A. Varki, Trousseau's syndrome: Multiple definitions and multiple mechanisms, Blood, vol.110, pp.1723-1729, 2007.

S. Mezouar, C. Frère, R. Darbousset, D. Mege, L. Crescence et al., Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences, Thromb. Res, vol.139, pp.65-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455290

J. S. Palumbo, K. E. Talmage, J. V. Massari, C. M. Jeunesse, M. J. Flick et al., Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells, Blood, vol.105, pp.178-185, 2005.

M. Labelle, S. Begum, and R. O. Hynes, Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis, Cancer Cell, vol.20, pp.576-590, 2011.

M. Labelle, S. Begum, and R. O. Hynes, Platelets guide the formation of early metastatic niches, Proc. Natl. Acad. Sci, vol.111, pp.3053-3061, 2014.

L. Plantureux, L. Crescence, F. Dignat-george, L. Panicot-dubois, and C. Dubois, Effects of platelets on cancer progression, Thromb. Res, vol.164, pp.40-47, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02060300

G. J. Gasic, T. B. Gasic, and C. C. Stewart, Antimetastatic effects associated with platelet reduction, Proc. Natl. Acad. Sci, vol.61, pp.46-52, 1968.

S. Karpatkin and E. Pearlstein, Role of platelets in tumor cell metastases, Ann. Intern. Med, vol.95, pp.636-641, 1981.

Z. Baranyai, V. Jósa, A. Tóth, Z. Szilasi, B. Tihanyi et al., Paraneoplastic thrombocytosis in gastrointestinal cancer, Platelets, vol.27, pp.269-275, 2016.

A. A. Khorana, C. W. Francis, E. Culakova, and G. H. Lyman, Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study, Cancer, vol.104, pp.2822-2829, 2005.

M. Ikeda, H. Furukawa, H. Imamura, J. Shimizu, H. Ishida et al., Poor prognosis associated with thrombocytosis in patients with gastric cancer, Ann. Surg. Oncol, vol.9, pp.287-291, 2002.

F. Gücer, F. Moser, K. Tamussino, O. Reich, J. Haas et al., Thrombocytosis as a prognostic factor in endometrial carcinoma, Gynecol. Oncol, vol.70, pp.210-214, 1998.

A. S. Chadha, E. Kocak-uzel, P. Das, B. D. Minsky, M. E. Delclos et al., Paraneoplastic thrombocytosis independently predicts poor prognosis in patients with locally advanced pancreatic cancer, Acta Oncol, vol.54, pp.971-978, 2015.

M. Monreal, J. Fernandez-llamazares, M. Piñol, J. F. Julian, M. Broggi et al., Platelet count and survival in patients with colorectal cancer-A preliminary study, Thromb. Haemost, vol.79, pp.916-918, 1998.

K. Jefferson and R. Persad, Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma, BJU Int, vol.87, pp.715-716, 2001.

B. L. Tranum and A. Haut, Thrombocytosis: Platelet kinetics in neoplasia, J. Lab. Clin. Med, vol.84, pp.615-619, 1974.

Y. Ji, L. Sheng, X. Du, G. Qiu, and D. Su, Elevated platelet count is a strong predictor of poor prognosis in stage I non-small cell lung cancer patients, Platelets, vol.26, pp.138-142, 2015.

A. Suzuki, T. Takahashi, K. Nakamura, R. Tsuyuoka, Y. Okuno et al., Thrombocytosis in patients with tumors producing colony-stimulating factor, Blood, vol.80, pp.2052-2059, 1992.

R. L. Stone, A. M. Nick, I. A. Mcneish, F. Balkwill, H. D. Han et al., Paraneoplastic thrombocytosis in ovarian cancer, N. Engl. J. Med, vol.366, pp.610-618, 2012.

A. Kaser, G. Brandacher, W. Steurer, S. Kaser, F. A. Offner et al., Interleukin-6 stimulates thrombopoiesis through thrombopoietin: Role in inflammatory thrombocytosis, Blood, vol.98, pp.2720-2725, 2001.

Y. Sasaki, T. Takahashi, H. Miyazaki, A. Matsumoto, T. Kato et al., Production of thrombopoietin by human carcinomas and its novel isoforms, Blood, vol.94, pp.1952-1960, 1999.

T. Ryu, S. Nishimura, H. Miura, H. Yamada, H. Morita et al., Thrombopoietin-producing hepatocellular carcinoma, Intern. Med, vol.42, pp.730-734, 2003.

S. Rafii, F. Shapiro, R. Pettengell, B. Ferris, R. L. Nachman et al., Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors, Blood, vol.86, pp.3353-3363, 1995.

S. Rafii, R. Mohle, F. Shapiro, B. M. Frey, and M. A. Moore, Regulation of Hematopoiesis by Microvascular Endothelium, Leuk. Lymphoma, vol.27, pp.375-386, 1997.

C. Wickenhauser, J. Lorenzen, J. Thiele, A. Hillienhof, K. Jungheim et al., Secretion of cytokines (interleukins-1 alpha, -3, and -6 and granulocyte-macrophage colony-stimulating factor) by normal human bone marrow megakaryocytes, Blood, vol.85, pp.685-691, 1995.

M. Baj-krzyworzeka, M. Majka, D. Pratico, J. Ratajczak, G. Vilaire et al., Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells, Exp. Hematol, vol.30, pp.450-459, 2002.

R. Möhle, D. Green, M. A. Moore, R. L. Nachman, and S. Rafii, Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets, Proc. Natl. Acad. Sci, vol.94, pp.663-668, 1997.

C. E. Holmes, J. E. Levis, D. J. Schneider, N. M. Bambace, D. Sharma et al., Platelet phenotype changes associated with breast cancer and its treatment, Platelets, vol.27, pp.703-711, 2016.

I. Casella, T. Feccia, C. Chelucci, P. Samoggia, G. Castelli et al., Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor, Blood, vol.101, pp.1316-1323, 2003.

H. E. Broxmeyer, S. Cooper, Z. H. Li, L. Lu, H. Y. Song et al., Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor, Int. J. Hematol, vol.62, pp.203-215, 1995.

H. Avraham, N. Banu, D. T. Scadden, J. Abraham, and J. E. Groopman, Modulation of megakaryocytopoiesis by human basic fibroblast growth factor, Blood, vol.83, pp.2126-2132, 1994.

C. Ay and I. Pabinger, Predictive potential of haemostatic biomarkers for venous thromboembolism in cancer patients, Thromb. Res, vol.129, pp.6-9, 2012.

P. Starlinger, H. P. Moll, A. Assinger, C. Nemeth, K. Hoetzenecker et al., Thrombospondin-1: A unique marker to identify in vitro platelet activation when monitoring in vivo processes, J. Thromb. Haemost, vol.8, pp.1809-1819, 2010.

E. J. Suh, M. H. Kabir, U. Kang, J. W. Lee, J. Yu et al., Comparative profiling of plasma proteome from breast cancer patients reveals thrombospondin-1 and BRWD3 as serological biomarkers, Exp. Mol. Med, vol.44, pp.36-44, 2012.

J. Huang, C. Jochems, T. Talaie, A. Anderson, A. Jales et al., Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role, Blood, vol.120, pp.3030-3038, 2012.

P. Benedetti-panici, G. Scambia, B. Massidda, P. Chessa, A. Tarquini et al., Elevated plasma levels of beta-thromboglobulin in breast cancer, Oncology, vol.43, pp.208-211, 1986.

K. E. Poruk, M. A. Firpo, L. M. Huerter, C. L. Scaife, L. L. Emerson et al., Serum platelet factor 4 is an independent predictor of survival and venous thromboembolism in patients with pancreatic adenocarcinoma, Cancer Epidemiol. Biomark. Prev, vol.19, pp.2605-2610, 2010.

M. Mantur, H. Kemona, and R. Koz?owski, Kemona-Chetnik, I. Effect of tumor stage and nephrectomy on CD62P expression and sP-selectin concentration in renal cancer, Neoplasma, vol.50, pp.262-265, 2003.

J. Riedl, L. Hell, A. Kaider, S. Koder, C. Marosi et al., Association of platelet activation markers with cancer-associated venous thromboembolism, Platelets, vol.27, pp.80-85, 2016.

A. Falanga, M. Panova-noeva, and L. Russo, Procoagulant mechanisms in tumour cells, Best Pract. Res. Clin. Haematol, vol.22, pp.49-60, 2009.

S. Karpatkin, E. Pearlstein, C. Ambrogio, and B. S. Coller, Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo, J. Clin. Investig, vol.81, pp.1012-1019, 1988.

M. Haemmerle, J. Bottsford-miller, S. Pradeep, M. L. Taylor, H. Choi et al., FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal, J. Clin. Investig, vol.126, pp.1885-1896, 2016.

A. Camez, E. Dupuy, S. Bellucci, F. Calvo, M. C. Bryckaert et al., Human platelet-tumor cell interactions vary with the tumor cell lines, Invasion Metastasis, vol.6, pp.321-334, 1986.

E. Bastida, G. Escolar, L. Almirall, and A. Ordinas, Platelet activation induced by a human neuroblastoma tumor cell line is reduced by prior administration of ticlopidine, Thromb. Haemost, vol.55, pp.333-337, 1986.

H. Boukerche, O. Berthier-vergnes, F. Penin, E. Tabone, G. Lizard et al., Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets, Br. J. Haematol, vol.87, pp.763-772, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00313722

D. Alonso-escolano, A. Y. Strongin, A. W. Chung, E. I. Deryugina, and M. W. Radomski, Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: Role of receptor glycoproteins, Br. J. Pharmacol, vol.141, pp.241-252, 2004.

E. Heinmöller, R. J. Weinel, H. H. Heidtmann, U. Salge, R. Seitz et al., Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines, J. Cancer Res. Clin. Oncol, vol.122, pp.735-744, 1996.

H. Sakai, T. Suzuki, Y. Takahashi, M. Ukai, K. Tauchi et al., Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2, FEBS Lett, vol.580, pp.3368-3374, 2006.

M. Cathcart, K. Gately, R. Cummins, E. Kay, K. J. O'byrne et al., Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer, Mol. Cancer, vol.10, 2011.

S. Kajita, K. H. Ruebel, M. B. Casey, N. Nakamura, and R. V. Lloyd, Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth, Mod. Pathol, vol.18, pp.221-227, 2005.

O. Moussa, J. S. Yordy, H. Abol-enein, D. Sinha, N. K. Bissada et al., Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer, Cancer Res, vol.65, pp.11581-11587, 2005.

D. Nie, M. Che, A. Zacharek, Y. Qiao, L. Li et al., Differential expression of thromboxane synthase in prostate carcinoma: Role in tumor cell motility, Am. J. Pathol, vol.164, pp.429-439, 2004.

X. De-leval, V. Benoit, J. Delarge, F. Julémont, B. Masereel et al., Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation, Prostaglandins Leukot. Essent. Fatty Acids, vol.68, pp.55-59, 2003.

D. Nie, M. Lamberti, A. Zacharek, L. Li, K. Szekeres et al., A(2) regulation of endothelial cell migration, angiogenesis, and tumor metastasis, Biochem. Biophys. Res. Commun, vol.267, pp.245-251, 2000.

R. D. Stout and J. Suttles, The many roles of CD40 in cell-mediated inflammatory responses, Immunol. Today, vol.17, pp.487-492, 1996.

V. Henn, J. R. Slupsky, M. Gräfe, I. Anagnostopoulos, R. Förster et al., CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells, Nature, vol.391, pp.591-594, 1998.

S. Braesch-andersen, S. Paulie, H. Koho, H. Nika, P. Aspenström et al., Biochemical characteristics and partial amino acid sequence of the receptor-like human B cell and carcinoma antigen CDw40, J. Immunol, vol.142, pp.562-567, 1989.

S. B. Ingersoll, F. Langer, J. M. Walker, T. Meyer, T. Robson et al., Deficiencies in the CD40 and CD154 receptor-ligand system reduce experimental lung metastasis, Clin. Exp. Metastasis, vol.26, pp.829-837, 2009.

L. S. Young, C. W. Dawson, K. W. Brown, and A. B. Rickinson, Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes, Int. J. Cancer, vol.43, pp.786-794, 1989.

B. Bussolati, S. Russo, I. Deambrosis, V. Cantaluppi, A. Volpe et al., Expression of CD154 on renal cell carcinomas and effect on cell proliferation, motility and platelet-activating factor synthesis, Int. J. Cancer, vol.100, pp.654-661, 2002.

V. Henn, S. Steinbach, K. Büchner, P. Presek, and R. A. Kroczek, The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40, Blood, vol.98, pp.1047-1054, 2001.

A. Mcnicol and S. J. Israels, Beyond hemostasis: The role of platelets in inflammation, malignancy and infection, Cardiovasc. Hematol. Disord. Drug Targets, vol.8, pp.99-117, 2008.

D. P. Inwald, A. Mcdowall, M. J. Peters, R. E. Callard, and N. J. Klein, CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation, Circ. Res, vol.92, pp.1041-1048, 2003.

A. W. Tong, M. H. Papayoti, G. Netto, D. T. Armstrong, G. Ordonez et al., Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer, Clin. Cancer Res, vol.7, pp.691-703, 2001.

M. Yamada, T. Shiroko, Y. Kawaguchi, Y. Sugiyama, N. K. Egilmez et al., CD40-CD40 ligand (CD154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors, Int. J. Cancer, vol.92, pp.589-599, 2001.

J. J. Van-den-oord, A. Maes, M. Stas, J. Nuyts, S. Battocchio et al., De Wolf-Peeters, C. CD40 is a prognostic marker in primary cutaneous malignant melanoma, Am. J. Pathol, vol.149, pp.1953-1961, 1996.

F. Santilli, S. Basili, P. Ferroni, and G. Davì, CD40/CD40L system and vascular disease, Intern. Emerg. Med, vol.2, pp.256-268, 2007.

P. Jurasz, G. Sawicki, M. Duszyk, J. Sawicka, C. Miranda et al., Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: Regulation by nitric oxide, Cancer Res, vol.61, pp.376-382, 2001.

C. Medina, P. Jurasz, M. J. Santos-martinez, S. S. Jeong, T. Mitsky et al., Platelet aggregation-induced by caco-2 cells: Regulation by matrix metalloproteinase-2 and adenosine diphosphate, J. Pharmacol. Exp. Ther, vol.317, pp.739-745, 2006.

K. V. Honn, P. Cavanaugh, C. Evens, J. D. Taylor, and B. F. Sloane, Tumor cell-platelet aggregation: Induced by cathepsin B-like proteinase and inhibited by prostacyclin, Science, vol.217, pp.540-542, 1982.

S. S. Andrade, I. E. Gouvea, M. C. Silva, E. D. Castro, C. A. De-paula et al., Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer-Molecularly distinct behavior of cathepsin K in breast cancer, BMC Cancer, vol.16, 2016.

M. Bode and N. Mackman, Regulation of tissue factor gene expression in monocytes and endothelial cells: Thromboxane A2 as a new player, Vascul. Pharmacol, vol.62, pp.57-62, 2014.

Y. Liu, P. Jiang, K. Capkova, D. Xue, L. Ye et al., Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy, Cancer Res, vol.71, pp.6492-6502, 2011.

W. Ruf, N. Yokota, and F. Schaffner, Tissue factor in cancer progression and angiogenesis, Thromb. Res, vol.125, pp.36-38, 2010.

L. Böhm, A. Serafin, J. Akudugu, P. Fernandez, A. Van-der-merwe et al., A. uPA/PAI-1 ratios distinguish benign prostatic hyperplasia and prostate cancer, J. Cancer Res. Clin. Oncol, vol.139, pp.1221-1228, 2013.

W. Zhang, D. Ling, J. Tan, J. Zhang, and L. Li, Expression of urokinase plasminogen activator and plasminogen activator inhibitor type-1 in ovarian cancer and its clinical significance, Oncol. Rep, vol.29, pp.637-645, 2013.

H. Chen, H. Peng, W. Liu, Y. Sun, N. Su et al., Silencing of plasminogen activator inhibitor-1 suppresses colorectal cancer progression and liver metastasis, Surgery, vol.158, pp.1704-1713, 2015.

P. Ferroni, M. Roselli, I. Portarena, V. Formica, S. Riondino et al., Plasma plasminogen activator inhibitor-1 (PAI-1) levels in breast cancer-Relationship with clinical outcome, Anticancer Res, vol.34, pp.1153-1161, 2014.

F. R. Rickles and A. Falanga, Molecular basis for the relationship between thrombosis and cancer, Thromb. Res, vol.102, pp.215-224, 2001.

S. Mezouar, D. Mege, R. Darbousset, D. Farge, P. Debourdeau et al., Involvement of platelet-derived microparticles in tumor progression and thrombosis, Semin. Oncol, vol.41, pp.346-358, 2014.

E. Chargaff and R. West, The biological significance of the thromboplastic protein of blood, J. Biol. Chem, vol.166, pp.189-197, 1946.

S. Nomura, M. Niki, T. Nisizawa, T. Tamaki, and M. Shimizu, Microparticles as Biomarkers of Blood Coagulation in Cancer, Biomark. Cancer, vol.7, pp.51-56, 2015.

J. E. Geddings and N. Mackman, Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients, Blood, vol.122, pp.1873-1880, 2013.

G. Hron, M. Kollars, H. Weber, V. Sagaster, P. Quehenberger et al., Tissue factor-positive microparticles: Cellular origin and association with coagulation activation in patients with colorectal cancer, Thromb. Haemost, vol.97, pp.119-123, 2007.

J. Baran, M. Baj-krzyworzeka, K. Weglarczyk, R. Szatanek, M. Zembala et al., Circulating tumour-derived microvesicles in plasma of gastric cancer patients, Cancer Immunol. Immunother, vol.59, pp.841-850, 2010.

K. R. Yates, J. Welsh, H. H. Echrish, J. Greenman, A. Maraveyas et al., Pancreatic cancer cell and microparticle procoagulant surface characterization: Involvement of membrane-expressed tissue factor, phosphatidylserine and phosphatidylethanolamine, Blood Coagul. Fibrinolysis, vol.22, pp.680-687, 2011.

T. Fleitas, V. Martínez-sales, V. Vila, E. Reganon, D. Mesado et al., Circulating Endothelial Cells and Microparticles as Prognostic Markers in Advanced Non-Small Cell Lung Cancer, PLoS ONE, vol.7, 2012.

L. E. Graves, E. V. Ariztia, J. R. Navari, H. J. Matzel, M. S. Stack et al., Proinvasive Properties of Ovarian Cancer Ascites-Derived Membrane Vesicles, Cancer Res, vol.64, pp.7045-7049, 2004.

S. Liebhardt, N. Ditsch, R. Nieuwland, A. Rank, U. Jeschke et al., Her2/neu-, BCRP-and Hsp27-positive microparticles in breast cancer patients, Anticancer Res, vol.30, pp.1707-1712, 2010.

D. Mege, L. Panicot-dubois, M. Ouaissi, S. Robert, I. Sielezneff et al., The origin and concentration of circulating microparticles differ according to cancer type and evolution: A prospective single-center study, Int. J. Cancer, vol.138, pp.939-948, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01460678

G. M. Thomas, A. Brill, S. Mezouar, L. Crescence, M. Gallant et al., Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice, J. Thromb. Haemost, vol.13, pp.1310-1319, 2015.

Y. Hisada, C. Ay, A. C. Auriemma, B. C. Cooley, and N. Mackman, Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size, J. Thromb. Haemost, vol.15, pp.2208-2217, 2017.

M. Demers and D. D. Wagner, NETosis: A new factor in tumor progression and cancer-associated thrombosis, Semin. Thromb. Hemost, vol.40, pp.277-283, 2014.

M. E. Collier, P. Mah, Y. Xiao, A. Maraveyas, and C. Ettelaie, Microparticle-associated tissue factor is recycled by endothelial cells resulting in enhanced surface tissue factor activity, Thromb. Haemost, vol.110, pp.966-976, 2013.

A. C. Leal, D. M. Mizurini, T. Gomes, N. C. Rochael, E. M. Saraiva et al., Tumor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis

O. Engebraaten, M. Trikha, S. Juell, S. Garman-vik, and Ø. Fodstad, Inhibition of in vivo tumour growth by the blocking of host alpha(v)beta3 and alphaII(b)beta3 integrins, Anticancer Res, vol.29, pp.131-137, 2009.

M. R. Weber, M. Zuka, M. Lorger, M. Tschan, B. E. Torbett et al., Activated tumor cell integrin ?v?3 cooperates with platelets to promote extravasation and metastasis from the blood stream, Thromb. Res, vol.140, pp.27-36, 2016.

E. Mammadova-bach, P. Zigrino, C. Brucker, C. Bourdon, M. Freund et al., Platelet integrin ?6?1 controls lung metastasis through direct binding to cancer cell-derived ADAM9, JCI Insight, vol.1, 2016.

Y. J. Kim, L. Borsig, N. M. Varki, and A. Varki, P-selectin deficiency attenuates tumor growth and metastasis, vol.95, pp.9325-9330, 1998.

C. Qi, B. Wei, W. Zhou, Y. Yang, B. Li et al., P-selectin-mediated platelet adhesion promotes tumor growth, Oncotarget, vol.6, pp.6584-6596, 2015.

M. Chen and J. Geng, P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis, Arch. Immunol. Ther. Exp, vol.54, pp.75-84, 2006.

A. Wehmeier, D. Tschöpe, J. Esser, C. Menzel, H. K. Nieuwenhuis et al., Circulating activated platelets in myeloproliferative disorders, Thromb. Res, vol.61, pp.271-278, 1991.

E. Bastida, L. Almirall, and A. Ordinas, Tumor-cell-induced platelet aggregation is a glycoprotein-dependent and lipoxygenase-associated process, Int. J. Cancer, vol.39, pp.760-763, 1987.

I. M. Grossi, L. A. Fitzgerald, A. Kendall, J. D. Taylor, B. F. Sloane et al., Inhibition of Human Tumor Cell Induced Platelet Aggregation by Antibodies to Platelet Glycoproteins lb and llb/llla, Proc. Soc. Exp. Biol. Med, vol.186, pp.378-383, 1987.

S. Jain, M. Zuka, J. Liu, S. Russell, J. Dent et al., Platelet glycoprotein Ib? supports experimental lung metastasis, vol.104, pp.9024-9028, 2007.

L. Oleksowicz, Z. Mrowiec, E. Schwartz, M. Khorshidi, J. P. Dutcher et al., Characterization of tumor-induced platelet aggregation: The role of immunorelated GPIb and GPIIb IIIa expression by MCF-7 breast cancer cells, Thromb. Res, vol.79, pp.261-274, 1995.

L. Erpenbeck, B. Nieswandt, M. Schön, M. Pozgajova, and M. P. Schön, Inhibition of Platelet GPIb? and Promotion of Melanoma Metastasis, J. Investig. Dermatol, vol.130, pp.576-586, 2010.

N. Fujita and S. Takagi, The impact of Aggrus/podoplanin on platelet aggregation and tumour metastasis, J. Biochem, vol.152, pp.407-413, 2012.

Y. Kato, M. Kaneko, M. Sata, N. Fujita, T. Tsuruo et al., Enhanced Expression of Aggrus (T1alpha/Podoplanin), a Platelet-Aggregation-Inducing Factor in Lung Squamous Cell Carcinoma, vol.26, pp.195-200, 2005.

S. Takagi, T. Oh-hara, S. Sato, B. Gong, M. Takami et al., Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis, Int. J. Cancer, vol.134, pp.2605-2614, 2014.

Y. Kato, N. Fujita, A. Kunita, S. Sato, M. Kaneko et al., Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors, J. Biol. Chem, vol.278, pp.51599-51605, 2003.

S. Takagi, S. Sato, T. Oh-hara, M. Takami, S. Koike et al., Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Aggrus/Podoplanin and CLEC-2, PLoS ONE, vol.8, 2013.

K. Vanschoonbeek, M. A. Feijge, R. J. Kampen, H. Kenis, H. C. Hemker et al., Initiating and potentiating role of platelets in tissue factor-induced thrombin generation in the presence of plasma: Subject-dependent variation in thrombogram characteristics, J. Thromb. Haemost, vol.2, pp.476-484, 2004.

M. Wahrenbrock, L. Borsig, D. Le, N. Varki, and A. Varki, Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas, J. Clin. Investig, vol.112, pp.853-862, 2003.

J. Cedervall, A. Hamidi, A. Olsson, and . Platelets, NETs and cancer, Thromb. Res, vol.164, pp.148-152, 2018.

A. Caudrillier, K. Kessenbrock, B. M. Gilliss, J. X. Nguyen, M. B. Marques et al., Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury, J. Clin. Investig, vol.122, pp.2661-2671, 2012.

J. Etulain, C. Fondevila, S. Negrotto, and M. Schattner, Platelet-mediated angiogenesis is independent of VEGF and fully inhibited by aspirin, Br. J. Pharmacol, vol.170, pp.255-265, 2013.

J. Rossaint, J. M. Herter, H. V. Aken, M. Napirei, Y. Döring et al., Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation, Blood, vol.123, pp.2573-2584, 2014.

,. Von-brühl, K. Stark, A. Steinhart, S. Chandraratne, I. Konrad et al., Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo, J. Exp. Med, vol.209, pp.819-835, 2012.

N. Maugeri, L. Campana, M. Gavina, C. Covino, M. D. Metrio et al., Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps, J. Thromb. Haemost, vol.12, pp.2074-2088, 2014.

B. F. Kraemer, R. A. Campbell, H. Schwertz, M. J. Cody, Z. Franks et al., Novel Anti-bacterial Activities of ?-defensin 1 in Human Platelets: Suppression of Pathogen Growth and Signaling of Neutrophil Extracellular Trap Formation, PLOS Pathog, 2011.

A. Carestia, T. Kaufman, L. Rivadeneyra, V. I. Landoni, R. G. Pozner et al., Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets, J. Leuk. Biol, vol.99, pp.153-162, 2016.

A. Amirkhosravi, M. Amaya, H. Desai, and J. L. Francis, Platelet-CD40 ligand interaction with melanoma cell and monocyte CD40 enhances cellular procoagulant activity, Blood Coagul. Fibrinolysis, vol.13, pp.505-512, 2002.

D. C. Calverley, T. L. Phang, Q. G. Choudhury, B. Gao, A. B. Oton et al., Significant downregulation of platelet gene expression in metastatic lung cancer, Clin. Transl. Sci, vol.3, pp.227-232, 2010.

R. J. Nilsson, L. Balaj, E. Hulleman, S. Van-rijn, D. M. Pegtel et al., Blood platelets contain tumor-derived RNA biomarkers, Blood, vol.118, pp.3680-3683, 2011.

M. G. Best, N. Sol, I. Kooi, J. Tannous, B. A. Westerman et al., RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics, Cancer Cell, vol.28, pp.666-676, 2015.

M. M. Denis, N. D. Tolley, M. Bunting, H. Schwertz, H. Jiang et al., Escaping the Nuclear Confines: Signal-Dependent Pre-mRNA Splicing in Anucleate Platelets, Cell, vol.122, pp.379-391, 2005.

A. A. Alhasan, O. G. Izuogu, H. H. Al-balool, J. S. Steyn, A. Evans et al., Circular RNA enrichment in platelets is a signature of transcriptome degradation, Blood, vol.127, pp.1-11, 2016.

J. W. Rowley, A. J. Oler, N. D. Tolley, B. N. Hunter, E. N. Low et al., Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes, Blood, vol.118, pp.101-111, 2011.

S. Schubert, A. S. Weyrich, and J. W. Rowley, A tour through the transcriptional landscape of platelets, Blood, vol.124, pp.493-502, 2014.

P. Landry, I. Plante, D. L. Ouellet, M. P. Perron, G. Rousseau et al., Existence of a microRNA pathway in anucleate platelets, Nat. Struct. Mol. Biol, vol.16, pp.961-966, 2009.

P. F. Bray, S. E. Mckenzie, L. C. Edelstein, S. Nagalla, K. Delgrosso et al., The complex transcriptional landscape of the anucleate human platelet, BMC Genom, vol.14, 2013.

H. Plé, P. Landry, A. Benham, C. Coarfa, P. H. Gunaratne et al., The repertoire and features of human platelet microRNAs, PLoS ONE, vol.7, 2012.

G. Agam, H. Bessler, and M. Djaldetti, In vitro DNA and RNA synthesis by human platelets, Biochim. Biophys. Acta, vol.425, pp.41-48, 1976.

F. M. Booyse and M. E. Rafelson, Stable messenger RNA in the synthesis of contractile protein in human platelets, Biochim. Biophys. Acta, vol.145, pp.188-190, 1967.

G. T. Brown and T. M. Mcintyre, Lipopolysaccharide signaling without a nucleus: Kinase cascades stimulate platelet shedding of proinflammatory IL-1?-rich microparticles, J. Immunol, vol.186, pp.5489-5496, 2011.

H. Schwertz, N. D. Tolley, J. M. Foulks, M. M. Denis, B. W. Risenmay et al., Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets, J. Exp. Med, vol.203, pp.2433-2440, 2006.

I. B. Rosenwald, L. Pechet, A. Han, L. Lu, G. Pihan et al., Expression of translation initiation factors elF-4E and elF-2alpha and a potential physiologic role of continuous protein synthesis in human platelets, Thromb. Haemost, vol.85, pp.142-151, 2001.

S. Kishore, A. Khanna, Z. Zhang, J. Hui, P. J. Balwierz et al., The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing, Hum. Mol. Genet, vol.19, pp.1153-1164, 2010.

R. J. Nilsson, N. Karachaliou, J. Berenguer, A. Gimenez-capitan, P. Schellen et al., Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer, Oncotarget, vol.7, pp.1066-1075, 2015.

M. G. Best, N. Sol, S. G. In't-veld, A. Vancura, M. Muller et al., Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets, Cancer Cell, vol.32, pp.238-252, 2017.

D. Bian, W. Shi, Y. Shao, P. Li, and G. Song, Long non-coding RNA GAS5 inhibits tumorigenesis via miR-137 in melanoma, Am. J. Transl. Res, vol.9, pp.1509-1520, 2017.

G. Luo, D. Liu, C. Huang, M. Wang, X. Xiao et al., LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27Kip1, Mol. Cancer Res, vol.15, pp.789-799, 2017.

C. Luo, Z. Xu, H. Chen, J. Ji, Y. Wang et al., LncRNAs and EGFRvIII sequestered in TEPs enable blood-based NSCLC diagnosis, Cancer Manag. Res, vol.10, pp.1449-1459, 2018.

D. Kaudewitz, P. Skroblin, L. H. Bender, T. Barwari, P. Willeit et al., Association of MicroRNAs and YRNAs With Platelet FunctionNovelty and Significance, Circ. Res, vol.118, pp.420-432, 2016.

O. Gidlöf, M. Van-der-brug, J. Ohman, P. Gilje, B. Olde et al., Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression, Blood, vol.121, pp.3908-3917, 2013.

E. R. Londin, E. Hatzimichael, P. Loher, L. Edelstein, C. Shaw et al., The human platelet: Strong transcriptome correlations among individuals associate weakly with the platelet proteome, Biol. Direct, vol.9, issue.3, 2014.

J. P. Mcredmond, S. D. Park, D. F. Reilly, J. A. Coppinger, P. B. Maguire et al., Integration of proteomics and genomics in platelets: A profile of platelet proteins and platelet-specific genes, Mol. Cell Proteomics, vol.3, pp.133-144, 2004.

J. M. Burkhart, M. Vaudel, S. Gambaryan, S. Radau, U. Walter et al., The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways, Blood, vol.120, pp.73-82, 2012.

J. W. Rowley and A. S. Weyrich, Coordinate expression of transcripts and proteins in platelets, Blood, vol.121, pp.5255-5256, 2013.

W. S. Hung, C. L. Hung, J. T. Fan, D. Y. Huang, C. F. Yeh et al., The endocytic adaptor protein Disabled-2 is required for cellular uptake of fibrinogen, Biochim. Biophys. Acta Mol. Cell Res, vol.1823, pp.1778-1788, 2012.

M. Banerjee, S. Joshi, J. Zhang, C. L. Moncman, S. Yadav et al., Cellubrevin/vesicle-associated membrane protein-3-Mediated endocytosis and trafficking regulate platelet functions, vol.130, pp.2872-2883, 2017.

G. L. Klement, T. Yip, F. Cassiola, L. Kikuchi, D. Cervi et al., Platelets actively sequester angiogenesis regulators, Blood, vol.113, pp.2835-2842, 2009.

V. Rolfes, C. Idel, R. Pries, K. Plötze-martin, J. Habermann et al., PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy, Oncotarget, vol.9, pp.27460-27470, 2018.

P. M. Rothwell, M. Wilson, J. F. Price, J. F. Belch, T. W. Meade et al., Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials, Lancet, vol.379, pp.1591-1601, 2012.

P. Guillem-llobat, M. Dovizio, A. Bruno, E. Ricciotti, V. Cufino et al., Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells, Oncotarget, vol.7, pp.32462-32477, 2016.

Y. Cao, R. Nishihara, K. Wu, M. Wang, S. Ogino et al., Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer, JAMA Oncol, vol.2, pp.762-769, 2016.

F. Santilli, A. Boccatonda, and G. Davì, Aspirin, platelets, and cancer: The point of view of the internist, Eur. J. Intern. Med, vol.34, pp.11-20, 2016.

S. Gebremeskel, T. Levatte, R. S. Liwski, B. Johnston, and M. Bezuhly, The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer, Int. J. Cancer, vol.136, pp.234-240, 2015.

S. Mezouar, R. Darbousset, F. Dignat-george, L. Panicot-dubois, and C. Dubois, Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo, Int. J. Cancer, vol.136, pp.462-475, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01773064

A. Denslow, M. ?witalska, J. Jarosz, D. Papiernik, K. Porshneva et al., Clopidogrel in a combined therapy with anticancer drugs-Effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models, PLoS ONE, vol.12, 2017.

V. L. Serebruany, Platelet Inhibition with Prasugrel and Increased Cancer Risks: Potential Causes and Implications, Am. J. Med, vol.122, pp.407-408, 2009.

A. Leader, R. Zelikson-saporta, D. Pereg, G. Spectre, U. Rozovski et al., The Effect of Combined Aspirin and Clopidogrel Treatment on Cancer Incidence, Am. J. Med, vol.130, pp.826-832, 2017.

A. Leader, R. Zelikson-saporta, U. Rozovski, D. Pereg, P. Raanani et al., Clopidogrel Treatment Is Associated with a Decrease in Cancer Incidence, Blood, vol.126, p.1124, 2015.

Y. Huo, A. Schober, S. B. Forlow, D. F. Smith, M. C. Hyman et al., Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E, Nat. Med, vol.9, pp.61-67, 2003.

B. S. Sachais, T. Turrentine, J. M. Dawicki-mckenna, A. H. Rux, D. Rader et al., Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/-mice, Thromb. Haemost, vol.98, pp.1108-1113, 2007.

A. F. Swaim, D. J. Field, K. Fox-talbot, W. M. Baldwin, and C. N. Morrell, Platelets Contribute to Allograft Rejection through Glutamate Receptor Signaling, J. Immunol, vol.185, pp.6999-7006, 2010.

H. Xu, X. Zhang, R. B. Mannon, and A. D. Kirk, Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154, J. Clin. Investig, vol.116, pp.769-774, 2006.

R. Li, M. Ren, N. Chen, M. Luo, X. Deng et al., Presence of intratumoral platelets is associated with tumor vessel structure and metastasis, BMC Cancer, vol.14, 2014.

Y. Li, T. Nishikawa, and Y. Kaneda, Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent, Platelet Aggregation. Sci. Rep, 2016.

J. Li, C. C. Sharkey, B. Wun, J. Liesveld, and M. R. King, Genetic engineering of platelets to neutralize circulating tumor cells, J. Control. Release, vol.228, 2016.