N. Abad, J. T. Rosenberg, D. C. Hike, M. G. Harrington, and S. C. Grant, Dynamic Sodium Imaging at, 2018.

,

Y. Abe, T. Tsurugizawa, and D. Le-bihan, , 2017.

,

Y. Abe, K. Van-nguyen, T. Tsurugizawa, L. Ciobanu, and D. Le-bihan, , 2017.

,

R. D. Andrew and B. A. Macvicar, Imaging cell volume changes and neuronal excitation in the hippocampal slice, Neuroscience, vol.62, pp.371-383, 1994.

T. Aso, S. Urayama, H. Fukuyama, and D. Le-bihan,

,

M. Bennay, J. Langer, S. D. Meier, K. W. Kafitz, and C. R. Rose, Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, vol.56, pp.1138-1149, 2008.

J. Chatton, P. J. Magistretti, and L. F. Barros, Sodium signaling and astrocyte energy metabolism, Glia, vol.64, pp.1667-1676, 2016.

,

P. A. Ciris, M. Qiu, and R. T. Constable, Nonbrain, Magn. Reson. Med, vol.71, pp.580-590, 2014.

,

I. Dietzel, U. Heinemann, G. Hofmeier, and H. D. Lux,

P. W. Hales and C. A. Clark, , 2013.

J. Cereb, Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab, vol.33, pp.67-75

,

C. N. Hall, C. Reynell, B. Gesslein, N. B. Hamilton, A. Mishra et al., Capillary pericytes regulate cerebral blood flow in health and disease, Nature, vol.508, pp.55-60, 2014.
DOI : 10.1038/nature13165

URL : http://europepmc.org/articles/pmc3976267?pdf=render

,

T. Hayama, J. Noguchi, S. Watanabe, N. Takahashi, A. Hayashi-takagi et al., GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling, Nat. Neurosci, vol.16, pp.1409-1416, 2013.

,

Y. He, M. Wang, X. Chen, R. Pohmann, J. R. Polimeni et al., Ultra-Slow Single-Vessel BOLD and CBVBased fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals, Neuron, 2018.

,

M. S. Hussain, R. W. Stobbe, Y. A. Bhagat, D. Emery, K. S. Butcher et al., Sodium imaging intensity increases with time after human ischemic stroke, Ann. Neurol, vol.66, pp.55-62, 2009.
DOI : 10.1002/ana.21648

M. Inglese, G. Madelin, N. Oesingmann, J. S. Babb, W. Wu et al., Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla, Brain J. Neurol, vol.133, pp.847-857, 2010.

,

R. Jolivet, J. S. Coggan, I. Allaman, and P. J. Magistretti, Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble, PLoS Comput. Biol, vol.11, 2015.

S. Kirischuk, H. Kettenmann, and A. Verkhratsky, , 2007.

,

C. M. Klingner, C. Hasler, S. Brodoehl, and O. W. Witte,

,

J. Langer and C. R. Rose, Synaptically induced sodium signals in hippocampal astrocytes in situ, J. Physiol, vol.587, pp.5859-5877, 2009.
DOI : 10.1113/jphysiol.2009.182279

URL : https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.2009.182279

,

M. Lauritzen, C. Mathiesen, K. Schaefer, and K. J. Thomsen, Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses, NeuroImage, vol.62, pp.1040-1050, 2012.

,

L. Bihan, D. Urayama, S. Aso, T. Hanakawa, T. Fukuyama et al., Direct and fast detection of neuronal activation in the human brain with diffusion MRI, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.8263-8268, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00349661

,

K. Lundengard, G. Cedersund, S. Sten, F. Leong, A. Smedberg et al., , 2016.

, PLoS Comput. Biol, vol.12

A. Maarouf, B. Audoin, F. Pariollaud, S. Gherib, A. Rico et al.,

,

G. Madelin, J. Lee, R. R. Regatte, and A. Jerschow, Sodium MRI: methods and applications, 2014.
DOI : 10.1016/j.pnmrs.2014.02.001

URL : http://europepmc.org/articles/pmc4126172?pdf=render

, Nucl. Magn. Reson. Spectrosc, vol.79, pp.14-47

,

E. A. Mellon, D. T. Pilkinton, C. M. Clark, M. A. Elliott, W. R. Witschey et al., Sodium MR imaging detection of mild Alzheimer disease: preliminary study, AJNR Am. J. Neuroradiol, vol.30, pp.978-984, 2009.

,

S. D. Muthukumaraswamy, R. A. Edden, D. K. Jones, J. B. Swettenham, and K. D. Singh, Resting . Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.8356-8361, 2009.

A. M. Nagel, F. B. Laun, M. Weber, C. Matthies, W. Semmler et al., Sodium MRI using a density-adapted 3D radial acquisition technique, 2009.
DOI : 10.1002/mrm.22157

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.22157

, Magn. Reson. Med, vol.62, pp.1565-1573

,

G. Northoff, M. Walter, R. F. Schulte, J. Beck, U. Dydak et al., GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI, Nat. Neurosci, vol.10, pp.1515-1517, 2007.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad, 1990.

. U. Sci, , vol.87, pp.9868-9872

K. Reetz, S. Romanzetti, I. Dogan, C. Sass, C. J. Werner et al., Increased brain tissue sodium concentration in Huntington's Disease -a sodium imaging study at 4 T, NeuroImage, vol.63, pp.517-524, 2012.

,

V. Renvall, T. Witzel, L. L. Wald, and J. R. Polimeni,

,

B. Ridley, A. Marchi, J. Wirsich, E. Soulier, S. Confort-gouny et al., , 2017.

,

B. Ridley, A. M. Nagel, M. Bydder, A. Maarouf, J. Stellmann et al.,

B. Ridley, J. Wirsich, G. Bettus, R. Rodionov, T. Murta et al.,

,

W. D. Rooney and C. S. Springer, The molecular environment of intracellular sodium: 23Na NMR relaxation, NMR Biomed, vol.4, pp.227-245, 1991.

C. R. Rose and J. Chatton, Astrocyte sodium signaling and neuro-metabolic coupling in the brain, Neuroscience, vol.323, pp.121-134, 2016.

,

K. Schafer, F. Blankenburg, R. Kupers, J. M. Gruner, I. Law et al., , 2012.

,

J. M. Shine, P. G. Bissett, P. T. Bell, O. Koyejo, J. H. Balsters et al., The Dynamics of Functional Brain Networks: Integrated Network States during, 2016.

, Cognitive Task Performance, Neuron, vol.92, pp.544-554

,

S. Sten, K. Lundengard, S. T. Witt, G. Cedersund, F. Elinder et al., Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study, NeuroImage, vol.158, pp.219-231, 2017.

,

R. W. Stobbe and C. Beaulieu, , 2016.

,

A. Vu, K. Jamison, M. F. Glasser, S. M. Smith, T. Coalson et al., Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project, NeuroImage, vol.154, pp.23-32, 2017.

,

K. R. Thulborn, Quantitative sodium MR imaging: A review of its evolving role in medicine, 2016.

K. R. Thulborn, A. Lu, I. C. Atkinson, F. Damen, and J. L. Villano, Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors, Neuroimaging Clin. N. Am, vol.19, pp.615-624, 2009.

,

S. F. Traynelis and R. Dingledine, Role of, 1989.

. Neurophysiol, , vol.61, pp.927-938

,

H. Xue, S. Inati, T. S. Sorensen, and P. Kellman,

M. S. Hansen, Distributed MRI reconstruction using Gadgetron-based cloud computing, Magn. Reson. Med, vol.73, pp.1015-1025, 2015.

,

W. Zaaraoui, S. Konstandin, B. Audoin, A. M. Nagel, A. Rico et al., Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study, Radiology, vol.264, pp.859-867, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00826759

,

, SUPPLEMENTAL DATA Supplemental data Figure 1: Point spread function of the different 23 Na MRI acquisitions Point spread functions (PSF) of a) one set of data (240 spokes acquired using golden angle approach, temporal resolution 30s) with aPSFFWHM of 2.24 points corresponding to 7.84mm, b) the weighted 23 Na MRI acquisition used for 23 Na fMRI (weighted 10080 spokes, temporal resolution 30s) with a PSFFWHM of 1.81 points corresponding to 6.34mm and c) the whole k-­-space sampling (10080 spokes, temporal resolution 20min10s2: Signal variations during the right hand motor task in a) the supplementary motor area

, Supplemental Figure 6: TE dependencies of 23 Na MR signal decays for total, mobile and restricted pools of sodium in gray matter during basal period, excitation and inhibition and potential related phenomenons occurring within the neuro-glial-vascular ensemble

. Adapted-from-chatton, These phenomenons may induce as shown in c) increase of 23 Na signal at TE 1 =0.2ms in relation with increase in CBV, and decrease in 23 Na signals at TE 2 and TE 3 relative to the decrease in 23 Na signals of the mobile pools. d) Schematic representation of the neuro-glial-vascular ensemble following deactivation with Na eflux and decrease CBV that may induce e) decrease in 23 Na signal at TE 1 , and increase in 23 Na signals at TE 2 and TE 3 in the inhibited area, Schematic representation of the neuro-glial-vascular ensemble during the resting period, vol.17, 2016.

, T 2 *(Na mobile-Inhibition )=31ms, T 2 * (Na restricted-Inhibition )=5ms. The green curves represented the functional 23 Na contrasts, 0%)