A. Abraha, N. Ghoshal, T. C. Gamblin, V. Cryns, R. W. Berry et al., C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease, J Cell Sci, vol.113, pp.3737-3745, 2000.

N. Ait-bouziad, G. Lv, A. Mahul-mellier, X. S. Zorludemir, G. Eliezer et al., Discovery and characterization of stable and toxic tau/ phospholipid oligomeric complexes, Nat Commun, vol.8, p.1678, 2017.

Y. K. Al-hilaly, S. J. Pollack, J. E. Rickard, M. Simpson, A. Raulin et al., Cysteine-independent inhibition of Alzheimer's disease-like paired helical filament assembly by Leuco-Methylthioninium (LMT), J Mol Biol, vol.430, pp.4119-4131, 2018.

Y. K. Al-hilaly, S. J. Pollack, D. M. Vadukul, F. Citossi, J. E. Rickard et al., Alzheimer's disease-like paired helical filament assembly from truncated tau protein is independent of disulfide crosslinking, J Mol Biol, vol.429, pp.3650-3665, 2017.

A. Alonso, T. Zaidi, M. Novak, I. Grundke-iqbal, and K. Iqbal, Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments, Proc Natl Acad Sci U A, vol.98, pp.6923-6928, 2001.

A. C. Alonso, I. Grundke-iqbal, and K. Iqbal, Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules, Nat Med, vol.2, pp.783-787, 1996.

A. C. Alonso, T. Zaidi, I. Grundke-iqbal, and K. Iqbal, Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc Natl Acad Sci U A, vol.91, pp.5562-5566, 1994.

S. Ambadipudi, J. Biernat, D. Riedel, E. Mandelkow, and M. Zweckstetter, Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau, Nat Commun, vol.8, p.275, 2017.

K. Ando, K. Leroy, C. Héraud, Z. Yilmaz, M. Authelet et al., Accelerated human mutant tau aggregation by knocking out murine tau in a transgenic mouse model, Am J Pathol, vol.178, pp.803-816, 2011.

C. Andorfer, Y. Kress, M. Espinoza, R. De-silva, K. L. Tucker et al., Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms, J Neurochem, vol.86, pp.582-590, 2003.

U. Andreasson, J. Kuhlmann, J. Pannee, R. M. Umek, E. Stoops et al., Commutability of the certified reference materials for the standardization of ?-amyloid 1-42 assay in human cerebrospinal fluid: lessons for tau and ?-amyloid 1-40 measurements, Clin Chem Lab Med, vol.56, pp.2058-2066, 2018.

O. C. Andronesi, M. Von-bergen, J. Biernat, K. Seidel, C. Griesinger et al., Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy, J Am Chem Soc, vol.130, pp.5922-5928, 2008.

R. A. Armstrong, P. L. Lantos, and N. J. Cairns, What determines the molecular composition of abnormal protein aggregates in neurodegenerative disease, Neuropathology, vol.28, pp.351-365, 2008.

K. Asadollahi, G. Riazi, R. Chadegani, A. Rafiee, and S. , DNA-binding mode transition of tau in the presence of zinc ions, J Biomol Struct Dyn, vol.36, pp.1925-1933, 2018.

S. Barghorn, P. Davies, and E. Mandelkow, Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain, Biochemistry, vol.43, pp.1694-1703, 2004.

N. R. Barthélemy, F. Fenaille, C. Hirtz, N. Sergeant, S. Schraen-maschke et al., Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity, J Proteome Res, vol.15, pp.667-676, 2016.

H. Benhelli-mokrani, Z. Mansuroglu, A. Chauderlier, B. Albaud, D. Gentien et al., Genome-wide identification of genic and intergenic neuronal DNA regions bound by tau protein under physiological and stress conditions, Nucleic Acids Res, vol.46, pp.11405-11422, 2018.

J. Berriman, L. C. Serpell, K. A. Oberg, A. L. Fink, M. Goedert et al., Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure, Proc Natl Acad Sci U S A, vol.100, pp.9034-9038, 2003.

S. Bibow, M. D. Mukrasch, S. Chinnathambi, J. Biernat, C. Griesinger et al., The dynamic structure of filamentous tau, Angew Chem Int Ed Engl, vol.50, pp.11520-11524, 2011.

G. Bourré, F. Cantrelle, A. Kamah, B. Chambraud, I. Landrieu et al., Direct crosstalk between O-GlcNAcylation and phosphorylation of tau protein investigated by NMR spectroscopy, Front Endocrinol, vol.9, 2018.

H. Braak and E. Braak, Staging of Alzheimer's disease-related neurofibrillary changes, Neurobiol Aging, vol.16, pp.271-278, 1995.

H. Braak and E. Braak, Frequency of stages of Alzheimer-related lesions in different age categories, Neurobiol Aging, vol.18, pp.351-357, 1997.

J. P. Brion, J. Flament-durand, and D. P. , Alzheimer's disease and tau proteins, Lancet, vol.2, issue.86, pp.90495-90497, 1098.

G. Carmel, E. M. Mager, L. I. Binder, and J. Kuret, The structural basis of monoclonal antibody Alz50's selectivity for Alzheimer's disease pathology, J Biol Chem, vol.271, pp.32789-32795, 1996.

J. P. Chhatwal, A. P. Schultz, G. A. Marshall, B. Boot, T. Gomez-isla et al., Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly, vol.87, pp.920-926, 2016.

D. T. Chien, A. K. Szardenings, S. Bahri, J. C. Walsh, F. Mu et al., Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808, J Alzheimers Dis JAD, vol.38, pp.171-184, 2014.

J. E. Chukwu, J. T. Pedersen, L. Ø. Pedersen, C. Volbracht, E. M. Sigurdsson et al., Tau antibody structure reveals a molecular switch defining a pathological conformation of the tau protein, Sci Rep, vol.8, p.6209, 2018.

K. M. Craven, W. R. Kochen, C. M. Hernandez, and J. M. Flinn, Zinc exacerbates tau pathology in a tau mouse model, J Alzheimers Dis JAD, vol.64, pp.617-630, 2018.

V. Daebel, S. Chinnathambi, J. Biernat, M. Schwalbe, B. Habenstein et al., ) ?-Sheet core of tau paired helical filaments revealed by solid-state NMR, J Am Chem Soc, vol.134, pp.13982-13989, 2012.

A. Dagley, M. Lapoint, W. Huijbers, T. Hedden, D. G. Mclaren et al., Harvard aging brain study: dataset and accessibility, NeuroImage, vol.144, pp.255-258, 2017.

C. Dai, Y. C. Tung, F. Liu, C. Gong, and K. Iqbal, Tau passive immunization inhibits not only tau but also A? pathology, Alzheimers Res Ther, vol.9, 2017.

A. De-calignon, L. M. Fox, R. Pitstick, G. A. Carlson, B. J. Bacskai et al., Caspase activation precedes and leads to tangles, Nature, vol.464, pp.1201-1204, 2010.

A. De-calignon, M. Polydoro, M. Suárez-calvet, C. William, D. H. Adamowicz et al., Propagation of tau pathology in a model of early Alzheimer's disease, Neuron, vol.73, pp.685-697, 2012.

D. Vos, A. Struyfs, H. Jacobs, D. Fransen, E. Klewansky et al., The cerebrospinal fluid Neurogranin/BACE1 ratio is a potential correlate of cognitive decline in Alzheimer's disease, J Alzheimers Dis JAD, vol.53, pp.1523-1538, 2016.

C. Despres, C. Byrne, H. Qi, F. Cantrelle, I. Huvent et al., Identification of the tau phosphorylation pattern that drives its aggregation, Proc Natl Acad Sci U S A, vol.114, pp.9080-9085, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620128

S. S. Dominy, C. Lynch, F. Ermini, M. Benedyk, A. Marczyk et al., Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors, Sci Adv, vol.5, p.3333, 2019.

S. Dujardin, S. Bégard, R. Caillierez, C. Lachaud, S. Carrier et al., Different tau species lead to heterogeneous tau pathology propagation and misfolding, Acta Neuropathol Commun, vol.6, p.132, 2018.

B. Eftekharzadeh, J. G. Daigle, L. E. Kapinos, A. Coyne, J. Schiantarelli et al., Tau protein disrupts nucleocytoplasmic transport in Alzheimer's disease, Neuron, vol.99, pp.925-940, 2018.

N. A. Eschmann, E. R. Georgieva, P. Ganguly, P. P. Borbat, M. D. Rappaport et al., Signature of an aggregation-prone conformation of tau, Sci Rep, vol.7, p.44739, 2017.

B. Falcon, W. Zhang, A. G. Murzin, G. Murshudov, H. J. Garringer et al., Structures of filaments from Pick's disease reveal a novel tau protein fold, Nature, vol.561, pp.137-140, 2018.

B. Falcon, W. Zhang, M. Schweighauser, A. G. Murzin, R. Vidal et al., Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold, Acta Neuropathol (Berl), vol.136, pp.699-708, 2018.

Y. Fichou, Y. Lin, J. N. Rauch, M. Vigers, Z. Zeng et al., Cofactors are essential constituents of stable and seeding-active tau fibrils, Proc Natl Acad Sci, 2018.

Y. Fichou, M. Vigers, A. K. Goring, N. A. Eschmann, and S. Han, Heparin-induced tau filaments are structurally heterogeneous and differ from Alzheimer's disease filaments, Chem Commun, vol.54, pp.4573-4576, 2018.

A. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer's disease, Nature, vol.547, pp.185-190, 2017.

T. C. Gamblin, F. Chen, A. Zambrano, A. Abraha, S. Lagalwar et al., Caspase cleavage of tau: linking amyloid and neurofibrillary tangles Fichou et al, Acta Neuropathologica Communications, vol.7, p.31, 2003.

, Alzheimer's disease, Proc Natl Acad Sci U S A, vol.100, pp.10032-10037

N. S. Gandhi, I. Landrieu, C. Byrne, P. Kukic, L. Amniai et al., A phosphorylation-induced turn defines the Alzheimer's disease AT8 antibody epitope on the tau protein, Angew Chem Int Ed Engl, vol.54, pp.6819-6823, 2015.

C. Garnier, F. Devred, D. Byrne, R. Puppo, A. Y. Roman et al., Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates, Sci Rep, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570091

A. Gauthier-kemper, S. Alonso, M. Sündermann, F. Niewidok, B. Fernandez et al., Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization, J Biol Chem, vol.293, pp.8065-8076, 2018.

B. Gigant, I. Landrieu, C. Fauquant, P. Barbier, I. Huvent et al., Mechanism of tau-promoted microtubule assembly as probed by NMR spectroscopy, J Am Chem Soc, vol.136, pp.12615-12623, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077829

S. D. Ginsberg, J. E. Galvin, T. S. Chiu, V. M. Lee, E. Masliah et al., RNA sequestration to pathological lesions of neurodegenerative diseases, Acta Neuropathol (Berl), vol.96, pp.487-494, 1998.

M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith et al., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, vol.383, pp.550-553, 1996.

M. Goedert and M. G. Spillantini, Propagation of tau aggregates, Mol Brain, vol.10, p.18, 2017.

M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, vol.3, issue.89, pp.90210-90219, 1989.

I. Grundke-iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi et al., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J Biol Chem, vol.261, pp.6084-6089, 1986.

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc Natl Acad Sci U A, vol.83, pp.4913-4917, 1986.

D. P. Hanger, J. C. Betts, T. L. Loviny, W. P. Blackstock, and B. H. Anderton, New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry, J Neurochem, vol.71, pp.2465-2476, 1998.

B. J. Hanseeuw, R. A. Betensky, A. P. Schultz, K. V. Papp, E. C. Mormino et al., Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline, Ann Neurol, vol.81, pp.583-596, 2017.

B. J. Hanseeuw, B. C. Mormino, A. Becker, J. Sepulcre, K. V. Papp et al., Longitudinal tau accumulation is associated with cognitive decline in normal elderly, Alzheimers Dement J Alzheimers Assoc, vol.13, pp.134-136, 2017.

O. Hansson and E. C. Mormino, Is longitudinal tau PET ready for use in Alzheimer's disease clinical trials?, Brain J Neurol, vol.141, pp.1241-1244, 2018.

C. R. Harrington, E. B. Mukaetova-ladinska, R. Hills, P. C. Edwards, M. De-garcini et al., Measurement of distinct immunochemical presentations of tau protein in Alzheimer disease, Proc Natl Acad Sci U S A, vol.88, pp.5842-5846, 1991.

T. M. Harrison, L. Joie, R. Maass, A. Baker, S. L. Swinnerton et al., Longitudinal tau accumulation and atrophy in aging and alzheimer disease, Ann Neurol, vol.85, pp.229-240, 2019.

H. Hasegawa and L. Holm, Advances and pitfalls of protein structural alignment, Curr Opin Struct Biol, vol.19, pp.341-348, 2009.

A. Himmler, D. Drechsel, M. W. Kirschner, and D. W. Martin, Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains, Mol Cell Biol, vol.9, pp.1381-1388, 1989.

J. Hu, D. Zhang, X. Liu, X. Li, X. Cheng et al., Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human tau and thereby significantly increases tau toxicity in neuronal cells, Biochim Biophys Acta Mol basis Dis, vol.1863, pp.414-427, 2017.

Y. Huang, Z. Wu, Y. Cao, M. Lang, B. Lu et al., Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation, Cell Rep, vol.8, pp.831-842, 2014.

I. Huvent, A. Kamah, F. Cantrelle, N. Barois, C. Slomianny et al., A functional fragment of tau forms fibers without the need for an intermolecular cysteine bridge, Biochem Biophys Res Commun, vol.445, pp.299-303, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01389839

K. Iqbal, A. C. Alonso, C. X. Gong, S. Khatoon, and T. J. Singh, Grundke-Iqbal I (1994) Mechanism of neurofibrillary degeneration in Alzheimer's disease, Mol Neurobiol, vol.9, pp.119-123

C. R. Jack, H. J. Wiste, C. G. Schwarz, V. J. Lowe, M. L. Senjem et al., Longitudinal tau PET in ageing and Alzheimer's disease, Brain J Neurol, vol.141, pp.1517-1528, 2018.

S. Jadvah, J. Avila, M. Schöll, G. G. Kovacs, E. Kövari et al., A walk through tau therapeutic strategies, Acta Neuropathol Commun, vol.7, 2019.

R. Jakes, M. Novak, M. Davison, and C. M. Wischik, Identification of 3and 4-repeat tau isoforms within the PHF in Alzheimer's disease, EMBO J, vol.10, pp.2725-2729, 1991.

S. Jeganathan, A. Hascher, S. Chinnathambi, J. Biernat, E. M. Mandelkow et al., Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of tau and generates a pathological (MC-1) conformation, J Biol Chem, vol.283, pp.32066-32076, 2008.

K. A. Johnson, A. Schultz, R. A. Betensky, J. A. Becker, J. Sepulcre et al., Tau positron emission tomographic imaging in aging and early Alzheimer disease, Ann Neurol, vol.79, pp.110-119, 2016.

H. Kadavath, R. V. Hofele, J. Biernat, S. Kumar, K. Tepper et al., Tau stabilizes microtubules by binding at the interface between tubulin heterodimers, Proc Natl Acad Sci U S A, vol.112, pp.7501-7506, 2015.

C. M. Karch, A. T. Jeng, and A. M. Goate, Extracellular tau levels are influenced by variability in tau that is associated with tauopathies, J Biol Chem, vol.287, pp.42751-42762, 2012.

S. K. Kaufman, D. W. Sanders, T. L. Thomas, A. J. Ruchinskas, J. Vaquer-alicea et al., Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo, Neuron, vol.92, pp.796-812, 2016.

E. H. Kellogg, N. Hejab, S. Poepsel, K. H. Downing, F. Dimaio et al., Near-atomic model of microtubule-tau interactions, Science, vol.360, pp.1242-1246, 2018.

V. Kepe, Y. Bordelon, A. Boxer, S. Huang, J. Liu et al., PET imaging of neuropathology in tauopathies: progressive supranuclear palsy, J Alzheimers Dis JAD, vol.36, pp.145-153, 2013.

L. Joie, R. Bejanin, A. Fagan, A. M. Ayakta, N. Baker et al., Neurology, vol.90, pp.282-290, 2018.

M. Landau, M. R. Sawaya, K. F. Faull, A. Laganowsky, L. Jiang et al., Towards a pharmacophore for amyloid, PLoS Biol, vol.9, 2011.

C. M. Lee, H. Jacobs, M. Marquié, J. A. Becker, N. V. Andrea et al., 18F-Flortaucipir binding in choroid plexus: related to race and Hippocampus signal, J Alzheimers Dis JAD, vol.62, pp.1691-1702, 2018.

G. Lee, N. Cowan, and M. Kirschner, The primary structure and heterogeneity of tau protein from mouse brain, Science, vol.239, pp.285-288, 1988.

. Fichou, Acta Neuropathologica Communications, vol.7, p.31, 2019.

B. Li, M. O. Chohan, I. Grundke-iqbal, and K. Iqbal, Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau, Acta Neuropathol (Berl), vol.113, pp.501-511, 2007.

T. Li, K. E. Braunstein, J. Zhang, A. Lau, L. Sibener et al., The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model, Nat Commun, vol.7, 2016.

C. Liu, X. Song, R. Nisbet, and J. Götz, Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N tau in disease, J Biol Chem, vol.291, pp.8173-8188, 2016.

F. Liu, K. Iqbal, I. Grundke-iqbal, G. W. Hart, and C. Gong, O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease, Proc Natl Acad Sci U S A, vol.101, pp.10804-10809, 2004.

F. Liu, J. Shi, H. Tanimukai, J. Gu, J. Gu et al., Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease, Brain J Neurol, vol.132, pp.1820-1832, 2009.

C. Luk, Y. Compta, N. Magdalinou, M. J. Martí, G. Hondhamuni et al., Development and assessment of sensitive immunoPCR assays for the quantification of cerebrospinal fluid three-and fourrepeat tau isoforms in tauopathies, J Neurochem, vol.123, pp.396-405, 2012.

W. Mair, J. Muntel, K. Tepper, S. Tang, J. Biernat et al., FLEXITau: quantifying posttranslational modifications of tau protein in vitro and in human disease, Anal Chem, vol.88, pp.3704-3714, 2016.

T. J. Malia, A. Teplyakov, R. Ernst, S. Wu, E. R. Lacy et al., Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8, Proteins, vol.84, pp.427-434, 2016.

I. Malki, F. Cantrelle, Y. Sottejeau, G. Lippens, J. Lambert et al., Regulation of the interaction between the neuronal BIN1 isoform 1 and tau proteins-role of the SH3 domain, FEBS J, vol.284, pp.3218-3229, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620146

M. Margittai and R. Langen, Template-assisted filament growth by parallel stacking of tau, Proc Natl Acad Sci U S A, vol.101, pp.10278-10283, 2004.

M. Marquié, M. D. Normandin, C. R. Vanderburg, I. M. Costantino, E. A. Bien et al., Validating novel tau positron emission tomography tracer, T807) on postmortem brain tissue, vol.78, pp.787-800, 2015.

M. Martinho, D. Allegro, I. Huvent, C. Chabaud, E. E. Kovacic et al., Two tau binding sites on tubulin revealed by thiol-disulfide exchanges, Sci Rep, vol.8, p.13846, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01883844

N. Mattsson, H. Zetterberg, S. Janelidze, P. S. Insel, U. Andreasson et al., Plasma tau in Alzheimer disease, Neurology, vol.87, pp.1827-1835, 2016.

P. Mcmillan, E. Korvatska, P. Poorkaj, Z. Evstafjeva, L. Robinson et al., Tau isoform regulation is region-and cell-specific in mouse brain, J Comp Neurol, vol.511, pp.788-803, 2008.

M. Medina and J. Avila, The need for better AD animal models, Front Pharmacol, vol.5, p.227, 2014.

M. Medina, F. Hernández, and J. Avila, New features about tau function and dysfunction, 2016.

R. Mena, P. Edwards, O. Pérez-olvera, and C. M. Wischik, Monitoring pathological assembly of tau and beta-amyloid proteins in Alzheimer's disease, Acta Neuropathol (Berl), vol.89, pp.50-56, 1995.

J. E. Meredith, S. Sankaranarayanan, V. Guss, A. J. Lanzetti, F. Berisha et al., Characterization of novel CSF tau and ptau biomarkers for Alzheimer's disease, vol.8, 2013.

V. Meyer, M. R. Holden, H. A. Weismiller, G. R. Eaton, S. S. Eaton et al., Fracture and growth are competing forces determining the fate of conformers in tau fibril populations, J Biol Chem, vol.291, pp.12271-12281, 2016.

H. Mirbaha, D. Chen, O. A. Morazova, K. M. Ruff, A. M. Sharma et al., Inert and seed-competent tau monomers suggest structural origins of aggregation, vol.7, p.36584, 2018.

Z. Mo, Y. Zhu, H. Zhu, J. Fan, J. Chen et al., Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322, J Biol Chem, vol.284, pp.34648-34657, 2009.

M. Morishima-kawashima, M. Hasegawa, K. Takio, M. Suzuki, H. Yoshida et al., Hyperphosphorylation of tau in PHF, Neurobiol Aging, vol.16, pp.365-371, 1995.

D. R. Morris and C. W. Levenson, Neurotoxicity of zinc, Adv Neurobiol, vol.18, pp.303-312, 2017.

M. Morris, G. M. Knudsen, S. Maeda, J. C. Trinidad, A. Ioanoviciu et al., Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice, Nat Neurosci, vol.18, pp.1183-1189, 2015.

S. Moussaud, D. R. Jones, E. L. Moussaud-lamodière, M. Delenclos, O. A. Ross et al., Alpha-synuclein and tau: teammates in neurodegeneration?, Mol Neurodegener, vol.9, p.43, 2014.

A. Mudher, J. Brion, J. Avila, M. Medina, and L. Buée, EuroTau: towing scientists to tau without tautology, Acta Neuropathol Commun, vol.5, p.90, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01654097

A. Nakamura, N. Kaneko, V. L. Villemagne, T. Kato, J. Doecke et al., High performance plasma amyloid-? biomarkers for Alzheimer's disease, Nature, vol.554, pp.249-254, 2018.

P. T. Nelson, I. Alafuzoff, E. H. Bigio, C. Bouras, H. Braak et al., Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature, J Neuropathol Exp Neurol, vol.71, pp.362-381, 2012.

K. P. Ng, T. A. Pascoal, S. Mathotaarachchi, J. Therriault, M. S. Kang et al., Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain, Alzheimers Res Ther, vol.9, 2017.

B. Nizynski, H. Nieznanska, R. Dec, S. Boyko, W. Dzwolak et al., Amyloidogenic cross-seeding of tau protein: transient emergence of structural variants of fibrils, PLoS One, vol.13, 2018.

M. Novak, J. Kabat, and C. M. Wischik, Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament, EMBO J, vol.12, pp.365-370, 1993.

P. Novak, O. Cehlar, R. Skrabana, and M. Novak, Tau conformation as a target for disease-modifying therapy: the role of truncation, J Alzheimers Dis JAD, vol.64, pp.535-546, 2018.

J. O. Ojo, B. C. Mouzon, and F. Crawford, Repetitive head trauma, chronic traumatic encephalopathy and tau: challenges in translating from mice to men, Exp Neurol, vol.275, pp.389-404, 2016.

J. Oroz, B. J. Chang, P. Wysoczanski, C. Lee, Á. Pérez-lara et al., Structure and pro-toxic mechanism of the human Hsp90/PPIase/tau complex, Nat Commun, vol.9, p.4532, 2018.

R. Ossenkoppele, D. R. Schonhaut, M. Schöll, S. N. Lockhart, N. Ayakta et al., Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease, Brain J Neurol, vol.139, pp.1551-1567, 2016.

. Fichou, Acta Neuropathologica Communications, vol.7, p.31, 2019.

V. Ovod, K. N. Ramsey, K. G. Mawuenyega, J. G. Bollinger, T. Hicks et al., Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis, Alzheimers Dement, vol.13, pp.841-849, 2017.

M. Pérez, M. Medina, F. Hernández, and J. Avila, Secretion of full-length tau or tau fragments in cell culture models. Propagation of tau in vivo and in vitro, Biomol Concepts, vol.9, pp.1-11, 2018.

E. Pérez-ruiz, D. Decrop, K. Ven, L. Tripodi, K. Leirs et al., Digital ELISA for the quantification of attomolar concentrations of Alzheimer's disease biomarker protein tau in biological samples, Anal Chim Acta, vol.1015, pp.74-81, 2018.

M. J. Pontecorvo, M. D. Devous, M. Navitsky, M. Lu, S. Salloway et al., Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition, Brain J Neurol, vol.140, pp.748-763, 2017.

P. Poorkaj, A. Kas, D. Souza, I. Zhou, Y. Pham et al., A genomic sequence analysis of the mouse and human microtubule-associated protein tau, Mamm Genome, vol.12, pp.700-712, 2001.

H. Qi, F. Cantrelle, H. Benhelli-mokrani, C. Smet-nocca, L. Buée et al., Nuclear magnetic resonance spectroscopy characterization of interaction of tau with DNA and its regulation by phosphorylation, Biochemistry, vol.54, pp.1525-1533, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145987

H. Qi, S. Prabakaran, F. Cantrelle, B. Chambraud, J. Gunawardena et al., Characterization of neuronal tau protein as a target of extracellular signal-regulated kinase, J Biol Chem, vol.291, pp.7742-7753, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389831

A. Rábano, R. Cuadros, M. Calero, F. Hernández, and J. Avila, Specific profile of tau isoforms in argyrophylic grain disease, J Exp Neurosci, vol.7, pp.51-59, 2013.

J. A. Rodriguez, M. I. Ivanova, M. R. Sawaya, D. Cascio, F. E. Reyes et al., Structure of the toxic core of ?-synuclein from invisible crystals, Nature, vol.525, pp.486-490, 2015.

T. Rodríguez-martín, I. Cuchillo-ibáñez, W. Noble, F. Nyenya, B. H. Anderton et al., Tau phosphorylation affects its axonal transport and degradation, Neurobiol Aging, vol.34, pp.2146-2157, 2013.

A. Y. Roman, F. Devred, D. Byrne, L. Rocca, R. Ninkina et al., Zinc induces temperature-dependent reversible self-assembly of tau, J Mol Biol, vol.431, issue.4, pp.687-695, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01981683

J. Rosseels, J. Van-den-brande, M. Violet, D. Jacobs, P. Grognet et al., Tau monoclonal antibody generation based on humanized yeast models: impact on tau oligomerization and diagnostics, J Biol Chem, vol.290, pp.4059-4074, 2015.

N. Sahara, S. Maeda, M. Murayama, T. Suzuki, N. Dohmae et al., Assembly of two distinct dimers and higher-order oligomers from full-length tau, Eur J Neurosci, vol.25, pp.3020-3029, 2007.

C. Sato, N. R. Barthélemy, K. G. Mawuenyega, B. W. Patterson, B. A. Gordon et al., Tau kinetics in neurons and the human central nervous system, Neuron, vol.97, pp.1284-1298, 2018.

M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers et al., Atomic structures of amyloid cross-beta spines reveal varied steric zippers, Nature, vol.447, pp.453-457, 2007.

C. L. Sayas, M. Medina, R. Cuadros, I. Ollá, E. García et al., Role of tau N-terminal motif in the secretion of human tau by end binding proteins, PLoS One, vol.14, 2019.

A. Schneider, J. Biernat, M. Von-bergen, E. Mandelkow, and E. M. Mandelkow, Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry, vol.38, pp.3549-3558, 1999.

M. Schöll, A. Maass, N. Mattsson, N. J. Ashton, K. Blennow et al., Biomarkers for tau pathology, Mol Cell Neurosci, 2018.

P. M. Seidler, D. R. Boyer, J. A. Rodriguez, M. R. Sawaya, D. Cascio et al., Structure-based inhibitors of tau aggregation, Nat Chem, vol.10, pp.170-176, 2018.

H. H. Shih, C. Tu, W. Cao, A. Klein, R. Ramsey et al., An ultra-specific avian antibody to phosphorylated tau protein reveals a unique mechanism for phosphoepitope recognition, J Biol Chem, vol.287, pp.44425-44434, 2012.

H. Shimada, H. Shinotoh, N. Sahara, S. Hirano, S. Furukawa et al., Diagnostic utility and clinical significance of tau PET imaging with [11C] PBB3 in diverse tauopathies, 9th Hum Amyloid Imaging Conf, 2015.

A. Siddiqua, Y. Luo, V. Meyer, M. A. Swanson, X. Yu et al., Conformational basis for asymmetric seeding barrier in filaments of three-and four-repeat tau, J Am Chem Soc, vol.134, pp.10271-10278, 2012.

R. Skrabana, P. Kontsek, A. Mederlyova, K. Iqbal, and M. Novak, Folding of Alzheimer's core PHF subunit revealed by monoclonal antibody 423, FEBS Lett, vol.568, pp.178-182, 2004.

R. Smith, M. Wibom, D. Pawlik, E. Englund, and O. Hansson, Correlation of in vivo [18F]Flortaucipir with postmortem Alzheimer disease tau pathology, JAMA Neurol, 2018.

I. Sotiropoulos, M. Galas, J. M. Silva, E. Skoulakis, S. Wegmann et al., Atypical, non-standard functions of the microtubule associated tau protein, Acta Neuropathol Commun, vol.5, p.91, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01833336

M. G. Spillantini, R. A. Crowther, and M. Goedert, Comparison of the neurofibrillary pathology in Alzheimer's disease and familial presenile dementia with tangles, Acta Neuropathol (Berl), vol.92, pp.42-48, 1996.

T. L. Spires-jones, K. J. Kopeikina, R. M. Koffie, A. De-calignon, and B. T. Hyman, Are tangles as toxic as they look?, J Mol Neurosci MN, vol.45, pp.438-444, 2011.

H. Steen, W. Mair, S. Tang, and J. A. Steen, Mapping the Tauopathy-specific modification landscape on tau, Alzheimers Dement, vol.13, p.1229, 2017.

K. Stefanoska, A. Volkerling, J. Bertz, A. Poljak, Y. D. Ke et al., An N-terminal motif unique to primate tau enables differential proteinprotein interactions, J Biol Chem, vol.293, pp.3710-3719, 2018.

A. Stephens, J. Seibyl, A. Mueller, O. Barret, M. Berndt et al., CLINICAL UPDATE: [18F]PI-2620, a next generation tau PET agent evaluated in subjects with Alzheimer's disease and progressive supranuclear palsy, Alzheimers Dement, vol.14, p.179, 2018.

C. L. Sutphen, M. S. Jasielec, A. R. Shah, E. M. Macy, C. Xiong et al., Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age, JAMA Neurol, vol.72, pp.1029-1042, 2015.

S. Taniguchi-watanabe, T. Arai, F. Kametani, T. Nonaka, M. Masuda-suzukake et al., Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau, Acta Neuropathol (Berl), vol.131, pp.267-280, 2016.

K. Tepper, J. Biernat, S. Kumar, S. Wegmann, T. Timm et al., Oligomer formation of tau protein hyperphosphorylated in cells, J Biol Chem, vol.289, pp.34389-34407, 2014.

P. O. Tsvetkov, A. A. Makarov, S. Malesinski, V. Peyrot, and F. Devred, New insights into tau-microtubules interaction revealed by isothermal titration calorimetry, Biochimie, vol.94, pp.916-919, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01749107

. Fichou, Acta Neuropathologica Communications, vol.7, p.31, 2019.

P. O. Tsvetkov, A. Y. Roman, V. E. Baksheeva, A. A. Nazipova, M. P. Shevelyova et al., Functional status of neuronal calcium Sensor-1 is modulated by zinc binding, Front Mol Neurosci, vol.11, p.459, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01955226

M. D. Tuttle, G. Comellas, A. J. Nieuwkoop, D. J. Covell, D. A. Berthold et al., Solid-state NMR structure of a pathogenic fibril of full-length human ?-synuclein, Nat Struct Mol Biol, vol.23, pp.409-415, 2016.

M. Vandermeeren, M. Borgers, K. Van-kolen, C. Theunis, B. Vasconcelos et al., Anti-tau monoclonal antibodies derived from soluble and filamentous tau show diverse functional properties in vitro and in vivo, J Alzheimers Dis JAD, vol.65, pp.265-281, 2018.

T. Vanhelmont, T. Vandebroek, D. Vos, A. Terwel, D. Lemaire et al., Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast, FEMS Yeast Res, vol.10, pp.992-1005, 2010.

C. Vermeiren, P. Motte, D. Viot, G. Mairet-coello, J. Courade et al., The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases, Mov Disord Off J Mov Disord Soc, vol.33, pp.273-281, 2018.

M. Von-bergen, S. Barghorn, S. Jeganathan, E. M. Mandelkow, and E. Mandelkow, Spectroscopic approaches to the conformation of tau protein in solution and in paired helical filaments, Neurodegener Dis, vol.3, pp.197-206, 2006.

M. Von-bergen, P. Friedhoff, J. Biernat, J. Heberle, E. M. Mandelkow et al., Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306) VQIVYK (311)) forming beta structure, Proc Natl Acad Sci U A, vol.97, pp.5129-5134, 2000.

J. Z. Wang, I. Grundke-iqbal, and K. Iqbal, Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration, Eur J Neurosci, vol.25, pp.59-68, 2007.

C. Wasmer, A. Lange, H. Van-melckebeke, A. B. Siemer, R. Riek et al., Amyloid fibrils of the HET-s (218-289) prion form a beta solenoid with a triangular hydrophobic core, Science, vol.319, pp.1523-1526, 2008.

N. T. Watt, I. J. Whitehouse, and N. M. Hooper, The role of zinc in Alzheimer's disease, Int J Alzheimers Dis, 2010.

S. Wegmann, B. Eftekharzadeh, K. Tepper, K. M. Zoltowska, R. E. Bennett et al., Tau protein liquid-liquid phase separation can initiate tau aggregation, EMBO J, vol.37, 2018.

M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, A protein factor essential for microtubule assembly, Proc Natl Acad Sci U A, vol.72, pp.1858-1862, 1975.

H. A. Weismiller, R. Murphy, G. Wei, B. Ma, R. Nussinov et al., Structural disorder in four-repeat tau fibrils reveals a new mechanism for barriers to cross-seeding of tau isoforms, J Biol Chem, vol.293, issue.45, pp.17336-17348, 2018.

C. Wiedemann, P. Bellstedt, and M. Görlach, CAPITO-a web server-based analysis and plotting tool for circular dichroism data, Bioinforma Oxf Engl, vol.29, pp.1750-1757, 2013.

C. M. Wischik, M. Novak, P. C. Edwards, A. Klug, W. Tichelaar et al., Structural characterization of the core of the paired helical filament of Alzheimer disease, Proc Natl Acad Sci U S A, vol.85, pp.4884-4888, 1988.

C. M. Wischik, M. Novak, H. C. Thøgersen, P. C. Edwards, M. J. Runswick et al., Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease, Proc Natl Acad Sci U S A, vol.85, pp.4506-4510, 1988.

G. B. Witman, D. W. Cleveland, M. D. Weingarten, and M. W. Kirschner, Tubulin requires tau for growth onto microtubule initiating sites, Proc Natl Acad Sci U S Am A, vol.73, pp.4070-4074, 1976.

H. Yin and J. Kuret, C-terminal truncation modulates both nucleation and extension phases of tau fibrillization, FEBS Lett, vol.580, pp.211-215, 2006.

H. Zhang, X. Zhu, G. Pascual, J. S. Wadia, E. Keogh et al., Structural basis for recognition of a unique epitope by a human anti-tau antibody, Structure, vol.26, pp.1626-1634, 2018.

W. Zhang, B. Falcon, A. G. Murzin, J. Fan, R. A. Crowther et al., Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases, vol.8, p.43584, 2019.

Z. Zhang, M. Song, X. Liu, S. S. Kang, I. Kwon et al., Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease, Nat Med, vol.20, pp.1254-1262, 2014.

Q. Zhong, E. E. Congdon, H. N. Nagaraja, and J. Kuret, Tau isoform composition influences rate and extent of filament formation, J Biol Chem, vol.287, pp.20711-20719, 2012.

N. Zilka, B. Kovacech, P. Barath, E. Kontsekova, and M. Novák, The selfperpetuating tau truncation circle, Biochem Soc Trans, vol.40, pp.681-686, 2012.

. Fichou, Acta Neuropathologica Communications, vol.7, p.31, 2019.