shift compared to the GS. This 

excludes this possibility and hence, the frequency shift is 

interpreted as coming mostly due to the excited state wave 

packet motion. In addition, the time scale of the frequency 

shifts is significantly different for AT and 13C isomers. It 

matches very well the excited state lifetime of each isomer, 

which further indicates that the observed frequency shifts 

originate due to the transient evolution of the ES species. 

Sub-ps transient frequency shifts in the fingerprint region 

have been frequently interpreted as the conformational 

Figure 11: The reduction of the effective π-conjugation length from (a) Franck-

Condon excited state to (b) twisted transition state (far Franck-Condon region). In 

(a), there is an extended π-conjugation from C5-atom to N-atom of the Schiff base 

which is reduced in (b). 
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changes associated with the isomerization process.62, 63 Here, 

the blue shift of C=C stretch (Fig. 8) is interpreted as the 

reduction in conjugation length due to the rotation around the 

C13=C14 bond during the isomerization. After the excitation by 

the actinic pulse, the RPSB is promoted to the Franck-Condon 

point of the excited state where it is still in the same geometry 

as it is in ground state (Fig. 11(a)). In this geometry, an extended 

π-conjugation is present along the retinal chain by the 

pz-orbitals from C5 up to protonated Schiff base N atom. As the 

isomerization reaction progresses, the RPSB starts to adopt a 

more non-planar twisted structure (Fig. 11(b)) towards the 

photoproduct geometry. During this evolution, the C14-C15-N 

π-conjugated moiety becomes almost perpendicular to the 

remaining π-conjugated system (C5 to C13) at the 90° twisted 

form (AT*) and the conjugation between two moieties, 

mentioned before, gets completely disrupted. Hence, the 

effective conjugation length gets reduced during evolution from 

the FC towards the 90° twisted form. It is well known for linear 

conjugated polyenes that the reduction of effective conjugation 

length causes a frequency blue shift of the C=C stretch mode.80, 

81 Thus, decrease in the effective conjugation length explains 

the blue shift of C=C stretching mode observed here for retinal 

in ASR. The blue shift of CH3 rock mode can also be interpreted 

in a similar way. The disruption of the C13=C14 bond during 

isomerization reduces the partial positive charge over the C13 

atom induced by the positively charged Schiff base N-atom. The 

partial positive charge over C13 tends to pull the electron density 

from the CH3 moiety (bonded to C13) towards it but the lack of 

inductive effect in the twisted state pushes the electron density 

towards the CH3 moiety. This possibly causes the blue shift of 

the rock mode of CH3. This also corroborates the picture of 

change in electron density during the isomerization of BR, 

recently captured by the transient femtosecond X-ray 

spectroscopy.29 Thus, following our argument, the slower 

frequency shift observed for AT isomer (Fig. 8(a)) compared to 

13C isomer (~LA, Fig. 8(b)) can be interpreted as it takes longer 

for the AT isomer to rotate around the C13=C14 bond to form the 

90° twisted state compared to 13C. This corroborates as well 

QM/MM calculations31 which predict a barrier in the excited 

trajectory of AT and, therefore, a slower formation of the 

respective twisted transition state. Furthermore, the 

subsequent slow red shift for both isomers is a signature of 

increase in -conjugation as the RPSB structurally changes from 

the 90° twisted species to the relatively more planar initial GS 

or photoproduct. 

The frequency shift of the fingerprint modes in the region 

from 1100-1400 cm-1 are relatively more complicated than the 

one observed for the C=C stretching mode. This is because 

different C-C stretching modes (C8-C9, C10-C11, C12-C13 etc.) of 

retinal exhibit distinct closely spaced peaks which overlap in 

that region. In addition, C-C-H in-plane rock modes are also 

sometimes coupled with the C-C stretch which makes the 

spectral evolution of this finger print modes even more 

challenging to rationalize. However, the most intense peak 

below 1200 cm-1, which is known to be mostly uncoupled from 

C-C-H rock modes, follows a trend which can also be accounted 

for the change in the effective π-conjugation length. It has been 

also observed for linear conjugated polyenes80, 81 that the small 

reduction in effective conjugation length causes a blue shift of 

the mode below 1200 cm-1 but further reduction of effective 

conjugation length eventually results in red shift. This matches 

very well the frequency shift of AT ASR (Fig. 9), where it first 

undergoes an initial blue shift until 100 fs and subsequently red 

shifts until 200 fs. This is the delay which has been interpreted 

above as the time to reach the 90° twisted state for AT ASR. 

Afterwards, the effective conjugation length is expected to 

increase again due to the slow formation of relatively planar KAT. 

Thus, it causes a blue shift of the finger print mode. This effect 

is much weaker for 13C (~LA) isomer which results in no 

observable shift. This once again hints at a smaller rotation 

around C13=C14 in 13C isomer compared to AT isomer in ASR. 

Figure 12: DFWM FFT spectra obtained by using near-resonant (1) and resonant (2) excitation spectra for DA (black) and LA (grey) ASR detected at different probing 

wavelengths shown by vertical grey line in (a) and (b). 
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In the context of frequency-shift for the excited state modes 

it is also important to note that the experimental time 

resolution cannot resolve the very fast red-shift taking place as 

a result of the BLA. This red-shift must take place according to 

numerical calculations in time-scales around 20 fs.32 The fact 

that an initial blue-shift is observed in all measurements at 

delays where BLA is temporally overlapping, possibly means 

that the pure blue-shift is potentially much bigger than the 

observed one. 

Excited state evolution of low frequency (<400 cm-1) and HOOP 
modes 

A central result of pump-DFWM measurements was the 

observation regarding strong activity of the low frequency 

modes around 190 and 300 cm-1 at positive actinic pulse delay 

which are absent in the GS (T<0). Very similar low frequency 

peaks (160, 210 and 300 cm-1) have also been observed 

previously for ASR in the transient absorption experiments57 by 

probing in the near infrared region (950-1450 nm) which is far 

away from the ground state absorption and only covered by the 

stimulated emission. Furthermore,  few strong Raman modes 

below 400 cm-1 have been observed in the excited state of RPSB 

in solution52 by Kraack et al. and also observed more recently 

for rhodopsin28 and Chanello-rhodopsin58 by Schnedermann et 

al. Moreover, most important, the low frequency modes (e.g. 

~190 cm-1) in the pump-DFWM transients show faster 

dephasing than high frequency modes (e.g. C=C stretch) 

(Fig. S10). All these observations together clearly suggest that 

the low frequency Raman activities are originated from the ES 

manifold. 

Another central result is the lack of HOOP activity in the 

excited state in our pump-DFWM (and pump-IVS) 

measurements which is surprising. There are two plausible 

explanations for this observation. The surrounding protein 

environment in ASR, which is different compared to rhodopsin 

and BR, where the HOOP activity is stronger,23, 28 can 

significantly reduce the Raman transition probability of a 

specific mode by modifying the retinal pocket. Secondly, the 

activity of the HOOP mode of BR has been observed to be 

strongly dependent on the center wavelength of DFWM 

spectra, used to create the vibrational coherence.50 The Raman 

activity of this mode was found to be mainly enhanced for blue 

detuned excitation. In contrast, DFWM excitation spectra in our 

study, were red detuned compared to the ground state 

absorption (Fig. 2). 

To clarify the lack of HOOP activity as well as to find out the 

activation mechanism of the low frequency (<400 cm-1) excited 

state modes, we carried out two additional set of DFWM 

measurements with two different excitation spectra (Fig. 12). 

Spectrum 1 is the same as used before (Fig. 2) which is almost 

non-resonant to GS absorption and hence, only capable of 

exciting GS modes and also possibly the ES modes below 500 

cm-1 due to small overlap with GS. Spectrum 2, however, being 

completely resonant to the GS absorption, can directly excite all 

GS as well as ES vibrational modes. Two major changes (Fig. 12) 

were observed for both DA and LA ASR by tuning the DFWM 

spectrum, namely (i) amplification of low-frequency and HOOP 

modes and the (ii) frequency-shift of high-frequency modes. 

 

(i) Relative amplification of low frequency (<400 cm-1) and 

HOOP modes: The FFT spectra for non-resonant spectrum 

(Fig. 12(a)), detected at 590 and 630 nm, show the activity 

mostly above 1000 cm-1 along with a few weak low frequency 

modes (~190, 300 and 510 cm-1), as observed before (Fig. 4). In 

contrast, a strong relative amplification of the FFT amplitude of 

low frequency modes (<400 cm-1) with respect to high 

frequency modes (>1000 cm-1), was observed for the FFT 

spectra in the resonant DFWM experiment (Fig. 12(b)) 

compared to the non-resonant DFWM measurement 

(Fig. 12(a)). On the one hand, these low frequency (<400 cm-1) 

modes have been observed to be completely absent in the non-

resonant steady state Raman spectrum (Fig. 4(i)-(j)) and 

therefore, these modes have been attributed to ES manifold. 

This assignment nicely matches the weak Raman activity of 

these low frequency modes in the non-resonant DFWM/IVS FFT 

spectrum (Fig. 12(a)). On the other hand, the same set of low 

frequency (<400 cm-1) modes is relatively enhanced in resonant 

DFWM measurements, in comparison to the high frequency 

(>1000 cm-1) vibrational modes. One obvious explanation for 

this observation would be that the low frequency modes are 

much more Franck-Condon active than the high-frequency 

modes. However, an alternative interpretation can also be 

drawn if one considers different activation mechanisms for the 

high and low frequency modes as it was reported in theoretical 

studies on retinal chromophore model30 as well as experimental 

studies for BR50 and RPSB in solution.52, 53 In these studies, the 

high frequency (>1000 cm-1) modes were reported to be 

Frank-Condon active, whereas the low frequency (<400 cm-1) 

torsional modes were considered to be impulsively excited by 

the high frequency modes via internal vibrational energy 

redistribution (IVR). This is further supported by our 

observation of the delayed rise of low frequency amplitude 

compared to the high frequency modes in transient 

pump-DFWM spectra (Fig. S8). 

The second question remain about the reason behind the 

passiveness of the HOOP mode Raman activity in our pump-

DFWM experiments. DFWM experiments with two different 

spectra (Fig. 12) show that the mode at 805 cm-1, previously 

assigned as HOOP mode, shows a significantly strong amplitude 

in resonant DFWM experiment (Fig. 12(a)) which was very weak 

in the GS (Fig. 12(b)). This shows that the HOOP modes are 

induced only when it is probed with blue-detuned DFWM 

spectra not with red-detuned DFWM spectrum, used in our 

pump-DFWM experiment. This observation is very similar to 

BR50 and thus seems to be an intrinsic molecular property of 

retinal. 

 

(ii) Frequency shift of the high frequency (>1000 cm-1) modes: 

The high frequency mode e.g. C=C stretch (1530 cm-1 for DA and 

1540 cm-1 for LA) in non-resonant DFWM FFT spectrum 

(Fig. 12(a)) gets blue shifted in resonant DFWM FFT spectrum 

(Fig. 12(b)) (1538 cm-1 for DA and 1543 cm-1 for LA). A similar 

trend is also observed for CH3 rocking modes: 1002 cm-1 shifts 
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to 1008 cm-1 for DA while 1007 shifts to 1010 cm-1 for LA. This is 

expected since non-resonant DFWM FFT spectra contain only 

GS modes whereas resonant DFWM FFT spectra contain the 

mixture of GS and ES modes in the high frequency region. As we 

have shown above, both C=C stretch and CH3 rock modes show 

a frequency blue shift in the ES compared to the GS (Fig. 8). 

Pre-twisting and isomerization dynamics 

In the context of retinal photo-chemistry, pre-twisting has been 

claimed to be one of the potential elements that can accelerate 

the isomerization process. In particular, the pre-straining inside 

the protein pocket has been repeatedly shown for visual 

rhodopsin by both X-Ray crystallography,9 NMR,40 resonant 

Raman studies44, 69, 71, 77 and theoretical simulations42, 82 which 

accounts for its fast ballistic IC dynamics. Although non-

resonant Raman spectra (Fig. 4), as reported in this study, speak 

for a relatively more pre-twisted geometry of 13C isomer in ASR, 

no significant difference in distortion around the C13=C14 

between AT and 13C isomers has been pointed out by the X-ray 

crystallographic study of ASR with 2.0 Å resolution.83 Very 

similar observations were made for BR where the 13C isomer 

shows 3 times faster kinetics84 compared to AT but the 

structural data report both the isomers to be nearly planar 

without any indication of protein-catalyzed strain like visual 

rhodopsin. However, an indirect evidence of weak pre-straining 

for 13C isomer was found in the NMR78 and resonance Raman70 

studies of BR although it seems to be negligible compared to 11-

cis isomer of visual rhodopsin. More recently, a closer 

inspection on the X-ray data depicted a twist around C14-C15 

bond in 13C isomer but not in AT isomer of BR.10 Similarly our 

classical GS dynamics simulation (Table S1) shows no difference 

in the distortion around C13=C14 bond for the AT and 13C 

isomers; rather it indicates the presence of a twist (~10°) around 

C14-C15 bond for 13C isomer whereas for AT isomer appears to 

be almost planar. Thus, this twist around the C14-C15 bond, 

which is adjacent to active C13=C14, may play a central role in the 

faster dynamics of 13C in ASR as claimed for 11C in visual 

rhodopsin. 85 

This difference in distortions must originate from 

differences in the packing of the RPSB inside the retinal pocket. 

It fits the observation of faster dephasing (Fig. S9) of GS 

coherence of AT than 13C isomer which can be interpreted as 

stronger coupling of AT isomer to the surrounding than 13C. A 

recent femtosecond X-ray study29 of BR has depicted the 

importance of the specific electrostatic interactions between 

protein and RPSB to guide the isomerization in certain direction. 

Hence, this difference in electrostatic interaction between AT 

and 13C isomers with the protein surrounding may lead to 

different trajectories during the reaction. It corroborates a FTIR 

study72 which showed that the sub-ps isomerization causes a 

stronger disruption of the H-bond between the surrounding 

water molecule and the protonated N-atom of the Schiff base 

in case of the AT isomer compared to 13C. This H-bond has been 

previously46 suspected to be responsible for hindering the 

rotation of the protonated Schiff base and thus slowing down 

the isomerization around C13=C14 bond. This also matches our 

observations for AT ASR of a slower frequency shift of 

fingerprint modes (C=C and C-C stretches, CH3 rock) which are 

sensitive to localized structural changes and have been 

interpreted as the delayed formation of the twisted transition 

state for AT compared to 13C isomer. 

Conclusion 

This work has investigated the mechanistic origin of the huge 

dynamical differences observed in the isomerization of AT and 

13C isomers in Anabaena Sensory Rhodopsin. In this regard, the 

evolution of the GS as well as of the ES structural changes of 

each isomer has been followed by applying DFWM, IVS, pump-

DFWM and pump-IVS spectroscopy techniques. The present 

experiments were able to unveil three major structural and 

dynamical differences in the isomerization of each isomer: (i) 

HOOP activity in the GS is stronger for the 13C ASR than for AT 

ASR, (ii) large (up to 20 cm-1) and delayed transient frequency 

blue shifts observed for the C=C stretching and CH3 rock modes 

in the excited state of AT ASR and (iii) delayed Raman activity 

increase of low frequency modes (< 400 cm-1). 

These experimental findings depict very different 

isomerization scenarios for each isomer. The stronger HOOP 

activity at about 805 cm-1 in the GS spectra of LA ASR indicates 

that 13C isomer is already more pre-twisted in the GS than the 

AT ASR isomer inside the retinal pocket. Bearing analogy to BR 

and supported by theoretical calculations, we have assigned 

this mode to C14-H wag. Our results point to a distortion located 

around the C14-C15 bond of the 13C isomer, which is neighboring 

to the isomerizing C13=C14 bond. The evolution of frequency 

shifts of high frequency modes, in particular of the C=C 

stretching and CH3 rock modes, depicts a much slower 

formation of the twisted configuration for AT ASR compared to 

13C ASR. Finally, the delayed rise of amplitude in the transient 

nonlinear Raman spectra as well as the stronger relative 

amplification of the low frequency modes from non-resonant to 

resonant DFWM experiments indicates that these modes are 

potentially activated by the C=C bond via IVR mechanism 

similarly to previous observations in BR.50 

These discoveries have profound implications in 

understanding the mechanism of the primary events in retinal 

proteins. 13C ASR and AT ASR show several dynamic and 

spectral features known for other respective isomers in other 

retinal proteins, in particular BR. Perhaps a major point is the 

very distinct evolution of high frequency modes in the excited 

states of 13C and AT ASR. While e.g. C=C stretching and CH3 

modes are not reactive coordinates per se, they certainly reflect 

the structural changes taking place at localized positions along 

the retinal during the isomerization. The delayed decrease of 

the conjugated double bond length observed for AT ASR in the 

excited state compared to 13C ASR surely follows the previous 

proposal about the presence of barrier in the excited state 

manifold of AT ASR. Nevertheless, our findings suggest that the 

longer dynamics observed for AT ASR may originate due to more 

than one factor, namely a barrier in the excited state and the 

lack of a pre-distortion (compared to 13C) in the ground state. 

And finally, although the HOOP Raman activity in 13C ASR is 
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much lower than for 11Cis in visual rhodopsin, the excited state 

lifetimes are not very different. This further reinforces that not 

a single effect is playing a role in determining the excited state 

lifetime, as has been advocated in the past. We expect that a 

time resolved vibrational spectroscopy study of specific point 

mutations of ASR will be able to pinpoint the role of barriers and 

pre-distortions and unveil the extent of this effect. 
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