A. Piccin, W. G. Murphy, and O. P. Smith, Circulating microparticles: pathophysiology and clinical implications, Blood Rev, vol.21, pp.157-171, 2007.

G. Raposo and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends, J Cell Biol, vol.200, pp.373-383, 2013.

E. Van-der-pol, A. N. Böing, and E. L. Gool, Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles, J Thromb Haemost JTH, vol.14, pp.48-56, 2016.

A. Angelillo-scherrer, Leukocyte-derived microparticles in vascular homeostasis, Circ Res, vol.110, pp.356-369, 2012.

A. Halim, N. Ariffin, and M. Azlan, Review: the Multiple Roles of Monocytic Microparticles, Inflammation, vol.39, pp.1277-1284, 2016.

R. Lacroix, C. Dubois, and A. S. Leroyer, Revisited role of microparticles in arterial and venous thrombosis, J Thromb Haemost JTH, issue.11, pp.24-35, 2013.

V. L. Reid and N. R. Webster, Role of microparticles in sepsis, Br J Anaesth, vol.109, pp.503-513, 2012.

R. Nieuwland, R. J. Berckmans, and S. Mcgregor, Cellular origin and procoagulant properties of microparticles in meningococcal sepsis, Blood, vol.95, pp.930-935, 2000.

Y. Zhang, H. Meng, and R. Ma, Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure, Shock Augusta Ga, vol.45, pp.299-307, 2016.

M. Diamant, R. Nieuwland, and R. F. Pablo, Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus, Circulation, vol.106, pp.2442-2447, 2002.

S. Omoto, S. Nomura, and A. Shouzu, Detection of monocyte-derived microparticles in patients with Type II diabetes mellitus, Diabetologia, vol.45, pp.550-555, 2002.

S. Nomura, N. Inami, and A. Shouzu, Correlation and association between plasma platelet-, monocyte-and endothelial cell-derived microparticles in hypertensive patients with type 2 diabetes mellitus, Platelets, vol.20, pp.406-414, 2009.

G. Sarlon-bartoli, Y. Bennis, and R. Lacroix, Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis, J Am Coll Cardiol, vol.62, pp.1436-1441, 2013.

N. Ogata, S. Nomura, and A. Shouzu, Elevation of monocytederived microparticles in patients with diabetic retinopathy, Diabetes Res Clin Pract, vol.73, pp.241-248, 2006.

M. Mesri and D. C. Altieri, Endothelial cell activation by leukocyte microparticles, J Immunol Baltim Md, issue.161, pp.4382-4387, 1950.

M. Mesri and D. C. Altieri, Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway, J Biol Chem, vol.274, pp.23111-23118, 1999.

J. Dalli, L. V. Norling, and D. Renshaw, Annexin 1 mediates the rapid anti-inflammatory effects of neutrophilderived microparticles, Blood, vol.112, pp.2512-2519, 2008.

O. Morel, F. Toti, and B. Hugel, Procoagulant microparticles: disrupting the vascular homeostasis equation?, Arterioscler. Thromb Vasc Biol, vol.26, pp.2594-2604, 2006.

A. P. Owens and N. Mackman, Microparticles in hemostasis and thrombosis, Circ Res, vol.108, pp.1284-1297, 2011.

N. Satta, J. M. Freyssinet, and F. Toti, The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide, Br J Haematol, vol.96, pp.534-542, 1997.

M. Pérez-casal, C. Downey, and K. Fukudome, Activated protein C induces the release of microparticle-associated endothelial protein C receptor, Blood, vol.105, pp.1515-1522, 2005.

M. S. Bajaj, M. Ghosh, and S. P. Bajaj, Fibronectin-adherent monocytes express tissue factor and tissue factor pathway inhibitor whereas endotoxin-stimulated monocytes primarily express tissue factor: physiologic and pathologic implications, J Thromb Haemost JTH, vol.5, pp.1493-1499, 2007.

L. Vallier, S. Cointe, and R. Lacroix, Microparticles and Fibrinolysis, Semin Thromb Hemost, vol.43, pp.129-134, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01460632

R. Lacroix, F. Sabatier, and A. Mialhe, Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro, Blood, vol.110, pp.2432-2439, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00160595

R. Lacroix, L. Plawinski, and S. Robert, Leukocyte-and endothelial-derived microparticles: a circulating source for fibrinolysis, Haematologica, vol.97, pp.1864-1872, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00711679

S. Gando, Role of fibrinolysis in sepsis, Semin Thromb Hemost, vol.39, pp.392-399, 2013.

M. Levi, E. De-jonge, T. Van-der-poll, and T. Van-der-poll, Sepsis and disseminated intravascular coagulation, J Thromb Thrombolysis, vol.16, pp.43-47, 2003.

F. Coumans, A. R. Brisson, and E. I. Buzas, Methodological Guidelines to Study Extracellular Vesicles, Circ Res, vol.120, pp.1632-1648, 2017.

R. Lacroix, C. Judicone, and M. Mooberry, Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop, J Thromb Haemost JTH, vol.11, pp.1190-1193, 2013.

C. Dubois, B. Steiner, and N. Kieffer, Thrombin binding to GPIbalpha induces platelet aggregation and fibrin clot retraction supported by resting alphaIIbbeta3 interaction with polymerized fibrin, Thromb Haemost, vol.89, pp.853-865, 2003.

S. Robert, R. Lacroix, and P. Poncelet, High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles-brief report, Arterioscler Thromb Vasc Biol, vol.32, pp.1054-1058, 2012.

B. György, K. Módos, and E. Pállinger, Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters, Blood, vol.117, pp.39-48, 2011.

M. Heiden, R. Seitz, and R. Egbring, The role of inflammatory cells and their proteases in extravascular fibrinolysis, Semin Thromb Hemost, vol.22, pp.497-501, 1996.

T. Dejouvencel, L. Doeuvre, and R. Lacroix, Fibrinolytic cross-talk: a new mechanism for plasmin formation, Blood, vol.115, pp.2048-2056, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00439535

L. Zhu, K. Wang, and J. Cui, Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging, Anal Chem, vol.86, pp.8857-8864, 2014.

W. Jy, L. L. Horstman, and J. J. Jimenez, Measuring circulating cell-derived microparticles, J Thromb Haemost JTH, vol.2, pp.1842-1851, 2004.

H. Shao, J. Chung, and L. Balaj, Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy, Nat Med, vol.18, pp.1835-1840, 2012.

B. J. Tauro, D. W. Greening, and R. A. Mathias, Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes, Methods San Diego Calif, vol.56, pp.293-304, 2012.

R. Linares, S. Tan, and C. Gounou, High-speed centrifugation induces aggregation of extracellular vesicles, J Extracell Vesicles, vol.4, p.29509, 2015.

L. E. Graves, E. V. Ariztia, and J. R. Navari, Proinvasive properties of ovarian cancer ascites-derived membrane vesicles, Cancer Res, vol.64, pp.7045-7049, 2004.

E. Roca, R. Lacroix, and C. Judicone, Detection of EpCAM-positive microparticles in pleural fluid: A new approach to mini-invasively identify patients with malignant pleural effusions, Oncotarget, vol.7, pp.3357-3366, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455550